Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
BMC Genomics ; 25(1): 119, 2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38281016

RESUMO

BACKGROUND: Organisms from many distinct evolutionary lineages acquired the capacity to enter a dormant state in response to environmental conditions incompatible with maintaining normal life activities. Most studied organisms exhibit seasonal or annual episodes of dormancy, but numerous less studied organisms enter long-term dormancy, lasting decades or even centuries. Intriguingly, many planktonic animals produce encased embryos known as resting eggs or cysts that, like plant seeds, may remain dormant for decades. Herein, we studied a rotifer Brachionus plicatilis as a model planktonic species that forms encased dormant embryos via sexual reproduction and non-dormant embryos via asexual reproduction and raised the following questions: Which genes are expressed at which time points during embryogenesis? How do temporal transcript abundance profiles differ between the two types of embryos? When does the cell cycle arrest? How do dormant embryos manage energy? RESULTS: As the molecular developmental kinetics of encased embryos remain unknown, we employed single embryo RNA sequencing (CEL-seq) of samples collected during dormant and non-dormant embryogenesis. We identified comprehensive and temporal transcript abundance patterns of genes and their associated enriched functional pathways. Striking differences were uncovered between dormant and non-dormant embryos. In early development, the cell cycle-associated pathways were enriched in both embryo types but terminated with fewer nuclei in dormant embryos. As development progressed, the gene transcript abundance profiles became increasingly divergent between dormant and non-dormant embryos. Organogenesis was suspended in dormant embryos, concomitant with low transcript abundance of homeobox genes, and was replaced with an ATP-poor preparatory phase characterized by very high transcript abundance of genes encoding for hallmark dormancy proteins (e.g., LEA proteins, sHSP, and anti-ROS proteins, also found in plant seeds) and proteins involved in dormancy exit. Surprisingly, this period appeared analogous to the late maturation phase of plant seeds. CONCLUSIONS: The study highlights novel divergent temporal transcript abundance patterns between dormant and non-dormant embryos. Remarkably, several convergent functional solutions appear during the development of resting eggs and plant seeds, suggesting a similar preparatory phase for long-term dormancy. This study accentuated the broad novel molecular features of long-term dormancy in encased animal embryos that behave like "animal seeds".


Assuntos
Rotíferos , Animais , Rotíferos/genética , Perfilação da Expressão Gênica , Transcriptoma , Proteínas/metabolismo , Sementes , Dormência de Plantas , Germinação/genética
2.
Proc Biol Sci ; 290(2009): 20231327, 2023 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-37876198

RESUMO

Cell death is physiologically induced by specific mediators. However, our power to trigger the process in selected cells is quite limited. The protandric shrimp Hippolyte inermis offers a possible answer. Here, we analyse a de novo transcriptome of shrimp post-larvae fed on diatoms. The sex ratio of diatom-fed shrimps versus shrimps fed on control diets was dramatically altered, demonstrating the disruption of the androgenic gland, and their transcriptome revealed key modifications in gene expression. A wide transcriptomic analysis, validated by real-time qPCR, revealed that ferroptosis represents the primary factor to re-shape the body of this invertebrate, followed by further apoptotic events, and our findings open biotechnological perspectives for controlling the destiny of selected tissues. Ferroptosis was detected here for the first time in a crustacean. In addition, this is the first demonstration of a noticeable effect prompted by an ingested food, deeply impacting the gene networks of a young metazoan, definitely determining its future physiology and sexual differentiation.


Assuntos
Diatomáceas , Ferroptose , Animais , Ácidos Graxos , Apoptose , Perfilação da Expressão Gênica , Crustáceos
3.
New Phytol ; 236(3): 1006-1026, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35909295

RESUMO

Plant adaptation to a desert environment and its endemic heat stress is poorly understood at the molecular level. The naturally heat-tolerant Brassicaceae species Anastatica hierochuntica is an ideal extremophyte model to identify genetic adaptations that have evolved to allow plants to tolerate heat stress and thrive in deserts. We generated an A. hierochuntica reference transcriptome and identified extremophyte adaptations by comparing Arabidopsis thaliana and A. hierochuntica transcriptome responses to heat, and detecting positively selected genes in A. hierochuntica. The two species exhibit similar transcriptome adjustment in response to heat and the A. hierochuntica transcriptome does not exist in a constitutive heat 'stress-ready' state. Furthermore, the A. hierochuntica global transcriptome as well as heat-responsive orthologs, display a lower basal and higher heat-induced expression than in A. thaliana. Genes positively selected in multiple extremophytes are associated with stomatal opening, nutrient acquisition, and UV-B induced DNA repair while those unique to A. hierochuntica are consistent with its photoperiod-insensitive, early-flowering phenotype. We suggest that evolution of a flexible transcriptome confers the ability to quickly react to extreme diurnal temperature fluctuations characteristic of a desert environment while positive selection of genes involved in stress tolerance and early flowering could facilitate an opportunistic desert lifestyle.


Assuntos
Arabidopsis , Brassicaceae , Aclimatação , Adaptação Fisiológica/genética , Arabidopsis/genética , Brassicaceae/genética , Regulação da Expressão Gênica de Plantas , Transcriptoma/genética
4.
Am J Physiol Endocrinol Metab ; 321(5): E702-E713, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34632797

RESUMO

In chronic obesity, activated adipose tissue proinflammatory cascades are tightly linked to metabolic dysfunction. Yet, close temporal analyses of the responses to obesogenic environment such as high-fat feeding (HFF) in susceptible mouse strains question the causal relationship between inflammation and metabolic dysfunction, and/or raises the possibility that certain inflammatory cascades play adaptive/homeostatic, rather than pathogenic roles. Here, we hypothesized that CTRP6, a C1QTNF family member, may constitute an early responder to acute nutritional changes in adipose tissue, with potential physiological roles. Both 3-days high-fat feeding (3dHFF) and acute obesity reversal [2-wk switch to low-fat diet after 8-wk HFF (8wHFF)] already induced marked changes in whole body fuel utilization. Although adipose tissue expression of classical proinflammatory cytokines (Tnf-α, Ccl2, and Il1b) exhibited no, or only minor, change, C1qtnf6 uniquely increased, and decreased, in response to 3dHFF and acute obesity reversal, respectively. CTRP6 knockout (KO) mouse embryonic fibroblasts (MEFs) exhibited increased adipogenic gene expression (Pparg, Fabp4, and Adipoq) and markedly reduced inflammatory genes (Tnf-α, Ccl2, and Il6) compared with wild-type MEFs, and recombinant CTRP6 induced the opposite gene expression signature, as assessed by RNA sequencing. Consistently, 3dHFF of CTRP6-KO mice induced a greater whole body and adipose tissue weight gain compared with wild-type littermates. Collectively, we propose CTRP6 as a gene that rapidly responds to acute changes in caloric intake, acting in acute overnutrition to induce a "physiological inflammatory response" that limits adipose tissue expansion.NEW & NOTEWORTHY CTRP6 (C1qTNF6), a member of adiponectin gene family, regulates inflammation and metabolism in established obesity. Here, short-term high-fat feeding in mice is shown to increase adipose tissue expression of CTRP6 before changes in the expression of classical inflammatory genes occur. Conversely, CTRP6 expression in adipose tissue decreases early in the course of obesity reversal. Gain- and loss-of-function models suggest CTRP6 as a positive regulator of inflammatory cascades, and a negative regulator of adipogenesis and adipose tissue expansion.


Assuntos
Adipocinas/fisiologia , Tecido Adiposo/patologia , Inflamação/genética , Fenômenos Fisiológicos da Nutrição/genética , Adipogenia/genética , Adipocinas/genética , Tecido Adiposo/metabolismo , Animais , Células Cultivadas , Dieta Hiperlipídica , Embrião de Mamíferos , Feminino , Células HEK293 , Humanos , Inflamação/metabolismo , Inflamação/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Tamanho do Órgão/genética , Hipernutrição/genética , Hipernutrição/metabolismo , Hipernutrição/patologia , Gravidez
5.
Bioinformatics ; 36(9): 2821-2828, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31960892

RESUMO

MOTIVATION: Differential network analysis, designed to highlight network changes between conditions, is an important paradigm in network biology. However, differential network analysis methods have been typically designed to compare between two conditions and were rarely applied to multiple protein interaction networks (interactomes). Importantly, large-scale benchmarks for their evaluation have been lacking. RESULTS: Here, we present a framework for assessing the ability of differential network analysis of multiple human tissue interactomes to highlight tissue-selective processes and disorders. For this, we created a benchmark of 6499 curated tissue-specific Gene Ontology biological processes. We applied five methods, including four differential network analysis methods, to construct weighted interactomes for 34 tissues. Rigorous assessment of this benchmark revealed that differential analysis methods perform well in revealing tissue-selective processes (AUCs of 0.82-0.9). Next, we applied differential network analysis to illuminate the genes underlying tissue-selective hereditary disorders. For this, we curated a dataset of 1305 tissue-specific hereditary disorders and their manifesting tissues. Focusing on subnetworks containing the top 1% differential interactions in disease-relevant tissue interactomes revealed significant enrichment for disorder-causing genes in 18.6% of the cases, with a significantly high success rate for blood, nerve, muscle and heart diseases. SUMMARY: Altogether, we offer a framework that includes expansive manually curated datasets of tissue-selective processes and disorders to be used as benchmarks or to illuminate tissue-selective processes and genes. Our results demonstrate that differential analysis of multiple human tissue interactomes is a powerful tool for highlighting processes and genes with tissue-selective functionality and clinical impact. AVAILABILITY AND IMPLEMENTATION: Datasets are available as part of the Supplementary data. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Fenômenos Biológicos , Mapas de Interação de Proteínas , Ontologia Genética , Redes Reguladoras de Genes , Humanos
6.
J Struct Biol ; 212(2): 107612, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32896659

RESUMO

One fundamental character common to pancrustaceans (Crustacea and Hexapoda) is a mineralized rigid exoskeleton whose principal organic components are chitin and proteins. In contrast to traditional research in the field that has been devoted to the structural and physicochemical aspects of biomineralization, the present study explores transcriptomic aspects of biomineralization as a first step towards adding a complementary molecular layer to this field. The rigidity of the exoskeleton in pancrustaceans dictates essential molt cycles enabling morphological changes and growth. Thus, formation and mineralization of the exoskeleton are concomitant to the timeline of the molt cycle. Skeletal proteinaceous toolkit elements have been discovered in previous studies using innovative molt-related binary gene expression patterns derived from transcriptomic libraries representing the major stages comprising the molt cycle of the decapod crustacean Cherax quadricarinatus. Here, we revisited some prominent exoskeleton-related structural proteins encoding and, using the above molt-related binary pattern methodology, enlarged the transcriptomic database of C. quadricarinatus. The latter was done by establishing a new transcriptomic library of the cuticle forming epithelium and molar tooth at four different molt stages (i.e., inter-molt, early pre-molt, late pre-molt and post-molt) and incorporating it to a previous transcriptome derived from the gastroliths and mandible. The wider multigenic approach facilitated by the newly expanded transcriptomic database not only revisited single genes of the molecular toolkit, but also provided both scattered and specific information that broaden the overview of proteins and gene clusters which are involved in the construction and biomineralization of the exoskeleton in decapod crustaceans.


Assuntos
Exoesqueleto/fisiologia , Biomineralização/genética , Crustáceos/genética , Transcriptoma/genética , Animais , Quitina/genética , Epitélio/fisiologia , Perfilação da Expressão Gênica/métodos , Dente Molar/fisiologia , Muda/genética , Proteínas/genética
7.
Bioinformatics ; 35(10): 1634-1643, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30321308

RESUMO

MOTIVATION: Identification of conserved syntenic blocks across microbial genomes is important for several problems in comparative genomics such as gene annotation, study of genome organization and evolution and prediction of gene interactions. Current tools for syntenic block discovery do not scale up to the large quantity of prokaryotic genomes available today. RESULTS: We present a novel methodology for the discovery, ranking and taxonomic distribution analysis of colinear syntenic blocks (CSBs)-groups of genes that are consistently located close to each other, in the same order, across a wide range of taxa. We present an efficient algorithm that identifies CSBs in large genomic datasets. The algorithm is implemented and incorporated in a novel tool with a graphical user interface, denoted CSBFinder, that ranks the discovered CSBs according to a probabilistic score and clusters them to families according to their gene content similarity. We apply CSBFinder to data mine 1487 prokaryotic genomes including chromosomes and plasmids. For post-processing analysis, we generate heatmaps for visualizing the distribution of CSB family members across various taxa. We exemplify the utility of CSBFinder in operon prediction, in deciphering unknown gene function and in taxonomic analysis of colinear syntenic blocks. AVAILABILITY AND IMPLEMENTATION: CSBFinder software and code are publicly available at https://github.com/dinasv/CSBFinder. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Genômica , Software , Algoritmos , Genoma Microbiano , Sintenia
8.
Physiol Plant ; 165(4): 755-767, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29786859

RESUMO

Under natural conditions, plants are regularly exposed to combinations of stress factors. A common example is the conjunction between nitrogen (N) deficiency and excess light. The combined effect of stress factors is often ignored in studies using controlled conditions, possibly resulting in misleading conclusions. To address this issue, the present study examined the physiological behavior of Arabidopsis thaliana under the effect of varying nitrogen levels and light intensities. The joint influence of low N and excess light had an adverse effect on plant growth, chlorophyll and anthocyanin concentrations, photochemical capacity and the abundance of proteins involved in carbon assimilation and antioxidative metabolism. In contrast, no adverse physiological responses were observed for plants under either nitrogen limitation or high light (HL) intensity conditions (i.e. single stress). The underlying mechanisms for the increased growth in conditions of HL and sufficient nitrogen were a combination of chlorophyll accumulation and an increased number of proteins involved in C3 carbon assimilation, amino acids biosynthesis and chloroplast development. In contrast, combined stress conditions shifts plants from growth to survival by displaying anthocyanin accumulation and an increased number of proteins involved in catabolism of lipids and amino acids as energy substrates. Ultimately switching plants development from growth to survival. Our results suggest that an assessment of the physiological response to the combined effect of multiple stresses cannot be directly extrapolated from the physiological response to a single stress. Specifically, the synergistic interaction between N deficiency and saturating light in Arabidopsis plants could not have been modeled via only one of the stress factors.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/efeitos da radiação , Luz , Nitrogênio/metabolismo , Antocianinas/metabolismo , Carbono/metabolismo , Clorofila/metabolismo , Cloroplastos/metabolismo , Estresse Fisiológico/efeitos da radiação
9.
Mol Cell Proteomics ; 16(10): 1746-1769, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28729386

RESUMO

Numerous aquatic invertebrates remain dormant for decades in a hydrated state as encysted embryos. In search for functional pathways associated with this form of dormancy, we used label-free quantitative proteomics to compare the proteomes of hydrated encysted dormant embryos (resting eggs; RE) with nondormant embryos (amictic eggs; AM) of the rotifer Brachionus plicatilisA total of 2631 proteins were identified in rotifer eggs. About 62% proteins showed higher abundance in AM relative to RE (Fold Change>3; p = 0.05). Proteins belonging to numerous putative functional pathways showed dramatic changes during dormancy. Most striking were changes in the mitochondria indicating an impeded metabolism. A comparison between the abundance of proteins and their corresponding transcript levels, revealed higher concordance for RE than for AM. Surprisingly, numerous highly abundant dormancy related proteins show corresponding high mRNA levels in metabolically inactive RE. As these mRNAs and proteins degrade at the time of exit from dormancy they may serve as a source of nucleotides and amino acids during the exit from dormancy. Because proteome analyses point to a similarity in functional pathways of hydrated RE and desiccated life forms, REs were dried. Similar hatching and reproductive rates were found for wet and dried REs, suggesting analogous pathways for long-term survival in wet or dry forms. Analysis by KEGG pathways revealed a few general strategies for dormancy, proposing an explanation for the low transcriptional similarity among dormancies across species, despite the resemblance in physiological phenotypes.


Assuntos
Proteoma/análise , Proteômica/métodos , Rotíferos/embriologia , Rotíferos/metabolismo , Animais , Organismos Aquáticos , Sequência de Bases , Simulação por Computador , Ontologia Genética , Metaboloma , Mitocôndrias/metabolismo , Óvulo/metabolismo , Proteoma/genética , RNA Mensageiro/análise , RNA Mensageiro/genética , Transcriptoma
10.
Int J Mol Sci ; 19(8)2018 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-30042356

RESUMO

Asteriscus graveolens (A. graveolens) plants contain among other metabolites, sesquiterpene lactone asteriscunolide isomers (AS). The crude extract and its fractions affected the viability of mouse BS-24-1 lymphoma cells (BS-24-1 cells) with an IC50 of 3 µg/mL. The fraction was cytotoxic to cancer cells but not to non-cancerous cells (human induced pluripotent stem cells); its activity was accompanied by a concentration- and time-dependent appearance of apoptosis as determined by DNA fragmentation and caspase-3 activity. High levels of Reactive Oxygen Species (ROS) were rapidly observed (less than 1 min) after addition of the fraction followed by an increase in caspase-3 activity three hours later. Comparison of RNA-seq transcriptome profiles from pre-and post-treatment of BS-24-1 cells with crude extract of A. graveolens yielded a list of 2293 genes whose expression was significantly affected. This gene set included genes encoding proteins involved in cell cycle arrest, protection against ROS, and activation of the tumor suppressor P53 pathway, supporting the biochemical findings on ROS species-dependent apoptosis induced by A. graveolens fraction. Interestingly, several of the pathways and genes affected by A. graveolens extract are expressed following treatment of human cancer cells with chemotherapy drugs. We suggest, that A. graveolens extracts maybe further developed into selective chemotherapy.


Assuntos
Antineoplásicos/farmacologia , Asteraceae/química , Fragmentação do DNA/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Camundongos , Extratos Vegetais/administração & dosagem , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Folhas de Planta/química , Espécies Reativas de Oxigênio/metabolismo , Sesquiterpenos/administração & dosagem , Sesquiterpenos/química , Sesquiterpenos/farmacologia , Transcriptoma
11.
BMC Genomics ; 17: 718, 2016 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-27605362

RESUMO

BACKGROUND: The ability of regeneration is essential for the homeostasis of all animals as it allows the repair and renewal of tissues and body parts upon normal turnover or injury. The extent of this ability varies greatly in different animals with the sea anemone Nematostella vectensis, a basal cnidarian model animal, displaying remarkable whole-body regeneration competence. RESULTS: In order to study this process in Nematostella we performed an RNA-Seq screen wherein we analyzed and compared the transcriptional response to bisection in the wound-proximal body parts undergoing oral (head) or aboral (tail) regeneration at several time points up to the initial restoration of the basic body shape. The transcriptional profiles of regeneration responsive genes were analyzed so as to define the temporal pattern of differential gene expression associated with the tissue-specific oral and aboral regeneration. The identified genes were characterized according to their GO (gene ontology) assignations revealing groups that were enriched in the regeneration process with particular attention to their affiliation to the major developmental signaling pathways. While some of the genes and gene groups thus analyzed were previously known to be active in regeneration, we have also revealed novel and surprising candidate genes such as cilia-associated genes that likely participate in this important developmental program. CONCLUSIONS: This work highlighted the main groups of genes which showed polarization upon regeneration, notably the proteinases, multiple transcription factors and the Wnt pathway genes that were highly represented, all displaying an intricate temporal balance between the two sides. In addition, the evolutionary comparison performed between regeneration in different animal model systems may reveal the basic mechanisms playing a role in this fascinating process.


Assuntos
Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes , Regeneração , Anêmonas-do-Mar/fisiologia , Análise de Sequência de RNA/métodos , Animais , Regulação da Expressão Gênica no Desenvolvimento , Ontologia Genética , Cabeça/fisiologia , Especificidade de Órgãos , Anêmonas-do-Mar/genética , Transdução de Sinais , Cauda/fisiologia
12.
Plant Biotechnol J ; 13(4): 501-13, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25370817

RESUMO

As challenges to food security increase, the demand for lead genes for improving crop production is growing. However, genetic screens of plant mutants typically yield very low frequencies of desired phenotypes. Here, we present a powerful computational approach for selecting candidate genes for screening insertion mutants. We combined ranking of Arabidopsis thaliana regulatory genes according to their expression in response to multiple abiotic stresses (Multiple Stress [MST] score), with stress-responsive RNA co-expression network analysis to select candidate multiple stress regulatory (MSTR) genes. Screening of 62 T-DNA insertion mutants defective in candidate MSTR genes, for abiotic stress germination phenotypes yielded a remarkable hit rate of up to 62%; this gene discovery rate is 48-fold greater than that of other large-scale insertional mutant screens. Moreover, the MST score of these genes could be used to prioritize them for screening. To evaluate the contribution of the co-expression analysis, we screened 64 additional mutant lines of MST-scored genes that did not appear in the RNA co-expression network. The screening of these MST-scored genes yielded a gene discovery rate of 36%, which is much higher than that of classic mutant screens but not as high as when picking candidate genes from the co-expression network. The MSTR co-expression network that we created, AraSTressRegNet is publicly available at http://netbio.bgu.ac.il/arnet. This systems biology-based screening approach combining gene ranking and network analysis could be generally applicable to enhancing identification of genes regulating additional processes in plants and other organisms provided that suitable transcriptome data are available.


Assuntos
Arabidopsis/genética , Expressão Gênica , Redes Reguladoras de Genes , Genes de Plantas , Estresse Fisiológico/genética , Mutagênese Insercional , Análise de Sequência com Séries de Oligonucleotídeos
13.
BMC Genomics ; 15: 774, 2014 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-25199625

RESUMO

BACKGROUND: The probable influence of genes and the environment on sex determination in Nile tilapia suggests that it should be regarded as a complex trait. Detection of sex determination genes in tilapia has both scientific and commercial importance. The main objective was to detect genes and microRNAs that were differentially expressed by gender in early embryonic development. RESULTS: Artificial fertilization of Oreochromis niloticus XX females with either sex-reversed ΔXX males or genetically-modified YY 'supermales' resulted in all-female and all-male embryos, respectively. RNA of pools of all-female and all-male embryos at 2, 5 and 9 dpf were used as template for a custom Agilent eArray hybridization and next generation sequencing. Fifty-nine genes differentially expressed between genders were identified by a false discovery rate of p < 0.05. The most overexpressed genes were amh and tspan8 in males, and cr/20ß-hsd, gpa33, rtn4ipl and zp3 in females (p < 1 × 10-9). Validation of gene expression using qPCR in embryos and gonads indicated copy number variation in tspan8, gpa33, cr/20ß-hsd and amh. Sequencing of amh identified a male-specific duplication of this gene, denoted amhy, differing from the sequence of amh by a 233 bp deletion on exonVII, hence lacking the capability to encode the protein motif that binds to the transforming growth factor beta receptor (TGF-ß domain). amh and amhy segregated in the mapping family in full concordance with SD-linked marker on LG23 signifying the QTL for SD. We discovered 831 microRNAs in tilapia embryos of which nine had sexually dimorphic expression patterns by a false discovery rate of p < 0.05. An up-regulated microRNA in males, pma-mir-4585, was characterized with all six predicted target genes including cr/20ß-hsd, down-regulated in males. CONCLUSIONS: This study reports the first discovery of sexually differentially expressed genes and microRNAs at a very early stage of tilapia embryonic development, i.e. from 2 dpf. Genes with sexually differential expression patterns are enriched for copy number variation. A novel male-specific duplication of amh, denoted amhy, lacking the TGF-ß domain was identified and mapped to the QTL region on LG23 for SD, thus indicating its potential role in SD.


Assuntos
Ciclídeos/embriologia , Ciclídeos/genética , Proteínas de Peixes/genética , MicroRNAs/genética , Cromossomo Y/genética , Animais , Ciclídeos/fisiologia , Variações do Número de Cópias de DNA , Feminino , Duplicação Gênica , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Gônadas/metabolismo , Masculino , Locos de Características Quantitativas , Análise de Sequência de RNA , Deleção de Sequência , Caracteres Sexuais , Processos de Determinação Sexual , Diferenciação Sexual
14.
Am J Hum Genet ; 88(5): 599-607, 2011 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-21496787

RESUMO

In primary ciliary dyskinesia (PCD), genetic defects affecting motility of cilia and flagella cause chronic destructive airway disease, randomization of left-right body asymmetry, and, frequently, male infertility. The most frequent defects involve outer and inner dynein arms (ODAs and IDAs) that are large multiprotein complexes responsible for cilia-beat generation and regulation, respectively. Although it has long been suspected that mutations in DNAL1 encoding the ODA light chain1 might cause PCD such mutations were not found. We demonstrate here that a homozygous point mutation in this gene is associated with PCD with absent or markedly shortened ODA. The mutation (NM_031427.3: c.449A>G; p.Asn150Ser) changes the Asn at position150, which is critical for the proper tight turn between the ß strand and the α helix of the leucine-rich repeat in the hydrophobic face that connects to the dynein heavy chain. The mutation reduces the stability of the axonemal dynein light chain 1 and damages its interactions with dynein heavy chain and with tubulin. This study adds another important component to understanding the types of mutations that cause PCD and provides clinical information regarding a specific mutation in a gene not yet known to be associated with PCD.


Assuntos
Dineínas do Axonema/genética , Síndrome de Kartagener/etiologia , Síndrome de Kartagener/metabolismo , Mutação Puntual , Adolescente , Sequência de Aminoácidos , Cílios/genética , Análise Mutacional de DNA , Feminino , Flagelos/genética , Regulação da Expressão Gênica , Homozigoto , Humanos , Infertilidade Masculina/etiologia , Infertilidade Masculina/metabolismo , Masculino , Dados de Sequência Molecular , Fenótipo , Estrutura Secundária de Proteína , Tubulina (Proteína)/genética
15.
BMC Plant Biol ; 14: 188, 2014 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-25064275

RESUMO

BACKGROUND: Grapevine berries undergo complex biochemical changes during fruit maturation, many of which are dependent upon the variety and its environment. In order to elucidate the varietal dependent developmental regulation of primary and specialized metabolism, berry skins of Cabernet Sauvignon and Shiraz were subjected to gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-mass spectrometry (LC-MS) based metabolite profiling from pre-veraison to harvest. The generated dataset was augmented with transcript profiling using RNAseq. RESULTS: The analysis of the metabolite data revealed similar developmental patterns of change in primary metabolites between the two cultivars. Nevertheless, towards maturity the extent of change in the major organic acid and sugars (i.e. sucrose, trehalose, malate) and precursors of aromatic and phenolic compounds such as quinate and shikimate was greater in Shiraz compared to Cabernet Sauvignon. In contrast, distinct directional projections on the PCA plot of the two cultivars samples towards maturation when using the specialized metabolite profiles were apparent, suggesting a cultivar-dependent regulation of the specialized metabolism. Generally, Shiraz displayed greater upregulation of the entire polyphenol pathway and specifically higher accumulation of piceid and coumaroyl anthocyanin forms than Cabernet Sauvignon from veraison onwards. Transcript profiling revealed coordinated increased transcript abundance for genes encoding enzymes of committing steps in the phenylpropanoid pathway. The anthocyanin metabolite profile showed F3'5'H-mediated delphinidin-type anthocyanin enrichment in both varieties towards maturation, consistent with the transcript data, indicating that the F3'5'H-governed branching step dominates the anthocyanin profile at late berry development. Correlation analysis confirmed the tightly coordinated metabolic changes during development, and suggested a source-sink relation between the central and specialized metabolism, stronger in Shiraz than Cabernet Sauvignon. RNAseq analysis also revealed that the two cultivars exhibited distinct pattern of changes in genes related to abscisic acid (ABA) biosynthesis enzymes. CONCLUSIONS: Compared with CS, Shiraz showed higher number of significant correlations between metabolites, which together with the relatively higher expression of flavonoid genes supports the evidence of increased accumulation of coumaroyl anthocyanins in that cultivar. Enhanced stress related metabolism, e.g. trehalose, stilbene and ABA in Shiraz berry-skin are consistent with its relatively higher susceptibility to environmental cues.


Assuntos
Frutas/metabolismo , Metaboloma , Transcriptoma , Vitis/genética , Antocianinas/química , Cromatografia Líquida , Flavonoides/química , Frutas/genética , Cromatografia Gasosa-Espectrometria de Massas , Polifenóis/química , Vitis/classificação , Vitis/metabolismo , Vinho
16.
Mol Ecol ; 23(19): 4722-36, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25145541

RESUMO

Environmental contamination from heavy metals poses a global concern for the marine environment, as heavy metals are passed up the food chain and persist in the environment long after the pollution source is contained. Cnidarians play an important role in shaping marine ecosystems, but environmental pollution profoundly affects their vitality. Among the cnidarians, the sea anemone Nematostella vectensis is an advantageous model for addressing questions in molecular ecology and toxicology as it tolerates extreme environments and its genome has been published. Here, we employed a transcriptome-wide RNA-Seq approach to analyse N. vectensis molecular defence mechanisms against four heavy metals: Hg, Cu, Cd and Zn. Altogether, more than 4800 transcripts showed significant changes in gene expression. Hg had the greatest impact on up-regulating transcripts, followed by Cu, Zn and Cd. We identified, for the first time in Cnidaria, co-up-regulation of immediate-early transcription factors such as Egr1, AP1 and NF-κB. Time-course analysis of these genes revealed their early expression as rapidly as one hour after exposure to heavy metals, suggesting that they may complement or substitute for the roles of the metal-mediating Mtf1 transcription factor. We further characterized the regulation of a large array of stress-response gene families, including Hsp, ABC, CYP members and phytochelatin synthase, that may regulate synthesis of the metal-binding phytochelatins instead of the metallothioneins that are absent from Cnidaria genome. This study provides mechanistic insight into heavy metal toxicity in N. vectensis and sheds light on ancestral stress adaptations.


Assuntos
Metais Pesados/toxicidade , Anêmonas-do-Mar/genética , Transcriptoma , Animais , Regulação da Expressão Gênica , Família Multigênica , Estresse Fisiológico/genética , Fatores de Transcrição/genética
17.
Am J Hum Genet ; 86(2): 273-8, 2010 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-20137772

RESUMO

Human disorders of phosphate (Pi) handling and hypophosphatemic rickets have been shown to result from mutations in PHEX, FGF23, and DMP1, presenting as X-linked recessive, autosomal-dominant, and autosomal-recessive patterns, respectively. We present the identification of an inactivating mutation in the ecto-nucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) gene causing autosomal-recessive hypophosphatemic rickets (ARHR) with phosphaturia by positional cloning. ENPP1 generates inorganic pyrophosphate (PPi), an essential physiologic inhibitor of calcification, and previously described inactivating mutations in this gene were shown to cause aberrant ectopic calcification disorders, whereas no aberrant calcifications were present in our patients. Our surprising result suggests a different pathway involved in the generation of ARHR and possible additional functions for ENPP1.


Assuntos
Raquitismo Hipofosfatêmico Familiar/enzimologia , Raquitismo Hipofosfatêmico Familiar/genética , Inativação Gênica , Genes Recessivos/genética , Doenças Genéticas Ligadas ao Cromossomo X , Predisposição Genética para Doença , Mutação/genética , Diester Fosfórico Hidrolases/genética , Pirofosfatases/genética , Adolescente , Adulto , Sequência de Aminoácidos , Sequência de Bases , Sequência Conservada , Fator de Crescimento de Fibroblastos 23 , Humanos , Dados de Sequência Molecular , Diester Fosfórico Hidrolases/química , Polimorfismo de Nucleotídeo Único/genética , Pirofosfatases/química , Adulto Jovem
18.
Front Oncol ; 12: 992260, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36185255

RESUMO

Mitochondrial SMAC/Diablo induces apoptosis by binding the inhibitor of apoptosis proteins (IAPs), thereby activating caspases and, subsequently, apoptosis. Previously, we found that despite its pro-apoptotic activity, SMAC/Diablo is overexpressed in cancer, and demonstrated that in cancer it possesses new essential and non-apoptotic functions that are associated with regulating phospholipid synthesis including modulating mitochondrial phosphatidylserine decarboxylase activity. Here, we demonstrate additional functions for SMAC/Diablo associated with inflammation and immunity. CRISPR/Cas9 SMAC/Diablo-depleted A549 lung cancer cells displayed inhibited cell proliferation and migration. Proteomics analysis of these cells revealed altered expression of proteins associated with lipids synthesis and signaling, vesicular transport and trafficking, metabolism, epigenetics, the extracellular matrix, cell signaling, and neutrophil-mediated immunity. SMAC-KO A549 cell-showed inhibited tumor growth and proliferation and activated apoptosis. The small SMAC-depleted "tumor" showed a morphology of alveoli-like structures, reversed epithelial-mesenchymal transition, and altered tumor microenvironment. The SMAC-lacking tumor showed reduced expression of inflammation-related proteins such as NF-kB and TNF-α, and of the PD-L1, associated with immune system suppression. These results suggest that SMAC is involved in multiple processes that are essential for tumor growth and progression. Thus, targeting SMAC's non-canonical function is a potential strategy to treat cancer.

19.
Cells ; 11(19)2022 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-36231008

RESUMO

Objective: Up-regulated expression of transcription-factor E2F1 in human visceral adipose tissue (VAT) characterizes a dysmetabolic obesity sub-phenotype. An E2F1-miRNA network has been described in multiple cancers. Here we investigated whether elevated VAT-E2F1 in obesity is associated with VAT-miRNA alterations similar to, or distinct from, those described in cancer. Furthermore, we assessed if E2F1-associated miRNA changes may contribute to the link between high- VAT-E2F1 and a dysmetabolic obesity phenotype. Methods: We assembled a cohort of patients with obesity and high-VAT-E2F1, matched by age, sex, ±BMI to patients with low-VAT-E2F1, with and without obesity (8 patients/groupX3 groups). We performed Nanostring©-based miRNA profiling of VAT samples from all 24 patients. Candidate E2F1-related miRNAs were validated by qPCR in an independent cohort of patients with extreme obesity, with or without type-2-diabetes (T2DM) (n = 20). Bioinformatic tools and manipulation of E2F1 expression in cells were used to establish the plausibility of the functional VAT-E2F1-miRNA network in obesity. Results: Among n = 798 identified miRNAs, 17 were differentially expressed in relation to E2F1 and not to obesity itself. No evidence for the cancer-related E2F1-miRNA network was identified in human VAT in obesity. In HEK293-cells, overexpression/downregulation of E2F1 correspondingly altered the expression of miRNA-206 and miRNA-210-5p, two miRNAs with reported metabolic functions consistent with those of E2F1. In VAT from both cohorts, the expression of both miRNA-206 and 210-5p intercorrelated, and correlated with the expression of E2F1. In cohort 1 we did not detect significant associations with biochemical parameters. In cohort 2 of patients with extreme obesity, all those with high VAT-E2F1 showed a diabetes-complicated obesity phenotype and higher expression of miRNA-206 and miRNA-210-5p, which also correlated with fasting glucose levels (both miRNAs) and fasting insulin (miRNA-210-5p). Conclusions: Whilst the previously described cancer-related E2F1-miRNA network does not appear to operate in VAT in obesity, miRNAs-206 and 210-5p may link high-E2F1 expression in VAT with diabetes-complicated extreme obesity phenotype.


Assuntos
Diabetes Mellitus Tipo 2 , MicroRNAs , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Fator de Transcrição E2F1/genética , Fator de Transcrição E2F1/metabolismo , Glucose/metabolismo , Células HEK293 , Humanos , Insulina/metabolismo , Gordura Intra-Abdominal/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Obesidade/genética , Obesidade/metabolismo
20.
Transl Neurodegener ; 11(1): 58, 2022 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-36578022

RESUMO

BACKGROUND: Alzheimer's disease (AD) exhibits mitochondrial dysfunctions associated with dysregulated metabolism, brain inflammation, synaptic loss, and neuronal cell death. As a key protein serving as the mitochondrial gatekeeper, the voltage-dependent anion channel-1 (VDAC1) that controls metabolism and Ca2+ homeostasis is positioned at a convergence point for various cell survival and death signals. Here, we targeted VDAC1 with VBIT-4, a newly developed inhibitor of VDAC1 that prevents its pro-apoptotic activity, and mitochondria dysfunction. METHODS: To address the multiple pathways involved in AD, neuronal cultures and a 5 × FAD mouse model of AD were treated with VBIT-4. We addressed multiple topics related to the disease and its molecular mechanisms using immunoblotting, immunofluorescence, q-RT-PCR, 3-D structural analysis and several behavioral tests. RESULTS: In neuronal cultures, amyloid-beta (Aß)-induced VDAC1 and p53 overexpression and apoptotic cell death were prevented by VBIT-4. Using an AD-like 5 × FAD mouse model, we showed that VDAC1 was overexpressed in neurons surrounding Aß plaques, but not in astrocytes and microglia, and this was associated with neuronal cell death. VBIT-4 prevented the associated pathophysiological changes including neuronal cell death, neuroinflammation, and neuro-metabolic dysfunctions. VBIT-4 also switched astrocytes and microglia from being pro-inflammatory/neurotoxic to neuroprotective phenotype. Moreover, VBIT-4 prevented cognitive decline in the 5 × FAD mice as evaluated using several behavioral assessments of cognitive function. Interestingly, VBIT-4 protected against AD pathology, with no significant change in phosphorylated Tau and only a slight decrease in Aß-plaque load. CONCLUSIONS: The study suggests that mitochondrial dysfunction with its gatekeeper VDAC1 is a promising target for AD therapeutic intervention, and VBIT-4 is a promising drug candidate for AD treatment.


Assuntos
Doença de Alzheimer , Camundongos , Animais , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Proteínas Mitocondriais , Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Mitocôndrias/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA