Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 202
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Nucleic Acids Res ; 51(6): 2963-2973, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36840726

RESUMO

A ratiometric response gives an output that is proportional to the ratio between the magnitudes of two inputs. Ratio computation has been observed in nature and is also needed in the development of smart probiotics and organoids. Here, we achieve ratiometric gene expression response in bacteria Escherichia coli with the incoherent merger network. In this network, one input molecule activates expression of the output protein while the other molecule activates an intermediate protein that enhances the output's degradation. When degradation rate is first order and faster than dilution, the output responds linearly to the ratio between the input molecules' levels over a wide range with R2 close to 1. Response sensitivity can be quantitatively tuned by varying the output's translation rate. Furthermore, ratiometric responses are robust to global perturbations in cellular components that influence gene expression because such perturbations affect the output through an incoherent feedforward loop. This work demonstrates a new molecular signal processing mechanism for multiplexed sense-and-respond circuits that are robust to intra-cellular context.


Assuntos
Biologia Computacional , Escherichia coli , Regulação Bacteriana da Expressão Gênica , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Redes Reguladoras de Genes , Genômica
2.
Sensors (Basel) ; 24(4)2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38400451

RESUMO

Volatile organic compounds (VOCs) in exhaled human breath serve as pivotal biomarkers for disease identification and medical diagnostics. In the context of diabetes mellitus, the noninvasive detection of acetone, a primary biomarker using electronic noses (e-noses), has gained significant attention. However, employing e-noses requires pre-trained algorithms for precise diabetes detection, often requiring a computer with a programming environment to classify newly acquired data. This study focuses on the development of an embedded system integrating Tiny Machine Learning (TinyML) and an e-nose equipped with Metal Oxide Semiconductor (MOS) sensors for real-time diabetes detection. The study encompassed 44 individuals, comprising 22 healthy individuals and 22 diagnosed with various types of diabetes mellitus. Test results highlight the XGBoost Machine Learning algorithm's achievement of 95% detection accuracy. Additionally, the integration of deep learning algorithms, particularly deep neural networks (DNNs) and one-dimensional convolutional neural network (1D-CNN), yielded a detection efficacy of 94.44%. These outcomes underscore the potency of combining e-noses with TinyML in embedded systems, offering a noninvasive approach for diabetes mellitus detection.


Assuntos
Diabetes Mellitus , Compostos Orgânicos Voláteis , Humanos , Nariz Eletrônico , Testes Respiratórios/métodos , Algoritmos , Diabetes Mellitus/diagnóstico , Aprendizado de Máquina , Biomarcadores
3.
Emerg Infect Dis ; 29(2): 422-425, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36692459

RESUMO

Candida auris transmission is steadily increasing across the United States. We report culture-based detection of C. auris in wastewater and the epidemiologic link between isolated strains and southern Nevada, USA, hospitals within the sampled sewershed. Our results illustrate the potential of wastewater surveillance for containing C. auris.


Assuntos
Candida , Candidíase , Humanos , Estados Unidos/epidemiologia , Candidíase/tratamento farmacológico , Candida auris , Águas Residuárias , Nevada/epidemiologia , Vigilância Epidemiológica Baseada em Águas Residuárias , Surtos de Doenças , Antifúngicos/uso terapêutico
4.
Fungal Genet Biol ; 166: 103792, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36996931

RESUMO

Polyamines are ubiquitous small organic cations, and their roles as regulators of several cellular processes are widely recognized. They are implicated in the key stages of the fungal life cycle. Ustilago maydis is a phytopathogenic fungus, the causal agent of common smut of maize and a model system to understand dimorphism and virulence. U. maydis grows in yeast form at pH 7 and it can develop its mycelial form in vitro at pH 3. Δodc mutants that are unable to synthesize polyamines, grow as yeast at pH 3 with a low putrescine concentration, and to complete its dimorphic transition high putrescine concentration is require. Δspd mutants require spermidine to grow and cannot form mycelium at pH 3. In this work, the increased expression of the mating genes, mfa1 and mfa2, on Δodc mutants, was related to high putrescine concentration. Global gene expression analysis comparisons of Δodc and Δspd U. maydis mutants indicated that 2,959 genes were differentially expressed in the presence of exogenous putrescine at pH 7 and 475 genes at pH 3. While, in Δspd mutant, the expression of 1,426 genes was affected by exogenous spermine concentration at pH 7 and 11 genes at pH 3. Additionally, we identified 28 transcriptional modules with correlated expression during seven tested conditions: mutant genotype, morphology (yeast, and mycelium), pH, and putrescine or spermidine concentration. Furthermore, significant differences in transcript levels were noted for genes in modules relating to pH and genotype genes involved in ribosome biogenesis, mitochondrial oxidative phosphorylation, N-glycan synthesis, and Glycosylphosphatidylinositol (GPI)-anchor. In summary, our results offer a valuable tool for the identification of potential factors involved in phenomena related to polyamines and dimorphism.


Assuntos
Poliaminas , Proteínas de Saccharomyces cerevisiae , Poliaminas/metabolismo , Putrescina/metabolismo , Putrescina/farmacologia , Espermidina/metabolismo , Ornitina Descarboxilase/genética , Ornitina Descarboxilase/metabolismo , Espermidina Sintase/genética , Saccharomyces cerevisiae/genética , Caracteres Sexuais , Expressão Gênica , Lipoproteínas/genética , Feromônios , Proteínas de Saccharomyces cerevisiae/genética
5.
Environ Sci Technol ; 57(4): 1755-1763, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36656763

RESUMO

Candida auris is an opportunistic fungal pathogen and an emerging global public health threat, given its high mortality among infected individuals, antifungal resistance, and persistence in healthcare environments. This study explored the applicability of wastewater surveillance for C. auris in a metropolitan area with reported outbreaks across multiple healthcare facilities. Influent or primary effluent samples were collected over 10 weeks from seven sewersheds in Southern Nevada. Pelleted solids were analyzed using an adapted quantitative polymerase chain reaction (qPCR) assay targeting the ITS2 region of the C. auris genome. Positive detection was observed in 72 of 91 samples (79%), with higher detection frequencies in sewersheds serving healthcare facilities involved in the outbreak (94 vs 20% sample positivity). Influent wastewater concentrations ranged from 2.8 to 5.7 log10 gene copies per liter (gc/L), and primary clarification achieved an average log reduction value (LRV) of 1.24 ± 0.34. Presumptive negative surface water and wastewater controls were non-detect. These results demonstrate that wastewater surveillance may assist in tracking the spread of C. auris and serve as an early warning tool for public health action. These findings provide the foundation for future application of wastewater-based epidemiology (WBE) to community- or facility-level surveillance of C. auris and other high consequence, healthcare-associated infectious agents.


Assuntos
Candida , Candidíase , Humanos , Candida/genética , Candidíase/diagnóstico , Candidíase/epidemiologia , Candidíase/microbiologia , Candida auris , Águas Residuárias , Vigilância Epidemiológica Baseada em Águas Residuárias , Nevada/epidemiologia , Surtos de Doenças
6.
Sensors (Basel) ; 22(12)2022 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-35746246

RESUMO

Parkinson's disease is characterized by abnormal gait, which worsens as the condition progresses. Although several methods have been able to classify this feature through pose-estimation algorithms and machine-learning classifiers, few studies have been able to analyze its progression to perform stage classification of the disease. Moreover, despite the increasing popularity of these systems for gait analysis, the amount of available gait-related data can often be limited, thereby, hindering the progress of the implementation of this technology in the medical field. As such, creating a quantitative prognosis method that can identify the severity levels of a Parkinsonian gait with little data could help facilitate the study of the Parkinsonian gait for rehabilitation. In this contribution, we propose a vision-based system to analyze the Parkinsonian gait at various stages using linear interpolation of Parkinsonian gait models. We present a comparison between the performance of a k-nearest neighbors algorithm (KNN), support-vector machine (SVM) and gradient boosting (GB) algorithms in classifying well-established gait features. Our results show that the proposed system achieved 96-99% accuracy in evaluating the prognosis of Parkinsonian gaits.


Assuntos
Marcha , Máquina de Vetores de Suporte , Algoritmos , Análise da Marcha , Aprendizado de Máquina
7.
RNA Biol ; 18(11): 1727-1738, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33427029

RESUMO

Riboswitches are RNA-based regulatory elements that utilize ligand-induced structural changes in the 5'-untranslated region of mRNA to regulate the expression of associated genes. The majority of synthetic riboswitches have been selected and tested in cell-based systems. Cell-free protein expression systems (CFPS) have several advantages for the development and testing of synthetic riboswitches, including eliminating interactions with complex cellular networks, and the decoupling of transcription and translation processes. To gain a better understanding of the riboswitch regulatory mechanism, to allow for more efficient riboswitch optimization and use for biosensing applications, we studied the performance of a theophylline-responsive synthetic riboswitch coupled with the superfolder green fluorescent protein (sfGFP) reporter gene in E. coli cellular extract and PURE cell-free systems. To monitor the mRNA dynamics, a malachite green aptamer sequence was added to the 3'-untranslated region of sfGFP mRNA. Performance of the theophylline riboswitch was compared with a constitutively expressed sfGFP (control). Transcription dynamics of the riboswitch mRNA was very similar to the transcription of the control mRNA for all theophylline concentrations tested in both E. coli extract and PURE CFPS. However, sfGFP expression in the riboswitch construct was one order of magnitude lower, even at the highest concentration of theophylline. A mathematical model of riboswitch activation governed by the kinetic trapping mechanism was developed. Two factors - a reduced fraction of mRNA in the 'ON' state and a considerably lower translation initiation rate in the riboswitch - contribute to the much lower level of protein expression in the theophylline riboswitch compared to the control construct.


Assuntos
Aptâmeros de Nucleotídeos/química , Sistema Livre de Células/metabolismo , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Proteínas de Fluorescência Verde/metabolismo , Riboswitch/genética , Biologia Sintética/métodos , Teofilina/farmacologia , Engenharia Celular , Sistema Livre de Células/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Proteínas de Fluorescência Verde/genética , Riboswitch/efeitos dos fármacos
8.
Mikrochim Acta ; 189(1): 4, 2021 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-34855041

RESUMO

Synthetic biology approaches for rewiring of bacterial constructs to express particular intracellular factors upon induction with the target analyte are emerging as sensing paradigms for applications in environmental and in vivo monitoring. To aid in the design and optimization of bacterial constructs for sensing analytes, there is a need for lysis-free intracellular detection modalities that monitor the signal level and kinetics of expressed factors within different modified bacteria in a multiplexed manner, without requiring cumbersome surface immobilization. Herein, an electrochemical detection system on nanoporous gold that is electrofabricated with a biomaterial redox capacitor is presented for quantifying ß-galactosidase expressed inside modified Escherichia coli constructs upon induction with dopamine. This nanostructure-mediated redox amplification approach on a microfluidic platform allows for multiplexed assessment of the expressed intracellular factors from different bacterial constructs suspended in distinct microchannels, with no need for cell lysis or immobilization. Since redox mediators present over the entire depth of the microchannel can interact with the electrode and with the E. coli construct in each channel, the platform exhibits high sensitivity and enables multiplexing. We envision its application in assessing synthetic biology-based approaches for comparing specificity, sensitivity, and signal response time upon induction with target analytes of interest.


Assuntos
Catecóis/química , Quitosana/química , Técnicas Eletroquímicas/métodos , Proteínas de Escherichia coli/análise , Nanoporos , beta-Galactosidase/análise , Dopamina/farmacologia , Escherichia coli/enzimologia , Proteínas de Escherichia coli/metabolismo , Galactosídeos/química , Galactosídeos/metabolismo , Ouro/química , Limite de Detecção , Técnicas Analíticas Microfluídicas , Oxirredução , Rutênio/química , Transativadores/metabolismo , beta-Galactosidase/metabolismo
9.
Molecules ; 26(24)2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34946651

RESUMO

Immobilization of enzymes has many advantages for their application in biotechnological processes. In particular, the cross-linked enzyme aggregates (CLEAs) allow the production of solid biocatalysts with a high enzymatic loading and the advantage of obtaining derivatives with high stability at low cost. The purpose of this study was to produce cross-linked enzymatic aggregates (CLEAs) of LipMatCCR11, a 43 kDa recombinant solvent-tolerant thermoalkaliphilic lipase from Geobacillus thermoleovorans CCR11. LipMatCCR11-CLEAs were prepared using (NH4)2SO4 (40% w/v) as precipitant agent and glutaraldehyde (40 mM) as cross-linker, at pH 9, 20 °C. A U10(56) uniform design was used to optimize CLEA production, varying protein concentration, ammonium sulfate %, pH, glutaraldehyde concentration, temperature, and incubation time. The synthesized CLEAs were also analyzed using scanning electron microscopy (SEM) that showed individual particles of <1 µm grouped to form a superstructure. The cross-linked aggregates showed a maximum mass activity of 7750 U/g at 40 °C and pH 8 and retained more than 20% activity at 100 °C. Greater thermostability, resistance to alkaline conditions and the presence of organic solvents, and better durability during storage were observed for LipMatCCR11-CLEAs in comparison with the soluble enzyme. LipMatCCR11-CLEAs presented good reusability by conserving 40% of their initial activity after 9 cycles of reuse.


Assuntos
Proteínas de Bactérias/química , Geobacillus/enzimologia , Lipase/química , Agregados Proteicos , Proteínas de Bactérias/genética , Reagentes de Ligações Cruzadas/química , Estabilidade Enzimática , Geobacillus/genética , Lipase/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
10.
Angew Chem Int Ed Engl ; 60(28): 15260-15265, 2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-33878237

RESUMO

The ability of aptamers to recognize a variety of different molecules has fueled their emergence as recognition agents to probe complex media and cells. Many detection strategies require aptamer binding to its target to result in a dramatic change in structure, typically from an unfolded to a folded state. Here, we report a strategy based on forced intercalation (FIT) that increases the scope of aptamer recognition by transducing subtle changes in aptamer structures into fluorescent readouts. By screening a library of green-fluorescent FIT-aptamers whose design is guided by computational modeling, we could identify hits that sense steroids like dehydroepiandrosterone sulfate (DHEAS) down to 1.3 µM with no loss in binding affinity compared to the unmodified aptamer. This enabled us to study DHEAS in clinical serum samples with several advantages over gold standard methods, including rapid readout (<30 min), simple instrumentation (plate-reader), and low sample volumes (10 µL).


Assuntos
Sondas de DNA/química , Corantes Fluorescentes/química , Esteroides/análise , Humanos
11.
Anal Chem ; 91(15): 9554-9562, 2019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-31283189

RESUMO

Because of the sharp distance dependence of surface-enhanced Raman spectroscopy (SERS), analyte molecules that do not exhibit strong affinity for Au/Ag often elude detection. New methods of integrating such analytes with SERS substrates are required to circumvent this limitation and expand the sensitivity of SERS to new molecules and applications. We communicate here a solution-phase, capture agent-free method of aggregating Au nanospheres in the presence of five neurotransmitters (dopamine, epinephrine, norepinephrine, serotonin, and histamine) and preventing sedimentation by encapsulating the aggregated nanospheres with polyvinylpyrrolidone, thereby trapping the neurotransmitters in close proximity to the Au nanospheres and enabling SER detection. The primary advantages of this physicochemical trapping method, which is generalizable to analytes beyond the scope of this work, are the high signal-to-noise ratio and spectral consistency down to nM levels. Normal Raman spectra and density functional theory calculations corroborate the accuracy of the spectra. Spectra collected over a wide range of concentrations were used to construct adsorption isotherms for all five neurotransmitters, from which adsorption dissociation constants were calculated, spanning from 5.7 × 10-4 M to 1.7 × 10-10 M. We expect this method to produce high quality SER spectra of any molecule with an Au affinity known or expected (based on functional groups) to be within that range. Our results have implications for plasmonic detection of these neurotransmitters, particularly for mixtures of those that exhibited disparate Au affinity in our study. We also present evidence that this method produces spectra of sufficient resolution to explore hypotheses related to surface adsorption behavior.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Neurotransmissores/química , Polímeros/química , Análise Espectral Raman/métodos
12.
Nano Lett ; 18(7): 4130-4135, 2018 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-29923734

RESUMO

Here we report on the fabrication of reconfigurable and solution processable nanoscale biosensors with multisensing capability, based on single-walled carbon nanotubes (SWCNTs). Distinct DNA-wrapped (hence water-soluble) CNTs were immobilized from solution onto different prepatterned electrodes on the same chip, via a low-cost dielectrophoresis (DEP) methodology. The CNTs were functionalized with specific, and different, aptamer sequences that were employed as selective recognition elements for biomarkers indicative of stress and neuro-trauma conditions. Multiplexed detection of three different biomarkers was successfully performed, and real-time detection was achieved in serum down to physiologically relevant concentrations of 50 nM, 10 nM, and 500 pM for cortisol, dehydroepiandrosterone-sulfate (DHEAS), and neuropeptide Y (NPY), respectively. Additionally, the fabricated nanoscale devices were shown to be reconfigurable and reusable via a simple cleaning procedure. The general applicability of the strategy presented, and the facile device fabrication from aqueous solution, hold great potential for the development of the next generation of low power consumption portable diagnostic assays for the simultaneous monitoring of different health parameters.

13.
Langmuir ; 34(5): 2139-2146, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29283584

RESUMO

DNA aptamers that bind biomolecular targets are of interest as the recognition element in colorimetric sensors based on gold nanoparticles (AuNP), where sensor functionality is related to changes in AuNP colloidal stability upon target binding. In order to understand the role of target binding on DNA-AuNP colloidal stability, we have used high-resolution NMR to characterize the interactions of the 36 nucleotide cocaine-binding aptamer (MN4) and related aptamers with AuNPs, cocaine, and cocaine metabolites. Changes in the aptamer imino proton NMR spectra with low (20 nM) concentrations of AuNP show that the aptamers undergo fast-exchange adsorption on the nanoparticle surface. An analysis of the spectral changes and the comparison with modified MN4 aptamers shows that the AuNP binding domain is localized on stem two of the three-stemmed aptamer. The identification of an AuNP recognition domain allows for the incorporation of AuNP binding functionality into a wide variety of aptamers. AuNP-induced spectral changes are not observed for the aptamer-AuNP mixtures in the presence of cocaine, demonstrating that aptamer absorption on the AuNP surface is modulated by aptamer-target interactions. The data also show that the DNA-AuNP interactions and sensor functionality are critically dependent on aptamer folding.


Assuntos
Aptâmeros de Nucleotídeos/química , Ouro/química , Nanopartículas Metálicas/química , Aptâmeros de Nucleotídeos/genética , Sequência de Bases , Concentração Osmolar , Temperatura
14.
Sensors (Basel) ; 17(4)2017 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-28346350

RESUMO

Neurotransmitters detection is critical to understanding communication between the brain and peripheral tissue. Serotonin is a key neurotransmitter linked to a number of conditions, but a full understanding of its role in disease is still lacking. The development of fast and selective serotonin detection platforms will provide researchers with tools to monitor serotonin in individuals before and after treatment for the condition of interest. Aptamer-gold nanoparticles conjugates that responded colorimetrically to serotonin with minimal response to its metabolite and other neurotransmitters were designed by simply adsorbing the DNA on the surface of AuNPs. A plasmonic assay for serotonin detection was designed with a response to biologically relevant serotonin levels. Importantly, the assay performance was not compromised when tested in filtered spiked fetal bovine serum as a mimic of biofluids. This work shows that these simple and stable Apt-AuNP conjugates are promising tools to develop fast assays for point-of-care and personalized diagnostics applications.


Assuntos
Nanopartículas Metálicas , Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Colorimetria , Ouro , Humanos , Serotonina
15.
Sensors (Basel) ; 17(9)2017 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-28832512

RESUMO

In this work, we developed an assay to determine if an arbitrary white powder is a controlled substance, given the plasmonic response of aptamer-gold nanoparticle conjugates (Apt-AuNPs). Toward this end, we designed Apt-AuNPs with specific a response to common controlled substances without cross reactivity to chemicals typically used as fillers in street formulations. Plasmonic sensor variation was shown to produce unique data fingerprints for each chemical analyzed, supporting the application of multivariate statistical techniques to annotate unknown samples by chemical similarity. Importantly, the assay takes less than fifteen minutes to run, and requires only a few micrograms of the material, making the proposed assay easily deployable in field operations.

16.
Gynecol Endocrinol ; 32(7): 517-20, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27113551

RESUMO

Chlormadinone acetate (CMA) is a progesterone derivative (17α-acetoxy-6-chloro-4,6-pregnadiene-3,20-dione), first synthesized in 1961. It was used as progestin-based hormone replacement therapy; since 1999 it was first used for oral contraception combined with ethinyl estradiol (EE). CMA exerts a potent progestagenic effect, about one third higher than that observed with endogenous progesterone. CMA is also an anti-estrogen, showing no androgenic effects (at birth control dose). Unlike progesterone, it has a mild glucosteroidal effect with no anti-mineralocorticoid effect at all. These biological actions have allowed CMA to have a role for therapeutic use in dysmenorrhea, hyperandrogenism, and as a contraceptive agent. In addition, CMA has exhibited beneficial neuroendocrine effects on women's mood. CMA-EE combination has shown excellent contraceptive efficacy, high tolerability, and compliance due to its risk-benefit profile, having additional benefits on skin and hair, such as reduction of seborrhea and acne. Metabolic tolerance of CMA has been demonstrated in several clinical studies. Currently, CMA is formulated to be taken as oral caplets in a 21 caplets package containing 0.03 mg/EE and 2 mg CMA per pill with/without seven placebo additional pills. Another presentation has 24 caplets containing 0.02 mg/EE and 2 mg CMA plus four placebo pills.


Assuntos
Acetato de Clormadinona/farmacologia , Anticoncepção/métodos , Anticoncepcionais Orais Sintéticos/farmacologia , Dismenorreia/tratamento farmacológico , Feminino , Humanos , América Latina
17.
Sociol Perspect ; 59(2): 345-367, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27418713

RESUMO

Recent research suggests increasing heterogeneity in the transition from adolescence to early adulthood. This study considers how this heterogeneity may influence delinquency between these two developmental periods. We focus on the role of family transitions, educational attainment, and employment in predicting risk of nonviolent delinquency and substance use, as well as disparities in transitions across socioeconomic status subgroups. Data are from the National Longitudinal Study of Adolescent to Adult Health (Add Health). We find that family and neighborhood advantage are negatively associated with transitions into marriage, cohabitation, and parenthood, yet positively associated with educational attainment. In addition, adolescent family and neighborhood advantage are associated with a continuation of delinquent behavior and substance use during early adulthood. In multivariate analyses, accounting for family transitions in early adulthood largely attenuates the relationship between neighborhood advantage in adolescence and delinquency in early adulthood. We conclude by discussing the implications of our findings for developmental criminology.

18.
Anal Chem ; 86(9): 4120-5, 2014 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-24697740

RESUMO

Neuropeptides are vital to the transmission and modulation of neurological signals, with Neuropeptide Y (NPY) and Orexin A (OXA) offering diagnostic information on stress, depression, and neurotrauma. NPY is an especially significant biomarker, since it can be noninvasively collected from sweat, but its detection has been limited by poor sensitivity, long assay times, and the inability to scale-down sample volumes. Herein, we apply electrokinetic preconcentration of the neuropeptide onto patterned graphene-modified electrodes in a nanochannel by frequency-selective dielectrophoresis for 10 s or by electrochemical adsorptive accumulation for 300 s, to enable the electrochemical detection of NPY and OXA at picomolar levels from subnanoliter samples, with sufficient signal sensitivity to avoid interferences from high levels of dopamine and ascorbic acid within biological matrices. Given the high sensitivity of the methodology within small volume samples, we envision its utility toward off-line detection from droplets collected by microdialysis for the eventual measurement of neuropeptides at high spatial and temporal resolutions.


Assuntos
Eletrodos , Grafite/química , Nanoestruturas , Neuropeptídeos/análise , Cinética , Microfluídica/instrumentação
19.
Analyst ; 139(23): 6214-22, 2014 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-25319608

RESUMO

The utilization of the plasmonic response of aptamer-gold nanoparticle conjugates (Apt-AuNPs) to design cross-reactive arrays for fingerprint identification of small molecular targets was demonstrated for the first time. Four aptamers with different structural features previously selected to bind different targets were used in combination with AuNPs by adsorbing the DNA on the AuNPs surface. The optimized response of the Apt-AuNPs to the analytes showed that, depending on the specific aptamer used, target binding by the aptamer could result in an increase or decrease of Apt-AuNPs stability. These Apt-AuNPs showed the ability to recognize different analytes with different affinities, generating fingerprints that allowed unambiguous analyte identification with response times in less than fifteen minutes. Importantly, it was observed that it was not necessary to select an aptamer per analyte of interest to generate differentiable signatures, but a subset of aptamers could be used to identify a larger number of analytes. The data was analyzed using principal component analysis, showing efficient clustering of the different datasets for qualitative and quantitative identification. This work opens the door to using these Apt-AuNPs in point of care diagnostics applications where fast sensors with easy to read outputs are needed.


Assuntos
Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais/instrumentação , Ouro/química , Nanopartículas Metálicas/química , Adenosina/química , Adsorção , Técnicas Biossensoriais/métodos , Ácido Cólico/química , Citratos , Colorimetria , Estradiol/química , Estrutura Molecular , Riboflavina/química
20.
Anal Bioanal Chem ; 406(19): 4637-47, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24880870

RESUMO

The first-known aptamer for the stress biomarker cortisol was selected using a tunable stringency magnetic bead selection strategy. The capture DNA probe immobilized on the beads was systematically lengthened to increase the number of bases bound to the complementary pool primer regions following selection enrichment. This resulted in a single sequence (15-1) dominating the final round 15 pool, where the same sequence was the second-highest copy number candidate in the enriched pool with the shorter capture DNA probe (round 13). A thorough analysis of the next-generation sequencing results showed that a high copy number may only correlate with enhanced affinity under certain stringency and enrichment conditions, in contrast with prior published reports. Aptamer 15-1 demonstrated enhanced binding to cortisol (K(d) = 6.9 ± 2.8 µM by equilibrium dialysis; 16.1 ± 0.6 µM by microscale thermophoresis) when compared with the top sequence from round 13 and the negative control progesterone. Whereas most aptamer selections terminate at the selection round demonstrating the highest enrichment, this work shows that extending the selection with higher stringency conditions leads to lower amounts eluted by the target but higher copy numbers of a sequence with enhanced binding. The structure-switching aptamer was applied to a gold nanoparticle assay in buffer and was shown to discriminate between cortisol and two other stress biomarkers, norepinephrine and epinephrine, and a structurally analogous biomarker of liver dysfunction, cholic acid. We believe this approach enhances aptamer selection and serves as proof-of-principle work toward development of point-of-care diagnostics for medical, combat, or bioterrorism targets.


Assuntos
Aptâmeros de Nucleotídeos/genética , Ouro/química , Hidrocortisona/análise , Nanopartículas Metálicas/química , Técnica de Seleção de Aptâmeros/métodos , Aptâmeros de Nucleotídeos/química , Hidrocortisona/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA