RESUMO
Myxovirus resistance protein 1 (MX1) and MX2 are homologous, dynamin-like large GTPases, induced upon interferon exposure. Human MX1 (HsMX1) is known to inhibit many viruses, including influenza A virus, by likely acting at various steps of their life cycles. Despite decades of studies, the mechanism(s) of action with which MX1 proteins manage to inhibit target viruses is not fully understood. MX1 proteins are mechano-enzymes and share a similar organization to dynamin, with a GTPase domain and a carboxy-terminal stalk domain, connected by a bundle signaling element. These three elements are known to be essential for antiviral activity. HsMX1 has two unstructured regions, the L4 loop, also essential for antiviral activity, and a short amino (N)-terminal region, which greatly varies between MX1 proteins of different species. The role of this N-terminal domain in antiviral activity is not known. Herein, using mutagenesis, imaging, and biochemical approaches, we demonstrate that the N-terminal domain of HsMX1 is essential for antiviral activity against influenza A virus, Vesicular Stomatitis Virus, and La Crosse virus. Furthermore, we pinpoint a highly conserved leucine within this region, which is absolutely crucial for human, mouse, and bat MX1 protein antiviral activity. Importantly, mutation of this leucine does not compromise GTPase activity or oligomerization capabilities but does modify MX1 protein subcellular localization. The discovery of this essential and highly conserved residue defines this region as key for antiviral activity and may reveal insights as to the mechanism(s) of action of MX1 proteins.
Assuntos
Vírus da Influenza A , Proteínas de Resistência a Myxovirus , Vírus de RNA , Animais , Humanos , Camundongos , Antivirais/farmacologia , Antivirais/metabolismo , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Vírus da Influenza A/metabolismo , Vírus da Influenza A/patogenicidade , Leucina , Proteínas de Resistência a Myxovirus/genética , Proteínas de Resistência a Myxovirus/metabolismo , Proteínas/metabolismo , Vírus de RNA/metabolismo , Vírus de RNA/patogenicidadeRESUMO
Emerging SARS-CoV-2 variants raise concerns about our ability to withstand the Covid-19 pandemic, and therefore, understanding mechanistic differences of those variants is crucial. In this study, we investigate disparities between the SARS-CoV-2 wild type and five variants that emerged in late 2020, focusing on the structure and dynamics of the spike protein interface with the human angiotensin-converting enzyme 2 (ACE2) receptor, by using crystallographic structures and extended analysis of microsecond molecular dynamics simulations. Dihedral angle principal component analysis (PCA) showed the strong similarities in the spike receptor binding domain (RBD) dynamics of the Alpha, Beta, Gamma, and Delta variants, in contrast with those of WT and Epsilon. Dynamical perturbation networks and contact PCA identified the peculiar interface dynamics of the Delta variant, which cannot be directly imputable to its specific L452R and T478K mutations since those residues are not in direct contact with the human ACE2 receptor. Our outcome shows that in the Delta variant the L452R and T478K mutations act synergistically on neighboring residues to provoke drastic changes in the spike/ACE2 interface; thus a singular mechanism of action eventually explains why it dominated over preceding variants.
Assuntos
COVID-19 , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2/genética , Humanos , Simulação de Dinâmica Molecular , Mutação , Pandemias , Ligação Proteica , SARS-CoV-2/genéticaRESUMO
Imbalance in the level of the pyrimidine degradation products dihydrouracil and dihydrothymine is associated with cellular transformation and cancer progression. Dihydropyrimidines are degraded by dihydropyrimidinase (DHP), a zinc metalloenzyme that is upregulated in solid tumors but not in the corresponding normal tissues. How dihydropyrimidine metabolites affect cellular phenotypes remains elusive. Here we show that the accumulation of dihydropyrimidines induces the formation of DNA-protein crosslinks (DPCs) and causes DNA replication and transcriptional stress. We used Xenopus egg extracts to recapitulate DNA replication invitro. We found that dihydropyrimidines interfere directly with the replication of both plasmid and chromosomal DNA. Furthermore, we show that the plant flavonoid dihydromyricetin inhibits human DHP activity. Cellular exposure to dihydromyricetin triggered DPCs-dependent DNA replication stress in cancer cells. This study defines dihydropyrimidines as potentially cytotoxic metabolites that may offer an opportunity for therapeutic-targeting of DHP activity in solid tumors.
Assuntos
Amidoidrolases/genética , Transformação Celular Neoplásica/genética , Replicação do DNA/genética , Transcrição Gênica , Animais , Antineoplásicos/uso terapêutico , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Uracila/análogos & derivados , Uracila/metabolismo , Xenopus laevis/genética , Xenopus laevis/crescimento & desenvolvimentoRESUMO
Three series of nucleotide analogues were synthesized and evaluated as potential CD73 inhibitors. Nucleobase replacement consisted in connecting the appropriate aromatic or purine residues through a triazole moiety that is generated from 1,3-dipolar cycloaddition. The first series is related to 4-substituted-1,2,3-triazolo-ß-hydroxyphosphonate ribonucleosides. Additional analogues were also obtained, in which the phosphonate group was replaced by a bisphosphonate pattern (P-C-P-C, series 2) or the ribose moiety was removed leading to acyclic derivatives (series 3). The ß-hydroxyphosphonylphosphonate ribonucleosides (series 2) were found to be potent inhibitors of CD73 using both purified recombinant protein and cell-based assays. Two compounds (2a and 2b) that contained a bis(trifluoromethyl)phenyl or a naphthyl substituents proved to be the most potent inhibitors, with IC50 values of 4.8 ± 0.8 µM and 0.86 ± 0.2 µM, compared to the standard AOPCP (IC50 value of 3.8 ± 0.9 µM), and were able to reverse the adenosine-mediated immune suppression on human T cells. This series of compounds illustrates a new type of CD73 inhibitors.
Assuntos
5'-Nucleotidase/antagonistas & inibidores , Algoritmos , Nucleotídeos/farmacologia , Triazóis/farmacologia , 5'-Nucleotidase/metabolismo , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Proteínas Ligadas por GPI/antagonistas & inibidores , Proteínas Ligadas por GPI/metabolismo , Humanos , Cinética , Estrutura Molecular , Nucleotídeos/síntese química , Nucleotídeos/química , Relação Estrutura-Atividade , Triazóis/síntese química , Triazóis/químicaRESUMO
The ecto-5'-nucleotidase CD73 plays an important role in the production of immune-suppressive adenosine in tumor micro-environment, and has become a validated drug target in oncology. Indeed, the anticancer immune response involves extracellular ATP to block cell proliferation through T-cell activation. However, in the tumor micro-environment, two extracellular membrane-bound enzymes (CD39 and CD73) are overexpressed and hydrolyze efficiently ATP into AMP then further into immune-suppressive adenosine. To circumvent the impact of CD73-generated adenosine, we applied an original bioinformatics approach to identify new allosteric inhibitors targeting the dimerization interface of CD73, which should impair the large dynamic motions required for its enzymatic function. Several hit compounds issued from virtual screening campaigns showed a potent inhibition of recombinant CD73 with inhibition constants in the low micromolar range and exhibited a non-competitive inhibition mode. The structure-activity relationships studies indicated that several amino acid residues (D366, H456, K471, Y484 and E543 for polar interactions and G453-454, I455, H456, L475, V542 and G544 for hydrophobic contacts) located at the dimerization interface are involved in the tight binding of hit compounds and likely contributed for their inhibitory activity. Overall, the gathered information will guide the upcoming lead optimization phase that may lead to potent and selective CD73 inhibitors, able to restore the anticancer immune response.
Assuntos
5'-Nucleotidase/antagonistas & inibidores , 5'-Nucleotidase/genética , Adenosina/metabolismo , Sítio Alostérico , Anticorpos Monoclonais/química , Antineoplásicos/química , Proliferação de Células , Biologia Computacional , Cristalografia por Raios X , Proteínas Ligadas por GPI/antagonistas & inibidores , Proteínas Ligadas por GPI/genética , Humanos , Sistema Imunitário , Inflamação , Cinética , Espectroscopia de Ressonância Magnética , Modelos Estatísticos , Simulação de Dinâmica Molecular , Fenótipo , Ligação Proteica , Conformação Proteica , Multimerização Proteica , Proteínas Recombinantes/química , SoftwareRESUMO
Apicomplexan parasites are responsible for some of the most deadly parasitic diseases affecting humans and livestock. There is an urgent need for new medicines that will target apicomplexan-specific pathways. We characterized a Toxoplasma gondii C2H2 zinc finger protein, named TgZNF2, which is conserved among eukaryotes. We constructed an inducible KO strain (iKO-TgZNF2) for this gene where the tgznf2 gene expression is repressed in the presence of a tetracycline analog (ATc). We showed that the iKO-TgZNF2 parasites are unable to proliferate after depletion of the TgZNF2 protein. Complementation with a full length copy of the gene restores the phenotype Moreover, the homolog of this protein in the related apicomplexan Plasmodium falciparum was shown to efficiently rescue the phenotype, suggesting that this pathway is likely conserved among apicomplexan parasites. We demonstrated that the iKO-mutant lacking TgZNF2 are arrested during the cell cycle during the G1 phase. We identified potential protein partners of this protein among which are spliceosomal complex and mRNA nuclear export components. We confirmed that TgZNF2 is able to bind in vivo to transcripts but splicing is not perturbed in the ATc-treated parasites. Instead, we demonstrated that TgZNF2 depletion leads to the sequestration of polyA+ mRNAs in the nucleus while ribosomal RNAs are not affected. We discovered a conserved protein with specific apicomplexan functional properties that is essential for the survival of T. gondii. TgZNF2 may be crucial to ensure the correct polyA+ mRNA nuclear export, a function that is conserved in P. falciparum.
Assuntos
Transporte Ativo do Núcleo Celular , Dedos de Zinco CYS2-HIS2 , Fatores de Transcrição Kruppel-Like/metabolismo , RNA Mensageiro/metabolismo , RNA Viral/metabolismo , Toxoplasma/crescimento & desenvolvimento , Pontos de Checagem do Ciclo Celular , Técnicas de Silenciamento de Genes , Teste de Complementação Genética , Humanos , Fatores de Transcrição Kruppel-Like/deficiência , Plasmodium falciparum/genética , Plasmodium falciparum/crescimento & desenvolvimento , Toxoplasma/genéticaRESUMO
BACKGROUND: Aminoglycoside O-phosphotransferases make up a large class of bacterial enzymes that is widely distributed among pathogens and confer a high resistance to several clinically used aminoglycoside antibiotics. Aminoglycoside 2â³-phosphotransferase IVa, APH(2â³)-IVa, is an important member of this class, but there is little information on the thermodynamics of aminoglycoside binding and on the nature of its rate-limiting step. METHODS: We used isothermal titration calorimetry, electrostatic potential calculations, molecular dynamics simulations and X-ray crystallography to study the interactions between the enzyme and different aminoglycosides. We determined the rate-limiting step of the reaction by the means of transient kinetic measurements. RESULTS: For the first time, Kd values were determined directly for APH(2â³)-IVa and different aminoglycosides. The affinity of the enzyme seems to anti-correlate with the molecular weight of the ligand, suggesting a limited degree of freedom in the binding site. The main interactions are electrostatic bonds between the positively charged amino groups of aminoglycosides and Glu or Asp residues of APH. In spite of the significantly different ratio Kd/Km, there is no large difference in the transient kinetics obtained with the different aminoglycosides. We show that a product release step is rate-limiting for the overall reaction. CONCLUSIONS: APH(2â³)-IVa has a higher affinity for aminoglycosides carrying an amino group in 2' and 6', but tighter bindings do not correlate with higher catalytic efficiencies. As with APH(3')-IIIa, an intermediate containing product is preponderant during the steady state. GENERAL SIGNIFICANCE: This intermediate may constitute a good target for future drug design.
Assuntos
Aminoglicosídeos/química , Proteínas de Bactérias/química , Enterococcus/enzimologia , Fosfotransferases (Aceptor do Grupo Álcool)/química , Aminoglicosídeos/metabolismo , Proteínas de Bactérias/metabolismo , Cinética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Ligação Proteica , Eletricidade EstáticaRESUMO
BACKGROUND: Bacterial antibiotic resistance often leads to treatment failure which may have serious consequences, especially in critically sick patients. Resistance to aminoglycosides is mainly due to the expression of antibiotic-modifying enzymes. One important mechanism of aminoglycoside modification is the ATP/GTP-dependent O-phosphorylation catalyzed by aminoglycoside phosphotransferases, APHs. The aim of this study is to identify specific inhibitors of APHs that could restore bacterial susceptibility to aminoglycosides. METHODS: We focused on the search for allosteric inhibitors that bind to small cavities of the protein and block the enzyme function by perturbing its dynamics. RESULTS: From normal mode analysis, a cavity of variable volume belonging to a large groove which splits the protein into two parts was chosen as target. By molecular docking, we screened a large library of commercially available compounds. Seventeen of the highest ranked compounds were tested by in vitro kinetic experiments in order to evaluate their ability to inhibit APHs. Site-directed mutagenesis was carried out with the aim of confirming the inhibition mechanism determined kinetically and the interactions with the protein predicted by in silico studies. These interactions were also confirmed by the use of structurally-related molecules. CONCLUSIONS: Two compounds showed interesting inhibition properties, and one was able to block two different classes of APH. GENERAL SIGNIFICANCE: This study gives new insights into the inhibition of APHs by such allosteric inhibitors, and provides the basis for the future development of combined therapies, antibiotic plus APH inhibitor, which may reverse the resistance to aminoglycosides in a clinical context.
Assuntos
Aminoglicosídeos/metabolismo , Inibidores Enzimáticos/farmacologia , Simulação de Acoplamento Molecular , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Regulação Alostérica/efeitos dos fármacos , Cristalografia por Raios X , Inibidores Enzimáticos/química , Cinética , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidoresRESUMO
Despite the ever-increasing role of pesticides in modern agriculture, their deleterious effects are still underexplored. Here we examine the effect of A6, a pesticide derived from the naturally-occurring α-terthienyl, and structurally related to the endocrine disrupting pesticides anilinopyrimidines, on living zebrafish larvae. We show that both A6 and an anilinopyrimidine, cyprodinyl, decrease larval survival and affect central neurons at micromolar concentrations. Focusing on a superficial and easily observable sensory system, the lateral line system, we found that defects in axonal and sensory cell regeneration can be observed at much lower doses, in the nanomolar range. We also show that A6 accumulates preferentially in lateral line neurons and hair cells. We examined whether A6 affects the expression of putative target genes, and found that genes involved in apoptosis/cell proliferation are down-regulated, as well as genes reflecting estrogen receptor activation, consistent with previous reports that anilinopyrimidines act as endocrine disruptors. On the other hand, canonical targets of endocrine signaling are not affected, suggesting that the neurotoxic effect of A6 may be due to the binding of this compound to a recently identified, neuron-specific estrogen receptor.
Assuntos
Agentes de Controle Biológico/toxicidade , Disruptores Endócrinos/toxicidade , Larva/efeitos dos fármacos , Sistema da Linha Lateral/efeitos dos fármacos , Regeneração Nervosa/efeitos dos fármacos , Pirimidinas/toxicidade , Pirimidinonas/toxicidade , Tiofenos/toxicidade , Peixe-Zebra/embriologia , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Regulação da Expressão Gênica , Mecanorreceptores/efeitos dos fármacos , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo , Medula Espinal/citologia , Medula Espinal/efeitos dos fármacos , Tiofenos/químicaRESUMO
A series of seventeen ß-hydroxyphosphonate ribonucleoside analogues containing 4-substituted-1,2,3-triazoles was synthesized and fully characterized. Such compounds were designed as potential inhibitors of the cytosolic 5'-nucleotidase II (cN-II), an enzyme involved in the regulation of purine nucleotide pools. NMR and molecular modelling studies showed that a few derivatives adopted similar structural features to IMP or GMP. Five derivatives were identified as modest inhibitors with 53 to 64% of cN-II inhibition at 1 mM.
RESUMO
Significant progress has been made in the determination of the protein structures with their number today passing over a hundred thousand structures. The next challenge is the understanding and prediction of protein-protein and protein-ligand interactions. In this work we address this problem by analyzing curved solenoid proteins. Many of these proteins are considered as "hub molecules" for their high potential to interact with many different molecules and to be a scaffold for multisubunit protein machineries. Our analysis of these structures through molecular dynamics simulations reveals that the mobility of the side-chains on the concave surfaces of the solenoids is lower than on the convex ones. This result provides an explanation to the observed preferential binding of the ligands, including small and flexible ligands, to the concave surface of the curved solenoid proteins. The relationship between the landscapes and dynamic properties of the protein surfaces can be further generalized to the other types of protein structures and eventually used in the computer algorithms, allowing prediction of protein-ligand interactions by analysis of protein surfaces.
Assuntos
Simulação de Dinâmica Molecular , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas/química , Animais , Sítios de Ligação , Cristalografia por Raios X , Humanos , Ligantes , Ligação Proteica , Proteínas/metabolismo , Propriedades de SuperfícieRESUMO
In the accepted model for human immunodeficiency virus preassembly in infected host cells, the anchoring to the intracellular leaflet of the membrane of the matrix domain (MA) that lies at the N-terminus of the viral Gag protein precursor appears to be one of the crucial steps for particle assembly. In this study, we simulated the membrane anchoring of human immunodeficiency virus-1 myristoylated MA protein using a coarse-grained representation of both the protein and the membrane. Our calculations first suggest that the myristoyl group could spontaneously release from its initial hydrophobic pocket before MA protein interacts with the lipid membrane. All-atom simulations confirmed this possibility with a related energy cost estimated to be ~5 kcal.mol(-1). The phosphatidylinositol (4,5) bisphosphate (PI(4,5)P2) head binds preferentially to the MA highly basic region as described in available NMR data, but interestingly without flipping of its 2' acyl chain into the MA protein. Moreover, MA was able to confine PI(4,5)P2 lipids all around its molecular surface after having found a stable orientation at the membrane surface. Our results suggest that this orientation is dependent on Myr anchoring and that this confinement induces a lateral segregation of PI(4,5)P2 in domains. This is consistent with a PI(4,5)P2 enrichment of the virus envelope as compared to the host cell membrane.
Assuntos
Antígenos HIV/metabolismo , Simulação de Dinâmica Molecular , Fosfatidilinositol 4,5-Difosfato/metabolismo , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo , Sequência de Aminoácidos , Membrana Celular/química , Membrana Celular/metabolismo , Membrana Celular/virologia , Antígenos HIV/química , Humanos , Dados de Sequência Molecular , Fosfatidilinositol 4,5-Difosfato/química , Ligação Proteica , Produtos do Gene gag do Vírus da Imunodeficiência Humana/químicaRESUMO
Invasion of brain endothelium protein A (IbeA) is a virulence factor specific to pathogenic Escherichia coli. Originally identified in the K1 strain causing neonatal meningitis, it was more recently found in avian pathogenic Escherichia coli (APEC) and adherent invasive Escherichia coli (AIEC). In these bacteria, IbeA facilitates host cell invasion and intracellular survival, in particular, under harsh conditions like oxidative stress. Furthermore, IbeA from AIEC contributes to intramacrophage survival and replication, thus enhancing the inflammatory response within the intestine. Therefore, this factor is a promising drug target for anti-AIEC strategies in the context of Crohn's disease. Despite such an important role, the biological function of IbeA remains largely unknown. In particular, its exact nature and cellular localization, i.e., membrane-bound invasin versus cytosolic factor, are still of debate. Here, we developed an efficient protocol for recombinant expression of IbeA under native conditions and demonstrated that IbeA from AIEC is a soluble, homodimeric flavoprotein. Using mass spectrometry and tryptophan fluorescence measurements, we further showed that IbeA preferentially binds flavin adenine dinucleotide (FAD), with an affinity in the one-hundred nanomolar range and optimal binding under reducing conditions. 3D-modeling with AlphaFold revealed that IbeA shares strong structural homology with FAD-dependent oxidoreductases. Finally, we used ligand docking, mutational analyses, and molecular dynamics simulations to identify the FAD binding pocket within IbeA and characterize possible conformational changes occurring upon ligand binding. Overall, we suggest that the role of IbeA in the survival of AIEC within host cells, notably macrophages, is linked to modulation of redox processes.
Assuntos
Proteínas de Escherichia coli , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Flavina-Adenina Dinucleotídeo/metabolismo , Flavoproteínas/metabolismo , Oxirredutases/metabolismo , Ligantes , Escherichia coli/genética , Escherichia coli/metabolismo , Encéfalo/metabolismo , Endotélio/metabolismo , Aderência BacterianaRESUMO
Human endogenous retroviruses (HERVs) are retroviral sequences integrated into 8% of the human genome resulting from ancient exogenous retroviral infections. Unlike endogenous retroviruses of other mammalian species, HERVs are mostly replication and retro-transposition defective, and their transcription is strictly regulated by epigenetic mechanisms in normal cells. A significant addition to the growing body of research reveals that HERVs' aberrant activation is often associated with offsetting diseases like autoimmunity, neurodegenerative diseases, cancers, and chemoresistance. Adult T-cell leukemia/lymphoma (ATLL) is a very aggressive and chemoresistant leukemia caused by the human T-cell leukemia virus type 1 (HTLV-1). The prognosis of ATLL remains poor despite several new agents being approved in the last few years. In the present study, we compare the expression of HERV genes in CD8+-depleted PBMCs from HTLV-1 asymptomatic carriers and patients with acute ATLL. Herein, we show that HERVs are highly upregulated in acute ATLL. Our results further demonstrate that the oncoprotein Fra-2 binds the LTR region and activates the transcription of several HERV families, including HERV-H and HERV-K families. This raises the exciting possibility that upregulated HERV expression could be a key factor in ATLL development and the observed chemoresistance, potentially leading to new therapeutic strategies and significantly impacting the field of oncology and virology.
Assuntos
Retrovirus Endógenos , Leucemia-Linfoma de Células T do Adulto , Humanos , Leucemia-Linfoma de Células T do Adulto/virologia , Leucemia-Linfoma de Células T do Adulto/genética , Leucemia-Linfoma de Células T do Adulto/patologia , Leucemia-Linfoma de Células T do Adulto/metabolismo , Retrovirus Endógenos/genética , Retrovirus Endógenos/metabolismo , Vírus Linfotrópico T Tipo 1 Humano/genética , Sequências Repetidas Terminais/genética , Produtos do Gene env/metabolismo , Produtos do Gene env/genéticaRESUMO
HIV-1 capsids cross nuclear pore complexes (NPCs) by engaging with the nuclear import machinery. To identify compounds that inhibit HIV-1 nuclear import, we screened drugs in silico on a three-dimensional model of a CA hexamer bound by Transportin-1 (TRN-1). Among hits, compound H27 inhibited HIV-1 with a low micromolar IC50. Unlike other CA-targeting compounds, H27 did not alter CA assembly or disassembly, inhibited nuclear import specifically, and retained antiviral activity against PF74- and Lenacapavir-resistant mutants. The differential sensitivity of divergent primate lentiviral capsids, capsid stability and H27 escape mutants, together with structural analyses, suggest that H27 makes multiple low affinity contacts with assembled capsid. Interaction experiments indicate that H27 may act by preventing CA from engaging with components of the NPC machinery such as TRN-1. H27 exhibited good metabolic stability in vivo and was efficient against different subtypes and circulating recombinant forms from treatment-naïve patients as well as strains resistant to the four main classes of antiretroviral drugs. This work identifies compounds that demonstrate a novel mechanism of action by specifically blocking HIV-1 nuclear import.
RESUMO
Self-assembly of macromolecules into higher-order symmetric structures is fundamental for the regulation of biological processes. Higher-order symmetric structure self-assembly by the gene expression machinery, such as bacterial DNA-dependent RNA polymerase (RNAP), has never been reported before. Here, we show that the stress-response σB factor from the human pathogen, Mycobacterium tuberculosis, induces the RNAP holoenzyme oligomerization into a supramolecular complex composed of eight RNAP units. Cryo-electron microscopy revealed a pseudo-symmetric structure of the RNAP octamer in which RNAP protomers are captured in an auto-inhibited state and display an open-clamp conformation. The structure shows that σB is sequestered by the RNAP flap and clamp domains. The transcriptional activator RbpA prevented octamer formation by promoting the initiation-competent RNAP conformation. Our results reveal that a non-conserved region of σ is an allosteric controller of transcription initiation and demonstrate how basal transcription factors can regulate gene expression by modulating the RNAP holoenzyme assembly and hibernation.
Assuntos
RNA Polimerases Dirigidas por DNA , Mycobacterium tuberculosis , Fator sigma , Humanos , Proteínas de Bactérias/metabolismo , Microscopia Crioeletrônica , RNA Polimerases Dirigidas por DNA/metabolismo , Holoenzimas/metabolismo , Mycobacterium tuberculosis/genética , Fator sigma/metabolismo , Fatores de Transcrição/metabolismo , Transcrição GênicaRESUMO
Various series of 4,6-biaryl-2-thiopyridine derivatives were synthesized and evaluated as potential ecto-5'-nucleotidase (CD73) inhibitors. Two synthetic routes were explored and the coupling of 4,6-disubstituted 3-cyano-2-chloro-pyridines with selected thiols allowed us to explore the structural diversity. Somehow divergent results were obtained in biological assays on CD73 inhibition using either the purified recombinant protein or cell-based assays, highlighting the difficulty to target protein-protein interface on proteins existing as soluble and membrane-bound forms. Among the 18 new derivatives obtained, three derivatives incorporating morpholino substituents on the 4,6-biaryl-2-thiopyridine core were shown to be able to reverse the adenosine-mediated immune suppression on human T cells. The higher blockade efficiency was observed for 2-((3-cyano-4,6-bis(4-morpholinophenyl)pyridin-2-yl)thio)-N-(isoxazol-3-yl)acetamide (with total reversion at 100â µM) and methyl 2-((3-cyano-4,6-bis(4-morpholinophenyl)pyridin-2-yl)thio)acetate (with partial reversion at 10â µM). Thus, this series of compounds illustrates a new chemotype of CD73 allosteric inhibitors.
Assuntos
5'-Nucleotidase , Adenosina , Humanos , Adenosina/farmacologia , Piridinas/farmacologia , Proteínas Recombinantes/químicaRESUMO
Cytosolic 5'-nucleotidase II (cN-II) regulates the intracellular nucleotide pools within the cell by catalyzing the dephosphorylation of 6-hydroxypurine nucleoside 5'-monophosphates. Beside this physiological function, high level of cN-II expression is correlated with abnormal patient outcome when treated with cytotoxic nucleoside analogues. To identify its specific role in the resistance phenomenon observed during cancer therapy, we screened a particular class of chemical compounds, namely ribonucleoside phosphonates to predict them as potential cN-II inhibitors. These compounds incorporate a chemically and enzymatically stable phosphorus-carbon linkage instead of a regular phosphoester bond. Amongst them, six compounds were predicted as better ligands than the natural substrate of cN-II, inosine 5'-monophosphate (IMP). The study of purine and pyrimidine containing analogues and the introduction of chemical modifications within the phosphonate chain has allowed us to define general rules governing the theoretical affinity of such ligands. The binding strength of these compounds was scrutinized in silico and explained by an impressive number of van der Waals contacts, highlighting the decisive role of three cN-II residues that are Phe 157, His 209 and Tyr 210. Docking predictions were confirmed by experimental measurements of the nucleotidase activity in the presence of the three best available phosphonate analogues. These compounds were shown to induce a total inhibition of the cN-II activity at 2 mM. Altogether, this study emphasizes the importance of the non-hydrolysable phosphonate bond in the design of new competitive cN-II inhibitors and the crucial hydrophobic stacking promoted by three protein residues.
Assuntos
5'-Nucleotidase/antagonistas & inibidores , 5'-Nucleotidase/química , Ribonucleotídeos/química , 5'-Nucleotidase/metabolismo , Sítios de Ligação , Hidrólise , Inosina Monofosfato/química , Inosina Monofosfato/metabolismo , Modelos Moleculares , Ribonucleotídeos/metabolismo , Relação Estrutura-Atividade , Especificidade por SubstratoRESUMO
Ras-GTPase-activating SH3 domain-binding-proteins 1 (G3BP1) and 2 (G3BP2) are multifunctional RNA-binding proteins involved in stress granule nucleation, previously identified as essential cofactors of Old World alphaviruses. They are recruited to viral replication complexes formed by the Chikungunya virus (CHIKV), Semliki Forest virus (SFV), and Sindbis virus (SINV) via an interaction with a duplicated FGxF motif conserved in the hypervariable domain (HVD) of virus-encoded nsP3. According to mutagenesis studies, this FGxF duplication is strictly required for G3BP binding and optimal viral growth. Contrasting with this scenario, nsP3 encoded by Mayaro virus (MAYV), an arthritogenic virus grouped with Old World alphaviruses, contains a single canonical FGxF sequence. In light of this unusual feature, we questioned MAYV nsP3/G3BPs relationships. We report that G3BP1 and G3BP2 are both required for MAYV growth in human cells and bind nsP3 protein. In infected cells, they are recruited to nsP3-containing cytosolic foci and active replication complexes. Unexpectedly, deletion of the single FGxF sequence in MAYV nsP3 did not abolish these phenotypes. Using mutagenesis and in silico modeling, we identify an upstream FGAP amino acid sequence as an additional MAYV nsP3/G3BP interaction motif required for optimal viral infectivity. These results, therefore, highlight a non-conventional G3BP binding sequence in MAYV nsP3.
Assuntos
Vírus Chikungunya , Proteínas não Estruturais Virais , DNA Helicases , Humanos , Proteínas de Ligação a Poli-ADP-Ribose , RNA Helicases , Proteínas com Motivo de Reconhecimento de RNA , Replicação ViralRESUMO
BACKGROUND: The development of small molecules as cancer treatments is still of both interest and importance. OBJECTIVE: Having synthesized and identified the initial cytotoxic activity of a series of chemically related N-(9H-purin-6-yl) benzamide derivatives, we continued their evaluation on cancer cell models. We also synthesized water-soluble prodrugs of the main compound and performed in vivo experiments. METHOD: We used organic chemistry to obtain compounds of interest and prodrugs. The biological evaluation included MTT assays, synergy experiments, proliferation assays by CFSE, cell cycle distribution and in vivo antitumoral activity. RESULTS: Our results show activities on cancer cell lines ranging from 3-39 µM for the best compounds, with both induction of apoptosis and decrease in cell proliferation. Two compounds evaluated in vivo showed weak antitumoral activity. In addition, the lead compound and its prodrug had a synergistic activity with the nucleoside analogue fludarabine in vitro and in vivo. CONCLUSION: Our work allowed us to gain better knowledge on the activity of N-(9H-purin-6-yl) benzamide derivatives and showed new examples of water-soluble prodrugs. More research is warranted to decipher the molecular mechanisms of the molecules.