Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Plant J ; 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38865085

RESUMO

Heat stress is an environmental factor that significantly threatens crop production worldwide. Nevertheless, the molecular mechanisms governing plant responses to heat stress are not fully understood. Plant zinc finger CCCH proteins have roles in stress responses as well as growth and development through protein-RNA, protein-DNA, and protein-protein interactions. Here, we reveal an integrated multi-level regulation of plant thermotolerance that is mediated by the CCCH protein C3H15 in Arabidopsis. Heat stress rapidly suppressed C3H15 transcription, which attenuated C3H15-inhibited expression of its target gene HEAT SHOCK TRANSCRIPTION FACTOR A2 (HSFA2), a central regulator of heat stress response (HSR), thereby activating HEAT SHOCK COGNATE 70 (HSC70.3) expression. The RING-type E3 ligase MED25-BINDING RING-H2 PROTEIN 2 (MBR2) was identified as an interacting partner of C3H15. The mbr2 mutant was susceptible to heat stress compared to wild-type plants, whereas plants overexpressing MBR2 showed increased heat tolerance. MBR2-dependent ubiquitination mediated the degradation of phosphorylated C3H15 protein in the cytoplasm, which was enhanced by heat stress. Consistently, heat sensitivities of C3H15 overexpression lines increased in MBR2 loss-of-function and decreased in MBR2 overexpression backgrounds. Heat stress-induced accumulation of HSC70.3 promoted MBR2-mediated degradation of C3H15 protein, implying that an auto-regulatory loop involving C3H15, HSFA2, and HSC70.3 regulates HSR. Heat stress also led to the accumulation of C3H15 in stress granules (SGs), a kind of cytoplasmic RNA granule. This study advances our understanding of the mechanisms plants use to respond to heat stress, which will facilitate technologies to improve thermotolerance in crops.

2.
Plant Cell ; 34(9): 3364-3382, 2022 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-35703939

RESUMO

Activity of the vascular cambium gives rise to secondary xylem for wood formation in trees. The transcription factor WUSCHEL-related HOMEOBOX4 (WOX4) is a central regulator downstream of the hormone and peptide signaling pathways that maintain cambial activity. However, the genetic regulatory network underlying WOX4-mediated wood formation at the post-transcriptional level remains to be elucidated. In this study, we identified the ubiquitin receptor PagDA1 in hybrid poplar (Populus alba × Populus glandulosa clone 84K) as a negative regulator of wood formation, which restricts cambial activity during secondary growth. Overexpression of PagDA1 in poplar resulted in a relatively reduced xylem due to decreased cambial cell division. By contrast, mutation of PagDA1 by CRISPR/Cas9 resulted in an increased cambial cell activity and promoted xylem formation. Genetic analysis demonstrated that PagDA1 functions antagonistically in a common pathway as PagWOX4 to regulate cambial activity. We propose that PagDA1 physically associates with PagWOX4 and modulates the degradation of PagWOX4 by the 26S proteasome. Moreover, genetic analysis revealed that PagDA1 exerts its negative effect on cambial development by modulating the stability of PagWOX4 in a ubiquitin-dependent manner mediated by the E3 ubiquitin ligase PagDA2. In sum, we have identified a cambial regulatory protein complex, PagDA1-PagWOX4, as a potential target for wood biomass improvement.


Assuntos
Câmbio , Populus , Redes Reguladoras de Genes , Fatores de Transcrição , Ubiquitinas , Madeira , Xilema
3.
Plant Physiol ; 190(3): 1941-1959, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-35736512

RESUMO

Perception of pathogen-associated molecular patterns (PAMPs) triggers mitogen-activated protein (MAP) kinase 4 (MPK4)-mediated phosphorylation and induces downstream transcriptional reprogramming, but the mechanisms of the MPK4 defense pathway are poorly understood. Here, we showed that phosphorylation-mediated inactivation of the CCCH protein C3H14 by MPK4 positively regulates the immune response in Arabidopsis (Arabidopsis thaliana). Compared with wild-type plants, loss-of-function mutations in C3H14 and its paralog C3H15 resulted in enhanced defense against Pst DC3000 in infected leaves and the development of systemic acquired resistance (SAR), whereas C3H14 or C3H15 overexpression enhanced susceptibility to this pathogen and failed to induce SAR. The functions of C3H14 in PAMP-triggered immunity (PTI) and SAR were dependent on MPK4-mediated phosphorylation. Challenge with Pst DC3000 or the flagellin peptide flg22 enhanced the phosphorylation of C3H14 by MPK4 in the cytoplasm, relieving C3H14-inhibited expression of PTI-related genes and attenuating C3H14-activated expression of its targets NIM1-INTERACTING1 (NIMIN1) and NIMIN2, two negative regulators of SAR. Salicylic acid (SA) affected the MPK4-C3H14-NIMIN1/2 cascades in immunity, but SA signaling mediated by the C3H14-NIMIN1/2 cascades was independent of MPK4 phosphorylation. Our study suggests that C3H14 might be a negative component of the MPK4 defense signaling pathway.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Moléculas com Motivos Associados a Patógenos/metabolismo , Fosforilação , Imunidade Vegetal/genética , Pseudomonas syringae/metabolismo , Proteínas de Ligação a RNA/metabolismo , Ácido Salicílico/metabolismo
4.
Plant Physiol ; 189(1): 285-300, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35139225

RESUMO

Plant CCCH proteins participate in the control of multiple developmental and adaptive processes, but the regulatory mechanisms underlying these processes are not well known. In this study, we showed that the Arabidopsis (Arabidopsis thaliana) CCCH protein C3H15 negatively regulates cell elongation by inhibiting brassinosteroid (BR) signaling. Genetic and biochemical evidence showed that C3H15 functions downstream of the receptor BR INSENSITIVE 1 (BRI1) as a negative regulator in the BR pathway. C3H15 is phosphorylated by the GLYCOGEN SYNTHASE KINASE 3 -like kinase BR-INSENSITIVE 2 (BIN2) at Ser111 in the cytoplasm in the absence of BRs. Upon BR perception, C3H15 transcription is enhanced, and the phosphorylation of C3H15 by BIN2 is reduced. The dephosphorylated C3H15 protein accumulates in the nucleus, where C3H15 regulates transcription via G-rich elements (typically GGGAGA). C3H15 and BRASSINAZOLE RESISTANT 1 (BZR1)/BRI1-EMS-SUPPRESSOR 1 (BES1), two central transcriptional regulators of BR signaling, directly suppress each other and share a number of BR-responsive target genes. Moreover, C3H15 antagonizes BZR1 and BES1 to regulate the expression of their shared cell elongation-associated target gene, SMALL AUXIN-UP RNA 15 (SAUR15). This study demonstrates that C3H15-mediated BR signaling may be parallel to, or even attenuate, the dominant BZR1 and BES1 signaling pathways to control cell elongation. This finding expands our understanding of the regulatory mechanisms underlying BR-induced cell elongation in plants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Brassinosteroides/metabolismo , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica de Plantas , Fosforilação , Proteínas de Plantas/metabolismo , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Dedos de Zinco
5.
J Integr Plant Biol ; 65(8): 1852-1858, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37203882

RESUMO

Brassinosteroids (BRs) are plant hormones that regulate wood formation in trees. Currently, little is known about the post-transcriptional regulation of BR synthesis. Here, we show that during wood formation, fine-tuning BR synthesis requires 3'UTR-dependent decay of Populus CONSTITUTIVE PHOTOMORPHOGENIC DWARF 1 (PdCPD1). Overexpression of PdCPD1 or its 3' UTR fragment resulted in a significant increase of BR levels and inhibited secondary growth. In contrast, transgenic poplars repressing PdCPD1 3' UTR expression displayed moderate levels of BR and promoted wood formation. We show that the Populus GLYCINE-RICH RNA-BINDING PROTEIN 1 (PdGRP1) directly binds to a GU-rich element in 3' UTR of PdCPD1, leading to its mRNA decay. We thus provide a post-transcriptional mechanism underlying BRs synthesis during wood formation, which may be useful for genetic manipulation of wood biomass in trees.


Assuntos
Populus , Madeira , Madeira/genética , Brassinosteroides/metabolismo , Regiões 3' não Traduzidas/genética , Populus/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Regulação da Expressão Gênica de Plantas/genética
6.
J Integr Plant Biol ; 65(5): 1134-1146, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36647609

RESUMO

Lignin is a major component of plant cell walls and is essential for plant growth and development. Lignin biosynthesis is controlled by a hierarchical regulatory network involving multiple transcription factors. In this study, we showed that the gene encoding an APETALA 2/ethylene-responsive element binding factor (AP2/ERF) transcription factor, PagERF81, from poplar 84 K (Populus alba × P. glandulosa) is highly expressed in expanding secondary xylem cells. Two independent homozygous Pagerf81 mutant lines created by gene editing, produced significantly more but smaller vessel cells and longer fiber cells with more lignin in cell walls, while PagERF81 overexpression lines had less lignin, compared to non-transgenic controls. Transcriptome and reverse transcription quantitative PCR data revealed that multiple lignin biosynthesis genes including Cinnamoyl CoA reductase 1 (PagCCR1), Cinnamyl alcohol dehydrogenase 6 (PagCAD6), and 4-Coumarate-CoA ligase-like 9 (Pag4CLL9) were up-regulated in Pagerf81 mutants, but down-regulated in PagERF81 overexpression lines. In addition, a transient transactivation assay revealed that PagERF81 repressed the transcription of these three genes. Furthermore, yeast one hybrid and electrophoretic mobility shift assays showed that PagERF81 directly bound to a GCC sequence in the PagCCR1 promoter. No known vessel or fiber cell differentiation related genes were differentially expressed, so the smaller vessel cells and longer fiber cells observed in the Pagerf81 lines might be caused by abnormal lignin deposition in the secondary cell walls. This study provides insight into the regulation of lignin biosynthesis, and a molecular tool to engineer wood with high lignin content, which would contribute to the lignin-related chemical industry and carbon sequestration.


Assuntos
Lignina , Populus , Lignina/metabolismo , Populus/metabolismo , Xilema/metabolismo , Madeira/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Diferenciação Celular , Parede Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas/metabolismo
7.
Ann Bot ; 129(4): 403-413, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-34922335

RESUMO

BACKGROUND AND AIMS: The precise control of brassinosteroid (BR) homeostasis and signalling is a prerequisite for hypocotyl cell elongation in plants. Arabidopsis MYB42 and its paralogue MYB85 were previously identified to be positive regulators of secondary cell wall formation during mature stages. Here, we aim to reveal the role of MYB42 and MYB85 in hypocotyl elongation during the seedling stage and clarify how MYB42 coordinates BR homeostasis and signalling to regulate this process. METHODS: Histochemical analysis of proMYB42-GUS transgenic plants was used for determination of the MYB42 expression pattern. The MYB42, 85 overexpression, double mutant and some crossing lines were generated for phenotypic observation and transcriptome analysis. Transcription activation assays, quantitative PCR (qPCR), chromatin immunoprecipitation (ChIP)-qPCR and electrophoretic mobility shift assays (EMSAs) were conducted to determine the relationship of MYB42 and BRASSINAZOLE-RESISTANT 1 (BZR1), a master switch activating BR signalling. KEY RESULTS: MYB42 and MYB85 redundantly and negatively regulate hypocotyl cell elongation. They function in hypocotyl elongation by mediating BR signalling. MYB42 transcription was suppressed by BR treatment or in bzr1-1D (a gain-of-function mutant of BZR1), and mutation of both MYB42 and MYB85 enhanced the dwarf phenotype of the BR receptor mutant bri1-5. BZR1 directly repressed MYB42 expression in response to BR. Consistently, hypocotyl length of bzr1-1D was increased by simultaneous mutation of MYB42 and MYB85, but was reduced by overexpression of MYB42. Expression of a number of BR-regulated BZR1 (non-)targets associated with hypocotyl elongation was suppressed by MYB42, 85. Furthermore, MYB42 enlarged its action in BR signalling through feedback repression of BR accumulation and activation of DOGT1/UGT73C5, a BR-inactivating enzyme. CONCLUSIONS: MYB42 inhibits hypocotyl elongation by coordinating BR homeostasis and signalling during primary growth. The present study shows an MYB42, 85-mediated multilevel system that contributes to fine regulation of BR-induced hypocotyl elongation.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Brassinosteroides/metabolismo , Regulação da Expressão Gênica de Plantas , Homeostase , Hipocótilo
8.
Int J Mol Sci ; 23(22)2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36430765

RESUMO

CCCH zinc finger proteins contain one to six tandem CCCH motifs composed of three cysteine and one histidine residues and have been widely found in eukaryotes. Plant CCCH proteins control a wide range of developmental and adaptive processes through DNA-protein, RNA-protein and/or protein-protein interactions. The complex networks underlying these processes regulated by plant CCCH proteins are often involved in phytohormones as signal molecules. In this review, we described the evolution of CCCH proteins from green algae to vascular plants and summarized the functions of plant CCCH proteins that are influenced by six major hormones, including abscisic acid, gibberellic acid, brassinosteroid, jasmonate, ethylene and auxin. We further compared the regulatory mechanisms of plant and animal CCCH proteins via hormone signaling. Among them, Arabidopsis AtC3H14, 15 and human hTTP, three typical CCCH proteins, are able to integrate multiple hormones to participate in various biological processes.


Assuntos
Arabidopsis , Regulação da Expressão Gênica de Plantas , Humanos , Dedos de Zinco , Filogenia , Proteínas de Plantas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Hormônios/metabolismo
9.
J Integr Plant Biol ; 64(1): 73-86, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34845845

RESUMO

Wood is produced by the accumulation of secondary xylem via proliferation and differentiation of the cambium cells in woody plants. Identifying the regulators involved in this process remains a challenging task. In this study, we isolated PagSAG101a, the homolog of Arabidopsis thaliana SAG101, from a hybrid poplar (Populus alba × Populus glandulosa) clone 84K and investigated its role in secondary xylem development. PagSAG101a was expressed predominantly in lignified stems and localized in the nucleus. Compared with non-transgenic 84K plants, transgenic plants overexpressing PagSAG101a displayed increased plant height, internode number, stem diameter, xylem width, and secondary cell wall thickness, while opposite phenotypes were observed for PagSAG101a knock-out plants. Transcriptome analyses revealed that differentially expressed genes were enriched for those controlling cambium cell division activity and subsequent secondary cell wall deposition during xylem formation. In addition, the tandem CCCH zinc finger protein PagC3H17, which positively regulates secondary xylem width and secondary wall thickening in poplar, could bind to the promoter of PagSAG101a and mediate the regulation of xylem differentiation. Our results support that PagSAG101a, downstream of PagC3H17, functions in wood development.


Assuntos
Populus , Câmbio/genética , Câmbio/metabolismo , Parede Celular/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Populus/genética , Populus/metabolismo , Madeira/genética , Xilema/genética
10.
New Phytol ; 225(4): 1545-1561, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31596964

RESUMO

Wood (secondary xylem) formation in tree species is dependent on auxin-mediated vascular cambium activity in stems. However, the complex regulatory networks underlying xylem formation remain elusive. Xylem development in Populus was characterized based on microscopic observations of stem sections in transgenic plants. Transcriptomic, quantitative real-time PCR, chromatin immunoprecipitation PCR, and electrophoretic mobility shift assay analyses were conducted to identify target genes involved in xylem development. Yeast two-hybrid, pull-down, bimolecular fluorescence complementation, and co-immunoprecipitation assays were used to validate protein-protein interactions. PaC3H17 and its target PaMYB199 were found to be predominantly expressed in the vascular cambium and developing secondary xylem in Populus stems and play opposite roles in controlling cambial cell proliferation and secondary cell wall thickening through an overlapping pathway. Further, PaC3H17 interacts with PaMYB199 to form a complex, attenuating PaMYB199-driven suppression of its xylem targets. Exogenous auxin application enhances the dual control of the PaC3H17-PaMYB199 module during cambium division, thereby promoting secondary cell wall deposition. Dual regulation of xylem formation by an auxin-mediated PaC3H17-PaMYB199 module represents a novel regulatory mechanism in Populus, increasing our understanding of the regulatory networks involved in wood formation.


Assuntos
Ácidos Indolacéticos/farmacologia , Proteínas de Plantas/metabolismo , Populus/metabolismo , Xilema/crescimento & desenvolvimento , Parede Celular/fisiologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/fisiologia , Ácidos Indolacéticos/metabolismo , Proteínas de Plantas/genética , Populus/genética , Madeira/crescimento & desenvolvimento
11.
Plant Cell Environ ; 43(7): 1792-1806, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32279333

RESUMO

Necrotrophic pathogens such as Botrytis cinerea cause significant crop yield losses. Plant CCCH proteins play important roles in pathogen resistance responses. However, the CCCH-mediated defense mechanisms against necrotrophic pathogens are unclear. Here, we report that the Arabidopsis CCCH protein C3H14 positively regulates basal defense against B. cinerea mainly by WRKY33 signaling. Simultaneous mutation of C3H14 and its paralog C3H15 resulted in enhanced susceptibility to B. cinerea, while C3H14 or C3H15 overexpression lines exhibited reduced susceptibility. A large number of differentially expressed genes (DEGs) were present in the c3h14c3h15 double mutant and C3H14 overexpression plants compared with wild-type plants at 24 hr post infection. These DEGs covered over one third of B. cinerea-responsive WRKY33 targets, including genes involved in jasmonic acid (JA)/ethylene (ET) signaling, and camalexin biosynthesis. Genetic analysis indicated that C3H14 mainly depended on WRKY33 to modulate defense against B. cinerea. Moreover, C3H14 activated the WRKY33-ORA59 and -PAD3 cascades to correspondingly control JA/ET- and camalexin-mediated defense responses. However, C3H14 was essential for B. cinerea-induced production of 12-oxo-phytodienoic acid and it also directly mediated ORA59-dependent JA/ET signaling after infection. Therefore, C3H14 may act as a novel transcriptional regulator of the WRKY33-mediated defense pathway.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/imunologia , Botrytis , Doenças das Plantas/imunologia , Proteínas de Ligação a RNA/fisiologia , Fatores de Transcrição/fisiologia , Arabidopsis/metabolismo , Arabidopsis/microbiologia , Proteínas de Arabidopsis/metabolismo , Ensaio de Desvio de Mobilidade Eletroforética , Doenças das Plantas/microbiologia , Reação em Cadeia da Polimerase , Proteínas de Ligação a RNA/metabolismo , Fatores de Transcrição/metabolismo , Transcriptoma , Técnicas do Sistema de Duplo-Híbrido
12.
Plant Physiol ; 176(4): 2737-2749, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29440562

RESUMO

Pectin, which is a major component of the plant primary cell walls, is synthesized and methyl-esterified in the Golgi apparatus and then demethylesterified by pectin methylesterases (PMEs) located in the cell wall. The degree of methylesterification affects the functional properties of pectin, and thereby influences plant growth, development and defense. However, little is known about the mechanisms that regulate pectin demethylesterification. Here, we show that in Arabidopsis (Arabidopsis thaliana) seed coat mucilage, the absence of the MYB52 transcription factor is correlated with an increase in PME activity and a decrease in the degree of pectin methylesterification. Decreased methylesterification in the myb52 mutant is also correlated with an increase in the calcium content of the seed mucilage. Chromatin immunoprecipitation analysis and molecular genetic studies suggest that MYB52 transcriptionally activates PECTIN METHYLESTERASE INHIBITOR6 (PMEI6), PMEI14, and SUBTILISIN-LIKE SER PROTEASE1.7 (SBT1.7) by binding to their promoters. PMEI6 and SBT1.7 have previously been shown to be involved in seed coat mucilage demethylesterification. Our characterization of two PMEI14 mutants suggests that PMEI14 has a role in seed coat mucilage demethylesterification, although its activity may be confined to the seed coat in contrast to PMEI6, which functions in the whole seed. Our demonstration that MYB52 negatively regulates pectin demethylesterification in seed coat mucilage, and the identification of components of the molecular network involved, provides new insight into the regulatory mechanism controlling pectin demethylesterification and increases our understanding of the transcriptional regulation network involved in seed coat mucilage formation.


Assuntos
Proteínas de Arabidopsis/metabolismo , Pectinas/metabolismo , Mucilagem Vegetal/metabolismo , Sementes/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Cálcio/metabolismo , Hidrolases de Éster Carboxílico/genética , Hidrolases de Éster Carboxílico/metabolismo , Parede Celular/enzimologia , Parede Celular/genética , Esterificação , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Mutação , Regiões Promotoras Genéticas/genética , Ligação Proteica , Sementes/genética
13.
Plant Physiol ; 164(4): 1842-56, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24569843

RESUMO

Mannans are hemicellulosic polysaccharides that are considered to have both structural and storage functions in the plant cell wall. However, it is not yet known how mannans function in Arabidopsis (Arabidopsis thaliana) seed mucilage. In this study, CELLULOSE SYNTHASE-LIKE A2 (CSLA2; At5g22740) expression was observed in several seed tissues, including the epidermal cells of developing seed coats. Disruption of CSLA2 resulted in thinner adherent mucilage halos, although the total amount of the adherent mucilage did not change compared with the wild type. This suggested that the adherent mucilage in the mutant was more compact compared with that of the wild type. In accordance with the role of CSLA2 in glucomannan synthesis, csla2-1 mucilage contained 30% less mannosyl and glucosyl content than did the wild type. No appreciable changes in the composition, structure, or macromolecular properties were observed for nonmannan polysaccharides in mutant mucilage. Biochemical analysis revealed that cellulose crystallinity was substantially reduced in csla2-1 mucilage; this was supported by the removal of most mucilage cellulose through treatment of csla2-1 seeds with endo-ß-glucanase. Mutation in CSLA2 also resulted in altered spatial distribution of cellulose and an absence of birefringent cellulose microfibrils within the adherent mucilage. As with the observed changes in crystalline cellulose, the spatial distribution of pectin was also modified in csla2-1 mucilage. Taken together, our results demonstrate that glucomannans synthesized by CSLA2 are involved in modulating the structure of adherent mucilage, potentially through altering cellulose organization and crystallization.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Glucosiltransferases/metabolismo , Mananas/biossíntese , Mucilagem Vegetal/metabolismo , Sementes/enzimologia , Sementes/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Celulose/metabolismo , Cristalização , Regulação da Expressão Gênica de Plantas , Ligação Genética , Glucosiltransferases/genética , Complexo de Golgi/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Mutação/genética , Pectinas/metabolismo , Mucilagem Vegetal/ultraestrutura , Transporte Proteico , Sementes/ultraestrutura , Frações Subcelulares/enzimologia
14.
J Exp Bot ; 66(9): 2595-609, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25732536

RESUMO

Plant tandem CCCH zinc finger (TZF) proteins play diverse roles in developmental and adaptive processes. Arabidopsis C3H14 has been shown to act as a potential regulator of secondary wall biosynthesis. However, there is lack of direct evidence to support its functions in Arabidopsis. It is demonstrated here that C3H14 and its homologue C3H15 redundantly regulate secondary wall formation and that they additionally function in anther development. Plants with double, but not single, T-DNA mutants for C3H14 or C3H15 have few pollen grains and thinner stem secondary walls than the wild type. Plants homozygous for c3h14 and heterozygous for c3h15 [c3h14 c3h15(±)] have slightly thinner secondary walls than plants heterozygous for c3h14 and homozygous for c3h15 [c3h14(±) c3h15], and c3h14(±) c3h15 have lower fertility. Overexpression of C3H14 or C3H15 led to increased secondary wall thickness in stems and the ectopic deposition of secondary walls in various tissues, but did not affect anther morphology. Transcript profiles from the C3H14/15 overexpression and c3h14 c3h15 plants revealed marked changes in the expression of many genes associated with cell wall metabolism and pollen formation. Subcellular localization and biochemical analyses suggest that C3H14/15 might function at both the transcriptional and post-transcriptional levels.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Parede Celular/metabolismo , Parede Celular/ultraestrutura , Flores/crescimento & desenvolvimento , Flores/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/metabolismo
15.
Plant Cell Rep ; 34(8): 1331-42, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25895734

RESUMO

KEY MESSAGE: Two 2-phenylethanol biosynthetic pathways were constructed into Arabidopsis ; 2-phenylethanol biosynthesis led to reduced rate of lignin biosynthesis and increased cellulose-to-glucose conversion in the transgenic plants. Lignin is the second most abundant biopolymer on the planet with importance for various agro-industrial activities. The presence of lignin in cell walls, however, impedes biofuel production from lignocellulosic biomass. The phenylpropanoid pathway is responsible for the biosynthesis of lignin and other phenolic metabolites such as 2-phenylethanol. As one of the most used fragrance chemicals, 2-phenylethanol is synthesized in plants from L-phenylalanine which is the first specific intermediate towards lignin biosynthesis. Thus, it is interesting to prove the concept that the phenylpropanoid pathway can be modulated for reduction of lignin as well as production of natural value-added compounds. Here we conferred two 2-phenylethanol biosynthetic pathways constructed from plants and Saccharomyces cerevisiae into Arabidopsis. As anticipated, 2-phenylethanol was accumulated in transgenic plants. Moreover, the transformants showed 12-14% reduction in lignin content and 9-13% increase in cellulose content. Consequently, the glucose yield from cell wall hydrolysis was increased from 37.4% in wild type to 49.9-52.1% in transgenic plants with hot water pretreatment. The transgenic plants had normal development and even enhanced growth relative to the wild type. Our results indicate that the shunt of L-phenylalanine flux to the artificially constructed 2-phenylethanol biosynthetic pathway most likely reduced the rate of lignin biosynthesis in Arabidopsis.


Assuntos
Arabidopsis/metabolismo , Lignina/biossíntese , Álcool Feniletílico/metabolismo , Arabidopsis/química , Arabidopsis/genética , Parede Celular/química , Celulose/análise , Engenharia Genética/métodos , Lignina/análise , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Petunia/genética , Petunia/metabolismo , Álcool Feniletílico/análise , Plantas Geneticamente Modificadas/química , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Polissacarídeos/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
16.
New Phytol ; 203(2): 520-534, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24786865

RESUMO

Wood biomass is mainly made of secondary cell walls, whose formation is controlled by a multilevel network. The tandem CCCH zinc finger (TZF) proteins involved in plant secondary wall formation are poorly understood. Two TZF genes, PdC3H17 and PdC3H18, were isolated from Populus deltoides and functionally characterized in Escherichia coli, tobacco, Arabidopsis and poplar. PdC3H17 and PdC3H18 are predominantly expressed in cells of developing wood, and the proteins they encode are targeted to cytoplasmic foci. Transcriptional activation assays showed that PdMYB2/3/20/21 individually activated the PdC3H17 and PdC3H18 promoters, but PdMYB3/21 were most significant. Electrophoretic mobility shift assays revealed that PdMYB3/21 bound directly to the PdC3H17/18 promoters. Overexpression of PdC3H17/18 in poplar increased secondary xylem width and secondary wall thickening in stems, whereas dominant repressors of them had the opposite effects on these traits. Similar alteration in secondary wall thickening was observed in their transgenic Arabidopsis plants. qRT-PCR results showed that PdC3H17/18 regulated the expression of cellulose, xylan and lignin biosynthetic genes, and several wood-associated MYB genes. These results demonstrate that PdC3H17 and PdC3H18 are the targets of PdMYB3 and PdMYB21 and are an additional two components in the regulatory network of secondary xylem formation in poplar.


Assuntos
Arabidopsis/metabolismo , Parede Celular/metabolismo , Proteínas de Plantas/metabolismo , Populus/citologia , Populus/metabolismo , Arabidopsis/citologia , Arabidopsis/genética , Celulose/metabolismo , Regulação da Expressão Gênica de Plantas , Genes myb , Lignina/genética , Lignina/metabolismo , Proteínas de Plantas/genética , Caules de Planta/citologia , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/metabolismo , Plantas Geneticamente Modificadas , Populus/genética , Regiões Promotoras Genéticas , Fatores de Transcrição/metabolismo , Madeira/citologia , Madeira/metabolismo , Xilema/metabolismo , Dedos de Zinco
17.
J Exp Bot ; 65(15): 4255-69, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24821954

RESUMO

In plants, the R2R3-MYB gene family contains many pairs of paralogous genes, which play the diverse roles in developmental processes and environmental responses. The paper reports the characterization of 81 pairs of Populus R2R3-MYB genes. Chromosome placement, phylogenetic, and motif structure analyses showed that these gene pairs resulted from multiple types of gene duplications and had five different gene fates. Tissue expression patterns revealed that most duplicated genes were specifically expressed in the tissues examined. qRT-PCR confirmed that nine pairs were highly expressed in xylem, of which three pairs (PdMYB10/128, PdMYB90/167, and PdMYB92/125) were further functionally characterized. The six PdMYBs were localized to the nucleus and had transcriptional activities in yeast. The heterologous expression of PdMYB10 and 128 in Arabidopsis increased stem fibre cell-wall thickness and delayed flowering. In contrast, overexpression of PdMYB90, 167, 92, and 125 in Arabidopsis decreased stem fibre and vessel cell-wall thickness and promoted flowering. Cellulose, xylose, and lignin contents were changed in overexpression plants. The expression levels of several genes involved in secondary wall formation and flowering were affected by the overexpression of the six PdMYBs in Arabidopsis. This study addresses the diversity of gene duplications in Populus R2R3-MYBs and the roles of these six genes in secondary wall formation and flowering control.


Assuntos
Evolução Molecular , Duplicação Gênica , Proteínas de Plantas/genética , Populus/genética , Fatores de Transcrição/genética , Arabidopsis , Parede Celular/metabolismo , Flores/fisiologia , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/fisiologia , Fatores de Transcrição/metabolismo
18.
Plant Cell Rep ; 33(4): 643-53, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24522548

RESUMO

KEY MESSAGE: Cell wall polysaccharides' occurrences in two internodes of different development stages in M. lutarioriparius stem were analyzed and three major differences between them were identified by cell wall polysaccharide probes. Deposition and modification of cell wall polysaccharides during stem development affect biomass yield of the Miscanthus energy crop. The distribution patterns of cell wall polysaccharides in the 2nd and the 11th internodes of M. lutarioriparius stem were studied using in situ immunofluorescence assay. Crystalline cellulose and xylan were present in most of the stem tissues except phloem, where xyloglucan was the major composition of hemicellulose. The distribution of pectin polysaccharides varied in stem tissues, particularly in vascular bundle elements. Xylogalacturonan, feruloylated-1,4-ß-D-galactan and (1,3)(1,4)-ß-glucans, however, were insufficient for antibodies binding in both internodes. Furthermore, the distribution of cell wall polysaccharides was differentiated in the two internodes of M. lutarioriparius. The significant differences in the pattern of occurrence of long 1,5-α-L-arabinan chain, homogalacturonan and fucosylated xyloglucans epitope were detected between the two internodes. In addition, the relationships between probable functions of polysaccharides and their distribution patterns in M. lutarioriparius stem cell wall were discussed, which would be helpful to understand the growth characteristics of Miscanthus and identify potential targets for either modification or degradation.


Assuntos
Parede Celular/metabolismo , Imunofluorescência/métodos , Caules de Planta/citologia , Caules de Planta/metabolismo , Poaceae/metabolismo , Polissacarídeos/metabolismo , Celulose/metabolismo , Pectinas/metabolismo , Caules de Planta/anatomia & histologia , Poaceae/citologia
19.
Mol Biol Rep ; 40(3): 2645-62, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23242656

RESUMO

Calcium-dependent protein kinases (CDPKs) are Ca(2+)-binding proteins known to play crucial roles in Ca(2+) signal transduction pathways which have been identified throughout plant kingdom and in certain types of protists. Genome-wide analysis of CDPKs have been carried out in Arabidopsis, rice and wheat, and quite a few of CDPKs were proved to play crucial roles in plant stress responsive signature pathways. In this study, a comprehensive analysis of Populus CDPK and its closely related gene families was performed, including phylogeny, chromosome locations, gene structures, and expression profiles. Thirty Populus CDPK genes and twenty closely related kinase genes were identified, which were phylogenetically clustered into eight distinct subfamilies and predominately distributed across fifteen linkage groups (LG). Genomic organization analyses indicated that purifying selection has played a pivotal role in the retention and maintenance of Populus CDPK gene family. Furthermore, microarray analysis showed that a number of Populus CDPK and its closely related genes differentially expressed across disparate tissues and under various stresses. The expression profiles of paralogous pairs were also investigated to reveal their evolution fates. In addition, quantitative real-time RT-PCR was performed on nine selected CDPK genes to confirm their responses to drought stress treatment. These observations may lay the foundation for future functional analysis of Populus CDPK and its closely related gene families to unravel their biological roles.


Assuntos
Regulação da Expressão Gênica de Plantas , Estudo de Associação Genômica Ampla , Família Multigênica , Populus/genética , Proteínas Quinases/genética , Mapeamento Cromossômico , Análise por Conglomerados , Secas , Duplicação Gênica , Perfilação da Expressão Gênica , Ordem dos Genes , Filogenia , Populus/metabolismo , Proteínas Quinases/classificação , Proteínas Quinases/metabolismo , Estresse Fisiológico/genética
20.
Yi Chuan ; 35(5): 655-65, 2013 May.
Artigo em Zh | MEDLINE | ID: mdl-23732673

RESUMO

Bioactive gibberellins (GAs) are a type of important plant growth regulators, which play the key roles in multiple processes, such as seed germination, leaf expansion, flowering, fruit bearing, and stem development. Its biosynthesis is regulated by a variety of enzymes including gibberellin 3-oxidase that is a key rate-limiting enzyme. In Arabidopsis, gibberellin 3-oxidase consists of four members, of which AtGA3OX1 and AtGA3OX2 are highly expressed in stems, suggesting the potential roles in the stem development played by the two genes. To date, there are few studies on AtGA3OX1 and AtGA3OX2 regulating secondary wall thickening in stems. In this study, we used the atga3ox1atga3ox2 double mutant as the materials to study the effects of AtGA3OX1 and AtGA3OX2 genes on secondary wall thickening in stems. The results indicated that simulations repression of AtGA3OX1 and AtGA3OX2 genes resulted in significantly reduction of secondary wall thickening of fiber cells, but not that of vessel cells. Three main components (cellulose, hemicelluloses, and lignin) were also dramatically suppressed in the double mutants. qRT-PCR analysis demonstrated that the expressions of secondary wall biosynthetic genes and the associated transcription factors were obviously affected in AtGA3OX1 and AtGA3OX2 double mutant. Therefore, we presume that Arabidopsis AtGA3OX1 and AtGA3OX2 genes might activate the expression of these transcription factors, thus regulate secondary wall thickening in stems. Together, our results provide a theoretical basis for enhancing the lodging resistance of food crops and improving the biomass of energy plants by genetically engineering Arabidopsis AtGA3OX homologs.


Assuntos
Arabidopsis/enzimologia , Parede Celular/metabolismo , Oxigenases de Função Mista/metabolismo , Caules de Planta/metabolismo , Arabidopsis/química , Arabidopsis/genética , Arabidopsis/metabolismo , Parede Celular/genética , Celulose/metabolismo , Regulação da Expressão Gênica de Plantas , Oxigenases de Função Mista/química , Oxigenases de Função Mista/genética , Dados de Sequência Molecular , Filogenia , Caules de Planta/genética , Plantas/classificação , Plantas/enzimologia , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA