Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Biomacromolecules ; 25(5): 3018-3032, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38648261

RESUMO

Different cellulose nanocrystal (CNC) forms (dried vs never-dried) can lead to different degrees of CNC reassembly, the formation of nanofibril-like structures, in nanocomposite latex-based pressure-sensitive adhesive (PSA) formulations. CNC reassembly is also affected by CNC sonication and loading as well as the protocol used for CNC addition to the polymerization. In this study, carboxylated CNCs (cCNCs) were incorporated into a seeded, semibatch, 2-ethylhexyl acrylate/methyl methacrylate/styrene emulsion polymerization and cast as pressure-sensitive adhesive (PSA) films. The addition of CNCs led to a simultaneous increase in tack strength, peel strength, and shear adhesion, avoiding the typical trade-off between the adhesive and cohesive strength. Increased CNC reassembly resulted from the use of dried, redispersed, and sonicated cCNCs, along with increased cCNC loading and addition of the cCNCs at the seed stage of the polymerization. The increased degree of CNC reassembly was shown to significantly increase the shear adhesion by enhancing the elastic modulus of the PSA films.


Assuntos
Adesivos , Celulose , Látex , Nanopartículas , Celulose/química , Adesivos/química , Nanopartículas/química , Látex/química , Polimerização , Nanocompostos/química , Pressão
2.
Macromol Rapid Commun ; 43(3): e2100493, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34841604

RESUMO

Bio-based Pickering emulsifiers are a nontoxic alternative to surfactants in emulsion formulations and heterogenous polymerizations. Recent demand for biocompatible and sustainable formulations has accelerated academic interest in polysaccharide-based nanoparticles as Pickering emulsifiers. Despite the environmental advantages, the inherent hydrophilicity of polysaccharides and their nanoparticles limits efficiency and application range. Modification of the polysaccharide surface is often required in the development of ultrastable, functional, and water-in-oil (W/O) systems. Complex surface modification calls into question the sustainability of polysaccharide-based nanoparticles and is identified as a significant barrier to commercialization. This review summarizes the use of nanocelluloses, -starches, and -chitins as Pickering emulsifiers, highlights trends and best practices in surface modification, and provides recommendations to expedite commercialization.


Assuntos
Nanopartículas , Emulsões , Polimerização , Polissacarídeos , Tensoativos
3.
Environ Res ; 207: 112196, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-34634314

RESUMO

In the recent years, endocrine disrupting compounds (EDCs) has received increasing attention due to their significant toxic effects on human beings and wildlife by affecting their endocrine systems. As an important group of emerging pollutant, EDCs have been detected in various aquatic environments, including surface waters, groundwater, wastewater, runoff, and landfill leachates. Their removal from water resources has also been an emerging concern considering growing population as well as reducing access to fresh water resources. EDC removal from wastewaters is highly dependent on physicochemical properties of the given EDCs present in each wastewater types as well as various aquatic environments. Due to chemical, physical and physicochemical diversities in these parameters, variety of technologies consisting of physical, biological, electrochemical, and chemical processes have been developed for their removal. This review highlights that the effectiveness of EDC removal is highly dependent of selecting the appropriate technology; which decision is made upon a full wastewater chemical characterization. This review aims to provide a comprehensive perspective about all the current technologies used for EDCs removal from various aquatic matrices along with rising challenges such as the antimicrobial resistance gene transfer during EDC treatment.


Assuntos
Disruptores Endócrinos , Poluentes Químicos da Água , Disruptores Endócrinos/análise , Humanos , Tecnologia , Eliminação de Resíduos Líquidos , Águas Residuárias , Poluentes Químicos da Água/análise
4.
Environ Monit Assess ; 193(12): 826, 2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34796383

RESUMO

The Eastern Harbour of Alexandria, on the Egyptian Mediterranean coast, is characterized by environmental complications due to different types of anthropogenic stressors associated with water dynamics inside the harbor as well as the rapid water exchange with the open sea. These conditions caused chronic eutrophication conditions, with variable levels in the long term. The present study followed daily some physicochemical parameters, nutrients, and phytoplankton biomass, for a complete year. The results indicate coincidence on the short-time scale between the nutrients, phytoplankton biomass, pH, and dissolved oxygen. Spearman's correlation illustrated strong positive correlations between algal blooms and both pH and dissolved oxygen. The present study recorded twelve separate algal blooms, with an average of chlorophyll-a > 16.7 µg/L, confirming the continuity of high eutrophication in the Eastern Harbour. The seasonal Mann-Kendall tests showed that summer attained significant increasing trends for chlorophyll-a, silicate, nitrite, and nitrate, while winter has a significant decreasing trend for chlorophyll-a and pH.


Assuntos
Monitoramento Ambiental , Nitrogênio , Clorofila/análise , Clorofila A , Egito , Nitrogênio/análise , Nutrientes
5.
Langmuir ; 36(46): 13989-13997, 2020 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-33186049

RESUMO

Cellulose nanocrystals (CNCs) were converted into a CO2-responsive composite nanomaterial by grafting poly(dimethylaminoethyl methacrylate) (PDMAEMA), poly(diethylaminoethyl methacrylate) (PDEAEMA), and poly(diisopropylaminoethyl methacrylate) (PDPAEMA) onto its surface using both grafting-to and grafting-from approaches. The zeta potential (ζ) of the graft-modified CNC could be reversibly switched by protonation/deprotonation of the tertiary amine groups simply by sparging with CO2 and N2, respectively. Depending on the grafting density and the molecular weight of the polymer grafts, CNC can form stable aqueous dispersions at either mildly acidic pH (under CO2) or mildly basic (under N2) conditions. Moreover, it was also determined that the CNC hydrophobicity, assessed using phase-shuttling experiments at different pH values, was also dependent on both the grafting density and molecular weight of the polymer grafts, thereby making it possible to easily tune CNC dispersibility and/or hydrophobicity.

6.
Langmuir ; 36(3): 796-809, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31873028

RESUMO

We report a mechanistic study of the microsuspension polymerization of styrene stabilized by cellulose nanocrystals (CNCs) in its native form as well as graft-modified with copolymers of styrene and N-3-(dimethylamino)propyl methacrylamide (DMAPMAm) or N,N-(diethylamino)ethyl methacrylate (DEAEMA). Native CNCs and graft-modified CNCs were shown to form stable styrene emulsions with an average droplet diameter of 18-20 and 5-9 µm, respectively. Initiators of widely varying water solubilities [2,2'-azobisisobutyronitrile (AIBN), 2-2'-azobis(2,4-dimethylvaleronitrile) (Vazo-52), and lauroyl peroxide (LPO)] were employed for the polymerizations. The type of initiator and the type of CNC were shown to directly affect the microsuspension polymerization kinetics, particle size, and molecular weight distribution. Using AIBN and Vazo-52, submicron latex particles were observed in the final latex in addition to the desired 3-20 µm CNC-armored microsuspension particles. The resulting latex and microsuspension polystyrene particles were studied for their CNC coverage and surface charge. We found that the presence of CNCs in the aqueous phase did not lead to Pickering emulsion polymerization by heterogeneous nucleation.

7.
Water Sci Technol ; 81(5): 853-875, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32541106

RESUMO

Recently, the advanced oxidation processes (AOPs) based on sulfate radicals (SRs) for organics degradation have become the focus of water treatment research as the oxidation ability of SRs are higher than that of hydroxyl radicals (HRs). Since the AOP-SRs can effectively mineralize organics into carbon dioxide and water under the optimized operating conditions, they are used in the degradation of refractory organics such as dyes, pesticides, pharmaceuticals, and industrial additives. SRs can be produced by activating persulfate (PS) with ultraviolet, heat, ultrasound, microwave, transition metals, and carbon. The activation of PS in iron-based transition metals is widely studied because iron is an environmentally friendly and inexpensive material. This article reviews the mechanism and application of several iron-based materials, including ferrous iron (Fe2+), ferric iron (Fe3+), zero-valent iron (Fe0), nano-sized zero-valent iron (nFe0), materials-supported nFe0, and iron-containing compounds for PS activation to degrade refractory organics. In addition, the current challenges and perspectives of the practical application of PS activated by iron-based systems in wastewater treatment are analyzed and prospected.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Ferro , Oxirredução , Sulfatos , Águas Residuárias
8.
Macromol Rapid Commun ; 40(6): e1800853, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30698870

RESUMO

Chitosan-based films exhibit good oxygen barrier that degrades when exposed to high humidity. In an effort to overcome this drawback, a multilayer nanocoating consisting of crosslinkable chitosan (CHQ) and poly(acrylic acid) [PAA] is deposited on polyethylene terephthalate (PET) using layer-by-layer assembly. Chitosan is functionalized with glycidyl methacrylate to introduce acrylic functionalities within the film. The deposited films are crosslinked using a free radical initiator and this crosslinking is confirmed by FTIR and reduced film thickness. A 10-bilayer (BL) crosslinked CHQ/PAA film, which is only 165 nm thick, results in a 36× reduction of the oxygen transmission rate of PET at 90% relative humidity. To achieve these same results without crosslinking, a 15-BL unmodified chitosan (CH)/PAA film, which is almost 5× thicker, must be deposited on PET. This environmentally friendly, transparent nanocoating is promising for food packaging or protection of flexible electronics, especially in high-humidity environments.


Assuntos
Resinas Acrílicas/química , Quitosana/química , Reagentes de Ligações Cruzadas/química , Oxigênio/química , Polietilenotereftalatos/química , Umidade , Estrutura Molecular , Propriedades de Superfície
9.
Crit Rev Biotechnol ; 38(2): 199-217, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28595468

RESUMO

The composition and structural properties of lignocellulosic biomass have significant effects on its downstream conversion to fuels, biomaterials, and building-block chemicals. Specifically, the recalcitrance to modification and compositional variability of lignocellulose make it challenging to optimize and control the conditions under which the conversion takes place. Various characterization protocols have been developed over the past 150 years to elucidate the structural properties and compositional patterns that affect the processing of lignocellulose. Early characterization techniques were developed to estimate the relative digestibility and nutritional value of plant material after ingestion by ruminants and humans alike (e.g. dietary fiber). Over the years, these empirical techniques have evolved into statistical approaches that give a broader and more informative analysis of lignocellulose for conversion processes, to the point where an entire compositional and structural analysis of lignocellulosic biomass can be completed in minutes, rather than weeks. The use of modern spectroscopy and chemometric techniques has shown promise as a rapid and cost effective alternative to traditional empirical techniques. This review serves as an overview of the compositional analysis techniques that have been developed for lignocellulosic biomass in an effort to highlight the motivation and migration towards rapid, accurate, and cost-effective data-driven chemometric methods. These rapid analysis techniques can potentially be used to optimize future biorefinery unit operations, where large quantities of lignocellulose are continually processed into products of high value.


Assuntos
Lignina/química , Biomassa , Técnicas de Química Analítica , Análise Espectral
10.
J Environ Manage ; 216: 357-371, 2018 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-28601340

RESUMO

Population growth in rural Canada has resulted in an increase in municipal septage generation, which could overload existing treatment facilities that rely on biological treatment approaches. To address concerns associated with potential shock loading of these systems, three semi-passive wastewater treatment technologies were compared at the pilot-scale to identify a suitable approach to augment the capacity of an existing wastewater stabilization pond facility in rural Ontario. Two of these technologies, the BioDome and BioCord systems, were commercially available systems that make use of biofilm technology to improve treatment performance and enhance the robustness to temperature and hydraulic loading fluctuations. The third approach involved the use of the natural filtration capacity of zebra mussels to improve effluent quality. The three technologies were assessed against a control for reductions in regulated wastewater parameters with an emphasis on nutrient (ammonia/ammonium, orthophosphate) reductions, air cycling, energy consumption, and performance following exposure to anoxic conditions. The BioCord system was the only technology that was found to significantly outperform the control, exhibiting reductions of 69%, 47%, 77% and 81% for NH3/NH4+, TN, COD and TSS, respectively. The BioCord system also had the lowest maintenance and energy requirements, likely due to its design, which provided the biofilm with optimal oxygen and substrate contact. Consequently, the BioCord system could develop a more stable, heterogeneous microbial population and maintain high levels of activity in its biofilm, even during periods of extended anaerobic conditions. This also suggested that the BioCord system would require less aeration, and hence a lower energy expenditure, than the other systems. Furthermore, the BioCord system showed the fastest rates of recovery, reaching significant levels of parameter reductions within one week of system re-initiation.


Assuntos
Clima , Eliminação de Resíduos Líquidos , Reatores Biológicos , Filtração , Nitrogênio , Ontário , Águas Residuárias
11.
Environ Sci Technol ; 51(6): 3558-3566, 2017 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-28221783

RESUMO

Compared to microalgae, macroalgae are larger in size, thereby imposing lower separation and drying costs. This study demonstrates the feasibility of cultivating macroalgae Chaetomorpha linum in different types of municipal wastewaters, their ability to remove nutrient and their biomass composition for downstream biofuel production. Screening experiments indicated that C. linum grew well on primary (PW) and secondary wastewaters (SW), as well as centrate wastewater (CW) diluted to less than 20%. In a subsequent experiment, a step feeding approach was found to significantly increase biomass productivity to 10.7 ± 0.2 g AFDW·m-2·d-1 (p < 0.001), a 26.5% improvement in comparison to the control with single feeding, when grown on 10-CW; meanwhile, nitrogen and phosphorus removal efficiencies rose to 86.8 ± 1.1% (p < 0.001) and 92.6 ± 0.2% (p < 0.001), respectively. The CO2-supplemented SW cultures (10.1 ± 0.4 g AFDW·m-2·d-1) were 1.20 times more productive than the corresponding controls without CO2 supplementation (p < 0.001); however, similar improvements were not observed in PW (p = 0.07) and 10-CW cultures (p = 0.07). Moreover, wastewater type and nutrient concentration influenced biomass composition (protein, carbohydrate and lipid). These findings indicate that the application of the macroalgae C. linum could represent an effective wastewater treatment alternative that could also provide a feedstock for downstream processing to biofuels.


Assuntos
Biomassa , Águas Residuárias , Biocombustíveis , Linho , Microalgas , Nitrogênio , Alga Marinha
12.
J Environ Manage ; 203(Pt 2): 753-759, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27639301

RESUMO

Solid Oxide Fuel Cells (SOFCs) perform well on light hydrocarbon fuels, and the use of biogas derived from the anaerobic digestion (AD) of municipal wastewater sludges could provide an opportunity for the CH4 produced to be used as a renewable fuel. Greenhouse gas (GHG), NOx, SOx, and hydrocarbon pollutant emissions would also be reduced. In this study, SOFCs were operated on AD derived biogas. Initially, different H2 dilutions were tested (N2, Ar, CO2) to examine the performance of tubular SOFCs. With inert gases as diluents, a decrease in cell performance was observed, however, the use of CO2 led to a higher decrease in performance as it promoted the reverse water-gas shift (WGS) reaction, reducing the H2 partial pressure in the gas mixture. A model was developed to predict system efficiency and GHG emissions. A higher electrical system efficiency was noted for a steam:carbon ratio of 2 compared to 1 due to the increased H2 partial pressure in the reformate resulting from higher H2O concentration. Reductions in GHG emissions were estimated at 2400 tonnes CO2, 60 kg CH4 and 18 kg N2O. SOFCs were also tested using a simulated biogas reformate mixture (66.7% H2, 16.1% CO, 16.5% CO2, 0.7% N2, humidified to 2.3 or 20 mol% H2O). Higher humidification yielded better performance as the WGS reaction produced more H2 with additional H2O. It was concluded that AD-derived biogas, when cleaned to remove H2S, Si compounds, halides and other contaminants, could be reformed to provide a clean, renewable fuel for SOFCs.


Assuntos
Biocombustíveis , Águas Residuárias , Efeito Estufa , Óxidos , Esgotos
13.
Water Sci Technol ; 75(1-2): 1-10, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28067640

RESUMO

Waste stabilization ponds (WSPs), as part of municipal wastewater treatment strategies, can exhibit variability in performance due to climatic conditions. Under elevated temperature and strong solar radiation, algal blooms and subsequent high pH effluents have often been observed. In this study, four substrates (gravel, peat, organic mulch, and topsoil) were evaluated for their ability to attenuate high pH effluents from a WSP. Synthetic wastewater with pH > 9.5, and low organic and nutrient loadings, was used to mimic algal-induced high pH effluents in 72 L rectangular bench-scale superficial constructed wetland configuration reactors. Peat exhibited the highest attenuation ability, where the effluent pH decreased substantially from 10.3 to 7.7, primarily due to its high organic contents. Peat also removed 53.7% of the influent total phosphorus, which could effectively limit algal growth. No statistically significant differences were discovered among gravel, topsoil, and organic mulch in terms of pH attenuation. Topsoil and organic mulch both have a relatively high alkalinity, making them ideal to maintain consistent pH levels. However, naturally high chemical oxygen demand levels in organic mulch raised concerns in the leaching of these compounds into the treated wastewater, making it less appealing for systems with low organic loading.


Assuntos
Eliminação de Resíduos Líquidos/métodos , Águas Residuárias , Purificação da Água , Áreas Alagadas , Análise da Demanda Biológica de Oxigênio , Concentração de Íons de Hidrogênio , Fósforo/análise , Projetos Piloto , Lagoas , Água , Poluição da Água/prevenção & controle
14.
Environ Sci Technol ; 50(14): 7896-903, 2016 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-27314988

RESUMO

There is a pressing need to develop efficient and sustainable approaches to harvesting microalgae for biofuel production and water treatment. CO2-switchable crystalline nanocellulose (CNC) modified with 1-(3-aminopropyl)imidazole (APIm) is proposed as a reversible coagulant for harvesting microalgae. Compared to native CNC, the positively charged APIm-modified CNC, which dispersed well in carbonated water, showed appreciable electrostatic interaction with negatively charged Chlorella vulgaris upon CO2-treatment. The gelation between the modified CNC, triggered by subsequent air sparging, can also enmesh adjacent microalgae and/or microalgae-modified CNC aggregates, thereby further enhancing harvesting efficiencies. Moreover, the surface charges and dispersion/gelation of APIm-modified CNC could be reversibly adjusted by alternatively sparging CO2/air. This CO2-switchability would make the reusability of redispersed CNC for further harvesting possible. After harvesting, the supernatant following sedimentation can be reused for microalgal cultivation without detrimental effects on cell growth. The use of this approach for harvesting microalgae presents an advantage to other current methods available because all materials involved, including the cellulose, CO2, and air, are natural and biocompatible without adverse effects on the downstream processing for biofuel production.


Assuntos
Biocombustíveis , Microalgas , Biomassa , Chlorella vulgaris , Água
15.
Biomacromolecules ; 16(7): 2040-8, 2015 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-26068280

RESUMO

Alginate-based amphiphilic graft copolymers were synthesized by single electron transfer living radical polymerization (SET-LRP), forming stable micelles during polymerization induced self-assembly (PISA). First, alginate macroinitiator was prepared by partial depolymerization of native alginate, solubility modification and attachment of initiator. Depolymerized low molecular weight alginate (∼12 000 g/mol) was modified with tetrabutylammonium, enabling miscibility in anhydrous organic solvents, followed by initiator attachment via esterification yielding a macroinitiator with a degree of substitution of 0.02, or 1-2 initiator groups per alginate chain. Then, methyl methacrylate was polymerized from the alginate macroinitiator in mixtures of water and methanol, forming poly(methyl methacrylate) grafts, prior to self-assembly, of ∼75 000 g/mol and polydispersity of 1.2. PISA of the amphiphilic graft-copolymer resulted in the formation of micelles with diameters of 50-300 nm characterized by light scattering and electron microscopy. As the first reported case of LRP from alginate, this work introduces a synthetic route to a preparation of alginate-based hybrid polymers with a precise macromolecular architecture and desired functionalities. The intended application is the preparation of micelles for drug delivery; however, LRP from alginate can also be applied in the field of biomaterials to the improvement of alginate-based hydrogel systems such as nano- and microhydrogel particles, islet encapsulation materials, hydrogel implants, and topical applications. Such modified alginates can also improve the function and application of native alginates in food and agricultural applications.


Assuntos
Alginatos/química , Materiais Biocompatíveis/síntese química , Metilmetacrilatos/síntese química , Materiais Biocompatíveis/química , Sistemas de Liberação de Medicamentos , Substâncias Macromoleculares/síntese química , Substâncias Macromoleculares/química , Metilmetacrilatos/química , Micelas , Estrutura Molecular
16.
Water Sci Technol ; 69(2): 443-50, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24473318

RESUMO

Co-digestion and pre-treatment have been recognized as effective, low-cost and commercially viable approaches to reduce anaerobic digestion process limitations and improve biogas yields. In our previous batch-scale study, fat, oil, and grease (FOG) was investigated as a suitable potential co-substrate, and thermo-chemical pre-treatment (TCPT) at pH = 10 and 55 °C improved CH4 production from FOG co-digestions. In this project, co-digestions with FOG were studied in bench-scale two-stage thermophilic semi-continuous flow co-digesters with suitable TCPT (pH = 10, 55 °C). Overall, a 25.14 ± 2.14 L/d (70.2 ± 1.4% CH4) biogas production was obtained, which was higher than in the two-stage system without pre-treatment. The results could provide valuable fundamental information to support full-scale investigations of anaerobic co-digestion of municipal organic wastes.


Assuntos
Reatores Biológicos/microbiologia , Anaerobiose , Eliminação de Resíduos/métodos , Esgotos/microbiologia
17.
Waste Manag Res ; 32(7): 586-600, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24980032

RESUMO

Sludge is a semi-solid residue produced from wastewater treatment processes. It contains biodegradable and recalcitrant organic compounds, as well as pathogens, heavy metals, and other inorganic constituents. Sludge can also be considered a source of nutrients and energy, which could be recovered using economically viable approaches. In the present paper, several commonly used sludge treatment processes including land application, composting, landfilling, anaerobic digestion, and combustion are reviewed, along with their potentials for energy and product recovery. In addition, some innovative thermo-chemical techniques in pyrolysis, gasification, liquefaction, and wet oxidation are briefly introduced. Finally, a brief summary of selected published works on the life cycle assessment of a variety of sludge treatment and end-use scenarios is presented in order to better understand the overall energy balance and environmental burdens associated with each sludge treatment pathway. In all scenarios investigated, the reuse of bioenergy and by-products has been shown to be of crucial importance in enhancing the overall energy efficiency and reducing the carbon footprint.


Assuntos
Recuperação e Remediação Ambiental/métodos , Esgotos/análise , Eliminação de Resíduos Líquidos/métodos , Biodegradação Ambiental , Esgotos/química
18.
Front Bioeng Biotechnol ; 12: 1338547, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38468686

RESUMO

In low-middle income countries (LMIC), wastewater treatment using native microalgal-bacterial consortia has emerged as a cost-effective and technologically-accessible remediation strategy. This study evaluated the effectiveness of six microalgal-bacterial consortia (MBC) from the Ecuadorian Amazon in removing organic matter and nutrients from non-sterilized domestic wastewater (NSWW) and sterilized domestic wastewater (SWW) samples. Microalgal-bacterial consortia growth, in NSWW was, on average, six times higher than in SWW. Removal rates (RR) for NH4 +- N and PO4 3--P were also higher in NSWW, averaging 8.04 ± 1.07 and 6.27 ± 0.66 mg L-1 d-1, respectively. However, the RR for NO3 - -N did not significantly differ between SWW and NSWW, and the RR for soluble COD slightly decreased under non-sterilized conditions (NSWW). Our results also show that NSWW and SWW samples were statistically different with respect to their nutrient concentration (NH4 +-N and PO4 3--P), organic matter content (total and soluble COD and BOD5), and physical-chemical parameters (pH, T, and EC). The enhanced growth performance of MBC in NSWW can be plausibly attributed to differences in nutrient and organic matter composition between NSWW and SWW. Additionally, a potential synergy between the autochthonous consortia present in NSWW and the native microalgal-bacterial consortia may contribute to this efficiency, contrasting with SWW where no active autochthonous consortia were observed. Finally, we also show that MBC from different localities exhibit clear differences in their ability to remove organic matter and nutrients from NSWW and SWW. Future research should focus on elucidating the taxonomic and functional profiles of microbial communities within the consortia, paving the way for a more comprehensive understanding of their potential applications in sustainable wastewater management.

19.
J Environ Manage ; 118: 11-20, 2013 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-23376342

RESUMO

The design of passive biological filters has evolved and current design practices are predominantly based on flow (either horizontal or vertical) through porous media. To date, no method has been developed to accurately estimate the effective life expectancy of these types of treatment systems, nor have non-intrusive methods to determine the extent of substratum clogging been perfected. This research presents the results of tracer studies on various stages of two hybrid-passive landfill leachate treatment systems: an aerated pretreatment system followed by two different types of vertical-flow through porous media treatment systems. The tracer studies were used to assess changes in the active volumes of the different stages of the leachate treatment systems over a 9-month period. An analytical method, employing the governing equations for flow through porous media, was used to quantify the changes in saturated hydraulic conductivity in the treatment system cells. The results from the analytical method were combined with the results from the tracer study to further the understanding of the flow and mixing within the treatment system cells.


Assuntos
Monitoramento Ambiental/métodos , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química , Filtração , Modelos Químicos , Ontário , Porosidade
20.
J Hazard Mater ; 445: 130448, 2023 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-36462239

RESUMO

In recent years, growing attention has been directed toward the phycoremediation of heavy metals from bodies of water; however, many challenges remain. The nitrogen requirements for algal growth in nutrient-poor waters can lead to substantial costs. Moreover, proper management of the metal-loaded biomass is a concern. This study assessed the performance of two nitrogen-fixing cyanobacteria, Anabaena sp. and Nostoc muscorum, in treating Pb(II)-contaminated water without nitrogen under batch and fed-batch modes, as well as the subsequent utilization of the produced biomass as a biofertilizer. After 12 days of the batch mode with initial Pb(II) concentrations of 10, 20, 35, and 60 mg/L, Pb(II) removal efficiencies were 98.90%, 98.95%, 97.20%, and 84.98% by Anabaena sp. and 88.00%, 73.10%, 54.54%, and 26.83% by N. muscorum, respectively. Anabaena sp. sustained growth and Pb(II) removal under the fed-batch mode by adjusting hydraulic retention time based on the influent Pb(II) concentration. Decontamination of the metal-loaded Anabaena sp. biomass was performed and resulted in a Pb(II) desorption of 93%. The desorbed Anabaena sp. extract provided the nutrient requirements for Chlorella vulgaris. The proposed strategy provides simultaneous Pb(II) bioremediation and biofertilizer production in a system driven by light energy, atmospheric N2, and CO2.


Assuntos
Anabaena , Chlorella vulgaris , Cianobactérias , Chumbo , Nitrogênio , Água , Biomassa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA