Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 18(40): e2203212, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36058651

RESUMO

Semiconductor chemiresistive gas sensors play critical roles in a smart and sustainable city where a safe and healthy environment is the foundation. However, the poor limits of detection and selectivity are the two bottleneck issues limiting their broad applications. Herein, a unique sensor design with a 3D tin oxide (SnO2 ) nanotube array as the sensing layer and platinum (Pt) nanocluster decoration as the catalytic layer, is demonstrated. The Pt/SnO2 sensor significantly enhances the sensitivity and selectivity of NO2 detection by strengthening the adsorption energy and lowering the activation energy toward NO2 . It not only leads to ultrahigh sensitivity to NO2 with a record limit of detection of 107 parts per trillion, but also enables selective NO2 sensing while suppressing the responses to interfering gases. Furthermore, a wireless sensor system integrated with sensors, a microcontroller, and a Bluetooth unit is developed for the practical indoor and on-road NO2 detection applications. The rational design of the sensors and their successful demonstration pave the way for future real-time gas monitoring in smart home and smart city applications.


Assuntos
Nanotubos , Platina , Gases , Dióxido de Nitrogênio , Óxidos , Temperatura
2.
Sci Adv ; 10(20): eadn1095, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38748790

RESUMO

Fiber light-emitting diodes (Fi-LEDs), which can be used for wearable lighting and display devices, are one of the key components for fiber/textile electronics. However, there exist a number of impediments to overcome on device fabrication with fiber-like substrates, as well as on device encapsulations. Here, we uniformly grew all-inorganic perovskite quantum wire arrays by filling high-density alumina nanopores on the surface of Al fibers with a dip-coating process. With a two-step evaporation method to coat a surrounding transporting layer and semitransparent electrode, we successfully fabricated full-color Fi-LEDs with emission peaks at 625 nanometers (red), 512 nanometers (green), and 490 nanometers (sky-blue), respectively. Intriguingly, additional polydimethylsiloxane packaging helps instill the mechanical bendability, stretchability, and waterproof feature of Fi-LEDs. The plasticity of Al fiber also allows the one-dimensional architecture Fi-LED to be shaped and constructed for two-dimensional or even three-dimensional architectures, opening up a new vista for advanced lighting with unconventional formfactors.

3.
Adv Mater ; 36(24): e2311106, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38388858

RESUMO

Electrochemical biosensors have emerged as one of the promising tools for tracking human body physiological dynamics via non-invasive perspiration analysis. However, it remains a key challenge to integrate multiplexed sensors in a highly controllable and reproducible manner to achieve long-term reliable biosensing, especially on flexible platforms. Herein, a fully inkjet printed and integrated multiplexed biosensing patch with remarkably high stability and sensitivity is reported for the first time. These desirable characteristics are enabled by the unique interpenetrating interface design and precise control over active materials mass loading, owing to the optimized ink formulations and droplet-assisted printing processes. The sensors deliver sensitivities of 313.28 µA mm-1 cm-2 for glucose and 0.87 µA mm-1 cm-2 for alcohol sensing with minimal drift over 30 h, which are among the best in the literature. The integrated patch can be used for reliable and wireless diet monitoring or medical intervention via epidermal analysis and would inspire the advances of wearable devices for intelligent healthcare applications.


Assuntos
Técnicas Biossensoriais , Glucose , Dispositivos Eletrônicos Vestíveis , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Glucose/análise , Humanos , Suor/química , Suor/metabolismo , Impressão , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , Etanol/análise
4.
Sci Robot ; 9(90): eadi8666, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38748782

RESUMO

Garnering inspiration from biological compound eyes, artificial vision systems boasting a vivid range of diverse visual functional traits have come to the fore recently. However, most of these artificial systems rely on transformable electronics, which suffer from the complexity and constrained geometry of global deformation, as well as potential mismatches between optical and detector units. Here, we present a unique pinhole compound eye that combines a three-dimensionally printed honeycomb optical structure with a hemispherical, all-solid-state, high-density perovskite nanowire photodetector array. The lens-free pinhole structure can be designed and fabricated with an arbitrary layout to match the underlying image sensor. Optical simulations and imaging results matched well with each other and substantiated the key characteristics and capabilities of our system, which include an ultrawide field of view, accurate target positioning, and motion tracking function. We further demonstrate the potential of our unique compound eye for advanced robotic vision by successfully completing a moving target tracking mission.

5.
Nat Commun ; 14(1): 1972, 2023 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-37031227

RESUMO

Spherical geometry, adaptive optics, and highly dense network of neurons bridging the eye with the visual cortex, are the primary features of human eyes which enable wide field-of-view (FoV), low aberration, excellent adaptivity, and preprocessing of perceived visual information. Therefore, fabricating spherical artificial eyes has garnered enormous scientific interest. However, fusing color vision, in-device preprocessing and optical adaptivity into spherical artificial eyes has always been a tremendous challenge. Herein, we demonstrate a bionic eye comprising tunable liquid crystal optics, and a hemispherical neuromorphic retina with filter-free color vision, enabled by wavelength dependent bidirectional synaptic photo-response in a metal-oxide nanotube/perovskite nanowire hybrid structure. Moreover, by tuning the color selectivity with bias, the device can reconstruct full color images. This work demonstrates a unique approach to address the color vision and optical adaptivity issues associated with artificial eyes that can bring them to a new level approaching their biological counterparts.


Assuntos
Visão de Cores , Nanofios , Próteses Visuais , Humanos , Retina/fisiologia , Óxidos
6.
ACS Nano ; 16(7): 10968-10978, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35797450

RESUMO

Real-time monitoring of health threatening gases for chemical safety and human health protection requires detection and discrimination of trace gases with proper gas sensors. In many applications, costly, bulky, and power-hungry devices, normally employing optical gas sensors and electrochemical gas sensors, are used for this purpose. Using a single miniature low-power semiconductor gas sensor to achieve this goal is hardly possible, mostly due to its selectivity issue. Herein, we report a dual-mode microheater integrated nanotube array gas sensor (MINA sensor). The MINA sensor can detect hydrogen, acetone, toluene, and formaldehyde with the lowest measured limits of detection (LODs) as 40 parts-per-trillion (ppt) and the theoretical LODs of ∼7 ppt, under the continuous heating (CH) mode, owing to the nanotubular architecture with large sensing area and excellent surface catalytic activity. Intriguingly, unlike the conventional electronic noses that use arrays of gas sensors for gas discrimination, we discovered that when driven by the pulse heating (PH) mode, a single MINA sensor possesses discrimination capability of multiple gases through a transient feature extraction method. These above features of our MINA sensors make them highly attractive for distributed low-power sensor networks and battery-powered mobile sensing systems for chemical/environmental safety and healthcare applications.


Assuntos
Gases , Nanotubos de Carbono , Humanos , Limite de Detecção , Nariz Eletrônico , Calefação
7.
Nanoscale Horiz ; 7(7): 759-769, 2022 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-35638535

RESUMO

Besides its ubiquitous applications in optoelectronics, halide-perovskites (HPs) have also carved a niche in the domain of resistive switching memories (Re-RAMs). However owing to the material and electrical instability challenges faced by HP thin-films, rarely perovskite Re-RAMs are used to experimentally demonstrate data processing which is a fundamental requirement for neuromorphic applications. Here, for the first time, lead-free, ultrahigh density HP nanowire (NW) array Re-RAM has been utilized to demonstrate image processing via design of convolutional kernels. The devices exhibited superior switching characteristics including a high endurance of 5 × 106 cycles, an ultra-fast erasing and writing speed of 900 ps and 2 ns, respectively, and a retention time >5 × 104 s for the resistances. The work is bolstered by an in-depth mechanistic study and first-principles simulations which provide evidence of electrochemical metallization triggering the switching. Employing the robust multi-level switching behaviour, image processing functions of embossing, outlining and sharpening were successfully implemented.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA