Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
New Phytol ; 228(5): 1640-1651, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32643808

RESUMO

Despite the ecological significance of ericoid mycorrhizal fungi, little is known about the abiotic and biotic factors driving their diversity and community composition. To determine the relative importance of abiotic and biotic filtering in structuring ericoid mycorrhizal fungal communities, we established 156 sampling plots in two highly contrasting environments but dominated by the same Ericaceae plant species: waterlogged bogs and dry heathlands. Plots were located across 25 bogs and 27 dry heathlands in seven European countries covering a gradient in nitrogen deposition and phosphorus availability. Putatively ericoid mycorrhizal fungal communities in the roots of 10 different Ericaceae species were characterized using high-throughput amplicon sequencing. Variation in ericoid mycorrhizal fungal communities was attributed to both habitat and soil variables on the one hand and host plant identity on the other. Communities differed significantly between bogs and heathlands and, in a given habitat, communities differed significantly among host plant species. Fungal richness was negatively related to nitrogen deposition in bogs and phosphorus availability in bogs and heathlands. Our results demonstrate that both abiotic and biotic filtering shapes ericoid mycorrhizal fungal communities and advocate an environmental policy minimizing excess nutrient input in these nutrient-poor ecosystems to avoid loss of ericoid mycorrhizal fungal taxa.


Assuntos
Ecossistema , Fungos , Micorrizas , Europa (Continente) , Nitrogênio , Raízes de Plantas , Microbiologia do Solo , Áreas Alagadas
2.
New Phytol ; 220(4): 1262-1272, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29243832

RESUMO

Although it is well known that arbuscular mycorrhizal fungi (AMF) play a key role in the functioning of natural ecosystems, the underlying drivers determining the composition of AMF communities remain unclear. In this study, we established 138 sampling plots at 46 grassland sites, consisting of 26 acidic grasslands and 20 calcareous grasslands spread across eight European countries, to assess the relative importance of abiotic and biotic filtering in driving AMF community composition and structure in both the grassland soils and in the roots of 13 grassland plant species. Soil AMF communities differed significantly between acidic and calcareous grasslands. In root AMF communities, most variance was attributable to soil variables while very little variation was explained by host plant identity. Root AMF communities in host plant species occurring in only one grassland type closely resembled the soil AMF communities of that grassland type and the root AMF communities of other host plant species occurring in the same grassland type. The observed AMF-host plants networks were not modular but nested. Our results indicate that abiotic conditions, rather than biotic filtering through host plant specificity, are the most important drivers in shaping AMF communities in European seminatural grasslands.


Assuntos
Pradaria , Micobioma , Micorrizas/fisiologia , Geografia , Micorrizas/genética , Microbiologia do Solo , Especificidade da Espécie
3.
Oecologia ; 179(3): 785-95, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26149746

RESUMO

Floral traits have evolved to maximize reproductive success by attracting pollinators and facilitating pollination. Highly attractive floral traits may, however, also increase the degree of self-pollination, which could become detrimental for plant fitness through inbreeding depression. Floral nectar is a trait that is known to strongly mediate pollinator attraction and plant reproductive success, but the particular role of the nectar amino acid (AA) composition is poorly understood. Therefore, we experimentally manipulated the nectar AA composition and abundance of the Lepidoptera-pollinated orchid Gymnadenia conopsea through soil fertilization, and we quantified AA content and AA composition through high performance anion exchange chromatography with pulsed amperometric detection. Mixed models were then used to evaluate differences in pollinia removal, fruit set, seed set and degree of selfing between fertilized and control individuals. Selfing rates were estimated using microsatellite markers. We found that fertilized individuals had a significantly higher nectar AA content and an altered AA composition, whereas plant height, number of flowers, nectar volume and sugar concentration remained unchanged. Fertilized individuals also had significantly more pollinia removed and a higher fruit set, whereas control plants that did not receive the fertilization treatment had significantly fewer selfed seeds, and more viable seeds. Although we cannot exclude a role of changes in floral scent following the fertilization treatment, our results strongly suggest a relation among nectar AA composition, fruiting success and selfing rates. Our results also indicate potential consequences of nutrient pollution for plant reproductive success, through the induced changes in nectar AA composition.


Assuntos
Aminoácidos/metabolismo , Fertilização , Orchidaceae/fisiologia , Néctar de Plantas/metabolismo , Fertilizantes , Flores/genética , Frutas/crescimento & desenvolvimento , Humanos , Nitrogênio/metabolismo , Orchidaceae/genética , Orchidaceae/metabolismo , Fósforo/metabolismo , Néctar de Plantas/química , Polinização , Análise de Componente Principal , Reprodução/genética , Sementes/genética
4.
Glob Chang Biol ; 20(12): 3814-22, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24895112

RESUMO

Nutrient pollution presents a serious threat to biodiversity conservation. In terrestrial ecosystems, the deleterious effects of nitrogen pollution are increasingly understood and several mitigating environmental policies have been developed. Compared to nitrogen, the effects of increased phosphorus have received far less attention, although some studies have indicated that phosphorus pollution may be detrimental for biodiversity as well. On the basis of a dataset covering 501 grassland plots throughout Europe, we demonstrate that, independent of the level of atmospheric nitrogen deposition and soil acidity, plant species richness was consistently negatively related to soil phosphorus. We also identified thresholds in soil phosphorus above which biodiversity appears to remain at a constant low level. Our results indicate that nutrient management policies biased toward reducing nitrogen pollution will fail to preserve biodiversity. As soil phosphorus is known to be extremely persistent and we found no evidence for a critical threshold below which no environmental harm is expected, we suggest that agro-environmental schemes should include grasslands that are permanently free from phosphorus fertilization.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais/métodos , Fertilizantes/efeitos adversos , Pradaria , Fósforo/efeitos adversos , Poluentes do Solo/efeitos adversos , Solo/química , Europa (Continente) , Fertilizantes/análise , Geografia , Concentração de Íons de Hidrogênio , Modelos Teóricos , Fósforo/análise , Poluentes do Solo/análise
5.
Sci Total Environ ; 893: 164801, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37321510

RESUMO

The current rise in the prevalence of allergies to aeroallergens is incompletely understood and attributed to interactions with environmental changes and lifestyle changes. Environmental nitrogen pollution might be a potential driver of this increasing prevalence. While the ecological impact of excessive nitrogen pollution has been widely studied and is relatively well understood, its indirect effect on human allergies is not well documented. Nitrogen pollution can affect the environment in various ways, including air, soil, and water. We aim to provide a literature overview of the nitrogen-driven impact on plant communities, plant productivity, and pollen properties and how they lead to changes in allergy burden. We included original articles investigating the associations between nitrogen pollution, pollen, and allergy, published in international peer-reviewed journals between 2001 and 2022. Our scoping review found that the majority of studies focus on atmospheric nitrogen pollution and its impact on pollen and pollen allergens, causing allergy symptoms. These studies often examine the impact of multiple atmospheric pollutants and not just nitrogen, making it difficult to determine the specific impact of nitrogen pollution. There is some evidence that atmospheric nitrogen pollution affects pollen allergy by increasing atmospheric pollen levels, altering pollen structure, altering allergen structure and release, and causing increased allergenic reactivity. Limited research has been conducted on the impact of soil and aqueous nitrogen pollution on pollen allergenic reactivity. Further research is needed to fill the current knowledge gap about the impact of nitrogen pollution on pollen and their related allergic disease burden.


Assuntos
Poluição do Ar , Hipersensibilidade , Rinite Alérgica Sazonal , Humanos , Rinite Alérgica Sazonal/etiologia , Alérgenos/efeitos adversos , Pólen , Hipersensibilidade/epidemiologia , Hipersensibilidade/etiologia , Poluição do Ar/efeitos adversos
6.
Environ Pollut ; 309: 119720, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35810985

RESUMO

Human-induced nitrogen (N) and phosphorus (P) enrichment have profound effects on grassland net primary production (NPP) and species richness. However, a comprehensive understanding of the relative contribution of N vs. P addition and their interaction on grassland NPP increase and species loss remains elusive. We compiled data from 80 field manipulative studies and conducted a meta-analysis (2107 observations world-wide) to evaluate the individual and combined effects of N and P addition on grassland NPP and species richness. We found that both N addition and P addition significantly enhanced grassland above-ground NPP (ANPP; 33.2% and 14.2%, respectively), but did not affect total NPP, below-ground NPP (BNPP), and species evenness. Species richness significantly decreased with N addition (11.7%; by decreasing forbs) probably due to strong decreased soil pH, but not with P addition. The combined effects of N and P addition were generally stronger than the individual effects of N or P addition, and we found the synergistic effects on ANPP, and additive effects on total NPP, BNPP, species richness, and evenness within the combinations of N and P addition. In addition, N and P addition effects were strongly affected by moderator variables (e.g. climate and fertilization type, duration and amount of fertilizer addition). These results demonstrate a higher relative contribution of N than P addition to grassland NPP increase and species loss, although the effects varied across climate and fertilization types. The existing data also reveals that more long-term (≥5 years) experimental studies that combine N and P and test multifactor effects in different climate zones (particularly in boreal grasslands) are needed to provide a more solid basis for forecasting grassland community response and C sequestration response to nutrient enrichment at the global scale.


Assuntos
Pradaria , Nitrogênio , Biodiversidade , Biomassa , Ecossistema , Humanos , Fósforo
7.
BMC Ecol Evol ; 21(1): 200, 2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34740329

RESUMO

BACKGROUND: Ecosystem restoration is as a critical tool to counteract the decline of biodiversity and recover vital ecosystem services. Restoration efforts, however, often fall short of meeting their goals. Although functionally important levels of biodiversity can significantly contribute to the outcome of ecosystem restoration, they are often overlooked. One such important facet of biodiversity is within-species genetic diversity, which is fundamental to population fitness and adaptation to environmental change. Also the diversity of arbuscular mycorrhizal fungi (AMF), obligate root symbionts that regulate nutrient and carbon cycles, potentially plays a vital role in mediating ecosystem restoration outcome. In this study, we investigated the relative contribution of intraspecific population genetic diversity, AMF diversity, and their interaction, to population recovery of Succisa pratensis, a key species of nutrient poor semi natural grasslands. We genotyped 180 individuals from 12 populations of S. pratensis and characterized AMF composition in their roots, using microsatellite markers and next generation amplicon sequencing, respectively. We also investigated whether the genetic makeup of the host plant species can structure the composition of root-inhabiting AMF communities. RESULTS: Our analysis revealed that population allelic richness was strongly positively correlated to relative population growth, whereas AMF richness and its interaction with population genetic diversity did not significantly contribute. The variation partitioning analysis showed that, after accounting for soil and spatial variables, the plant genetic makeup explained a small but significant part of the unique variation in AMF communities. CONCLUSIONS: Our results confirm that population genetic diversity can contribute to population recovery, highlighting the importance of within-species genetic diversity for the success of restoration. We could not find evidence, however, that population recovery benefits from the presence of more diverse AMF communities. Our analysis also showed that the genetic makeup of the host plant structured root-inhabiting AMF communities, suggesting that the plant genetic makeup may be linked to genes that control symbiosis development.


Assuntos
Dipsacaceae , Micorrizas , Ecossistema , Variação Genética , Pradaria , Humanos , Micorrizas/genética
8.
ISME J ; 12(2): 380-385, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28984847

RESUMO

Dissimilarity overlap curve analysis has shown that 'universality' is a common feature in many complex microbial communities, suggesting that the same taxa interact in a similar manner when shared between communities. We present evidence that arbuscular mycorrhizal fungi, common plant root symbionts, show universal community compositions in natural ecosystems and that this pattern is conserved even at larger spatial scales. However, universality was not detected in agricultural ecosystems potentially implying that agricultural symbiont communities are formed in a different manner.


Assuntos
Ecossistema , Micorrizas/classificação , Micorrizas/fisiologia , Raízes de Plantas/microbiologia , Agricultura , Canadá , China , Produtos Agrícolas , DNA/análise , Ecologia , Europa (Continente) , Genes Fúngicos , Geografia , Pradaria , Análise dos Mínimos Quadrados , Modelos Lineares , Microbiota , Simbiose
10.
Environ Pollut ; 243(Pt B): 1912-1922, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30408880

RESUMO

Heavy metals in urban soils may impose a threat to public health and may negatively affect urban tree viability. Vegetation spectroscopy techniques applied to bio-indicators bring new opportunities to characterize heavy metal contamination, without being constrained by laborious soil sampling and lab-based sample processing. Here we used Tilia tomentosa trees, sampled across three European cities, as bio-indicators i) to investigate the impacts of elevated concentrations of cadmium (Cd) and lead (Pb) on leaf mass per area (LMA), total chlorophyll content (Chl), chlorophyll a to b ratio (Chla:Chlb) and the maximal PSII photochemical efficiency (Fv/Fm); and ii) to evaluate the feasibility of detecting Cd and Pb contamination using leaf reflectance spectra. For the latter, we used a partial-least-squares discriminant analysis (PLS-DA) to train spectral-based models for the classification of Cd and/or Pb contamination. We show that elevated soil Pb concentrations induced a significant decrease in the LMA and Chla:Chlb, with no decrease in Chl. We did not observe pronounced reductions of Fv/Fm due to Cd and Pb contamination. Elevated Cd and Pb concentrations induced contrasting spectral changes in the red-edge (690-740 nm) region, which might be associated with the proportional changes in leaf pigments. PLS-DA models allowed for the classifications of Cd and Pb contamination, with a classification accuracy of 86% (Kappa = 0.48) and 83% (Kappa = 0.66), respectively. PLS-DA models also allowed for the detection of a collective elevation of soil Cd and Pb, with an accuracy of 66% (Kappa = 0.49). This study demonstrates the potential of using reflectance spectroscopy for biomonitoring of heavy metal contamination in urban soils.


Assuntos
Monitoramento Ambiental/métodos , Metais Pesados/análise , Poluentes do Solo/análise , Solo/química , Análise Espectral , Cidades , Análise dos Mínimos Quadrados , Metais Pesados/química , Poluentes do Solo/química
11.
FEMS Microbiol Ecol ; 94(12)2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30312413

RESUMO

Trees in urban areas face harsh environmental conditions. Ectomycorrhizal fungi (EcM) form a symbiosis with many tree species and provide a range of benefits to their host through their extraradical hyphal network. Although our understanding of the environmental drivers and large scale geographical variation of EcM communities in natural ecosystems is growing, our knowledge of EcM communities within and across urban areas is still limited. Here, we characterized EcM communities using Illumina miseq sequencing on 175 root samples of the urban tree Tilia tomentosa from three European cities, namely Leuven (Belgium), Strasbourg (France) and Porto (Portugal). We found strong differences in EcM richness and community composition between cities. Soil acidity, organic matter and moisture content were significantly associated with EcM community composition. In agreement, the explained variability in EcM communities was mostly attributed to general soil characteristics, whereas very little variation was explained by city and heavy metal pollution. Overall, our results suggest that EcM communities in urban areas are significantly associated with soil characteristics, while heavy metal pollution and biogeography had little or no impact. These findings deliver new insights into EcM distribution patterns in urban areas and contribute to specific inoculation strategies to improve urban tree vitality.


Assuntos
Micobioma/fisiologia , Micorrizas/classificação , Micorrizas/crescimento & desenvolvimento , Tilia/microbiologia , Árvores/microbiologia , Bélgica , Biodiversidade , Ecossistema , França , Geografia , Metais Pesados/toxicidade , Portugal , Solo , Microbiologia do Solo , Simbiose , População Urbana , Urbanização
12.
PLoS One ; 12(4): e0175160, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28406910

RESUMO

Pollinators are declining worldwide and possible underlying causes include disease, invasive pest species and large scale land use changes resulting in habitat loss and degradation. One particular cause of habitat degradation is the increased inflow of nutrients due to anthropogenic combustion processes and large scale application of agricultural fertilizers. This nutrient pollution has been shown to affect pollinators through the loss of nectar and pollen-providing plant species. However, it may also affect pollinators through altering the nectar and pollen chemical composition of plant species, hence influencing pollinator food quality. Here, we experimentally investigated the effect of nutrient enrichment on amino acid and sugar composition of nectar and pollen in the grassland plant Sucissa pratensis, and the subsequent colony size and larval mortality of the pollinating bumblebee Bombus terrestris. We found less of the essential amino acids glycine and arginine in the pollen of fertilized plants, and more arginine, ornithine and threonine in the pollen of control plants. Nectar glucose and pollen fructose levels were lower in fertilized plants as compared to control plants. Furthermore, bumblebee colonies visiting fertilized plants showed more dead larvae than colonies visiting control plants. Our results suggest that the fitness of bumblebees can be negatively affected by changes in their food quality following nutrient pollution. If similar patterns hold for other plant and pollinator species, this may have far reaching implications for the maintenance of pollination ecosystem services, as nutrient pollution continues to rise worldwide.


Assuntos
Abelhas/metabolismo , Dipsacaceae/metabolismo , Néctar de Plantas/metabolismo , Pólen/metabolismo , Animais , Larva/metabolismo
13.
PLoS One ; 12(3): e0174380, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28333985

RESUMO

Anthropogenic activities have severely altered fluxes of nitrogen and phosphorus in ecosystems worldwide. In grasslands, subsequent negative effects are commonly attributed to competitive exclusion of plant species following increased above-ground biomass production. However, some studies have shown that this does not fully account for nutrient enrichment effects, questioning whether lowering competition by reducing grassland productivity through mowing or herbivory can mitigate the environmental impact of nutrient pollution. Furthermore, few studies so far discriminate between nitrogen and phosphorus pollution. We performed a full factorial experiment in greenhouse mesocosms combining nitrogen and phosphorus addition with two clipping regimes designed to relax above-ground competition. Next, we studied the survival and growth of seedlings of eight common European grassland species and found that five out of eight species showed higher survival under the clipping regime with the lowest above-ground competition. Phosphorus addition negatively affected seven plant species and nitrogen addition negatively affected four plant species. Importantly, the negative effects of nutrient addition and higher above-ground competition were independent of each other for all but one species. Our results suggest that at any given level of soil nutrients, relaxation of above-ground competition allows for higher seedling survival in grasslands. At the same time, even at low levels of above-ground competition, nutrient enrichment negatively affects survival as compared to nutrient-poor conditions. Therefore, although maintaining low above-ground competition appears essential for species' recruitment, for instance through mowing or herbivory, these management efforts are likely to be insufficient and we conclude that environmental policies aimed to reduce both excess nitrogen and particularly phosphorus inputs are also necessary.


Assuntos
Ecossistema , Pradaria , Nitrogênio/análise , Plântula/crescimento & desenvolvimento , Solo/química , Biodiversidade , Biomassa , Fósforo
14.
Nat Plants ; 3: 16224, 2017 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-28134925

RESUMO

Species diversity is commonly hypothesized to result from trade-offs for different limiting resources, providing separate niches for coexisting species1-4. As soil nutrients occur in multiple chemical forms, plant differences in acquisition of the same element derived from different compounds may represent unique niche dimensions5,6. Because plant productivity of ecosystems is often limited by phosphorus7, and because plants have evolved diverse adaptations to acquire soil phosphorus6,8, a promising yet untested hypothesis is phosphorus resource partitioning6,9,10. Here, we provided two different chemical forms of phosphorus to sown grassland mesocosms to investigate phosphorus acquisition of eight plant species that are common in European grasslands, and to identify subsequent patterns of plant abundance. For the first time, we show that the relative abundance of grassland plant species can be influenced by soil phosphorus forms, as higher abundance was linked to higher acquisition of a specific form of phosphorus. These results were supported by a subsequent isotope dilution experiment using intact grassland sods that were treated with different inorganic or organic phosphorus forms. Here, 5 out of 14 species showed greater phosphorus acquisition in the inorganic phosphorus treatment, and 4 in the organic phosphorus treatments. Furthermore, for the species used in both experiments we found similar acquisition patterns. Our results support the hypothesis of phosphorus resource partitioning and may provide a new mechanistic framework to explain high plant diversity in phosphorus-poor ecosystems6,11-13. As world biodiversity hotspots are almost invariably related to phosphorus limitation8,11,12, our results may thus also be key to understanding biodiversity loss in an era of ever-increasing nutrient enrichment14.


Assuntos
Biodiversidade , Pradaria , Magnoliopsida/fisiologia , Fósforo/química , Fósforo/metabolismo , Ecossistema , Europa (Continente) , Densidade Demográfica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA