Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Mol Med ; 30(1): 73, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38822233

RESUMO

Human malignant pleural mesothelioma (hMPM) is an aggressive, rare disease with a poor prognosis. Histologically, MPM is categorized into epithelioid, biphasic, and sarcomatoid subtypes, with the epithelioid subtype generally displaying a better response to treatment. Conversely, effective therapies for the non-epithelioid subtypes are limited. This study aimed to investigate the potential role of FK228, a histone deacetylase inhibitor, in the suppression of hMPM tumor growth. We conducted a comprehensive analysis of the histological and molecular characteristics of two MPM cell lines, CRL-5820 (epithelioid) and CRL-5946 (non-epithelioid). CRL-5946 cells and non-epithelioid patient-derived xenografted mice exhibited heightened growth rates compared to those with epithelioid MPM. Both CRL-5946 cells and non-epithelioid mice displayed a poor response to cisplatin. However, FK228 markedly inhibited the growth of both epithelioid and non-epithelioid tumor cells in vitro and in vivo. Cell cycle analysis revealed FK228-induced G1/S and mitotic arrest in MPM cells. Caspase inhibitor experiments demonstrated that FK228-triggered apoptosis occurred via a caspase-dependent pathway in CRL-5946 but not in CRL-5820 cells. Additionally, a cytokine array analysis showed that FK228 reduced the release of growth factors, including platelet-derived and vascular endothelial growth factors, specifically in CRL-5946 cells. These results indicate that FK228 exhibits therapeutic potential in MPM by inducing cytotoxicity and modulating the tumor microenvironment, potentially benefiting both epithelioid and non-epithelioid subtypes.


Assuntos
Apoptose , Proliferação de Células , Depsipeptídeos , Mesotelioma Maligno , Mesotelioma , Ensaios Antitumorais Modelo de Xenoenxerto , Humanos , Animais , Mesotelioma Maligno/tratamento farmacológico , Mesotelioma Maligno/patologia , Linhagem Celular Tumoral , Camundongos , Mesotelioma/tratamento farmacológico , Mesotelioma/patologia , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Depsipeptídeos/farmacologia , Depsipeptídeos/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pleurais/tratamento farmacológico , Neoplasias Pleurais/patologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Feminino , Células Epitelioides/patologia , Ciclo Celular/efeitos dos fármacos
2.
Int J Mol Sci ; 24(8)2023 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-37108120

RESUMO

Despite the availability and use of numerous cholesterol-lowering drugs, atherosclerotic cardiovascular disease (ASCVD) remains the leading cause of mortality globally. Many researchers have focused their effort on identifying modified lipoproteins. However, lipid moieties such as lysophosphatidylcholine (LPC) and ceramide (CER) contribute to atherogenic events. LPC and CER both cause endothelial mitochondrial dysfunction, leading to fatty acid and triglyceride (TG) accumulation. In addition, they cause immune cells to differentiate into proinflammatory phenotypes. To uncover alternative therapeutic approaches other than cholesterol- and TG-lowering medications, we conducted untargeted lipidomic investigations to assess the alteration of lipid profiles in apolipoprotein E knockout (apoE-/-) mouse model, with or without feeding a high-fat diet (HFD). Results indicated that, in addition to hypercholesterolemia and hyperlipidemia, LPC levels were two to four times higher in apoE-/- mice compared to wild-type mice in C57BL/6 background, regardless of whether they were 8 or 16 weeks old. Sphingomyelin (SM) and CER were elevated three- to five-fold in apoE-/- mice both at the basal level and after 16 weeks when compared to wild-type mice. After HFD treatment, the difference in CER levels elevated more than ten-fold. Considering the atherogenic properties of LPC and CER, they may also contribute to the early onset of atherosclerosis in apoE-/- mice. In summary, the HFD-fed apoE-/- mouse shows elevated LPC and CER contents and is a suitable model for developing LPC- and CER-lowering therapies.


Assuntos
Aterosclerose , Lisofosfatidilcolinas , Camundongos , Animais , Camundongos Knockout , Ceramidas , Lipidômica , Camundongos Endogâmicos C57BL , Aterosclerose/genética , Triglicerídeos , Colesterol , Fatores de Risco , Apolipoproteínas E/genética , Apolipoproteínas
3.
J Formos Med Assoc ; 121(8): 1431-1441, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34732304

RESUMO

BACKGROUND/PURPOSE: Recent studies showed that Histone deacetylases 6 (HDAC6) inhibitors could improve arthritis in rheumatoid arthritis (RA) rodent models, whereas lower HDAC6 expression was observed in RA patients' synovial fibroblasts, raising the concerns to use HDAC6 inhibitors to treat RA patients. In the present study, we investigated the involvement of HDAC6 mRNA expression and promoter methylation in RA. METHODS: The DNA and RNAs were extracted from the peripheral blood mononuclear cells (PBMCs) from 138 RA patients and 102 healthy controls. The pyrosequencing technique was used for promoter methylation analysis. The quantitative real-time polymerase chain reaction was used to determine the HDAC6 mRNA expression. The patients' clinical characteristics and disease biomarkers were recorded when blood sampling. RESULTS: The HDAC6 mRNA expression was lower in the RA patients than controls (p = 0.001). The RA patients had significant hypomethylation of the HDAC6 promoter (p < 0.001). The HDAC6 promoter was hypo-methylated in the -229, -225, -144, and -142 CpG sites in RA patients (p < 0.05). Unexpectedly, promoter methylation and mRNA expression of the HDAC6 gene were positively associated (p < 0.001). The HDAC6 mRNA expression and promoter methylation status were associated with the risk of RA (p = 0.006 and 0.002, respectively). The inflammatory cytokines, TNF-α and IL-6, were significantly increased after HDAC6 knockdown in PMA-stimulated THP1 cells and SW982 cells (p < 0.05). CONCLUSION: The HDAC6 mRNA expression and promoter methylation were lower in RA patients. Both HDAC6 mRNA expression level and promoter hypomethylation were associated the susceptibility of RA. HDAC6 inhibitors seem not proper for RA patients' treatment.


Assuntos
Artrite Reumatoide , Desacetilase 6 de Histona , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/genética , Artrite Reumatoide/metabolismo , Metilação de DNA/genética , Predisposição Genética para Doença , Desacetilase 6 de Histona/genética , Desacetilase 6 de Histona/metabolismo , Humanos , Leucócitos Mononucleares/metabolismo , Regiões Promotoras Genéticas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
4.
J Lipid Res ; 62: 100001, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33410750

RESUMO

Adiponectin, an adipocyte-derived protein, has antiatherogenic and antidiabetic effects, but how it confers the atherogenic effects is not well known. To study the antiatherogenic mechanisms of adiponectin, we examined whether it interacts with atherogenic low density lipoprotein (LDL) to attenuate LDL's atherogenicity. L5, the most electronegative subfraction of LDL, induces atherogenic responses similarly to copper-oxidized LDL (oxLDL). Unlike the native LDL endocytosed via the LDL receptor, L5 and oxLDL are internalized by cells via the lectin-like oxidized LDL receptor-1 (LOX-1). Using enzyme-linked immunosorbent assays (ELISAs), we showed that adiponectin preferentially bound oxLDL but not native LDL. In Chinese hamster ovary (CHO) cells transfected with the LOX-1 or LDL receptor, adiponectin selectively inhibited the uptake of oxLDL but not of native LDL, respectively. Furthermore, adiponectin suppressed the internalization of oxLDL in human coronary artery endothelial cells (HCAECs) and THP-1-derived macrophages. Western blot analysis of human plasma showed that adiponectin was abundant in L5 but not in L1, the least electronegative subfraction of LDL. Sandwich ELISAs with anti-adiponectin and anti-apolipoprotein B antibodies confirmed the binding of adiponectin to L5 and oxLDL. In LOX-1-expressing CHO cells, adiponectin inhibited cellular responses to oxLDL and L5, including nuclear factor-κB activation and extracellular signal-regulated kinas phosphorylation. In HCAECs, adiponectin inhibited oxLDL-induced endothelin-1 secretion and extracellular signal-regulated kinase phosphorylation. Conversely, oxLDL suppressed the adiponectin-induced activation of adenosine monophosphate-activated protein kinase in COS-7 cells expressing adiponectin receptor AdipoR1. Our findings suggest that adiponectin binds and inactivates atherogenic LDL, providing novel insight into the antiatherogenic mechanisms of adiponectin.


Assuntos
Adiponectina
5.
FASEB J ; 34(7): 9802-9813, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32501643

RESUMO

Low-density lipoprotein (LDL) is heterogeneous, composed of particles with variable atherogenicity. Electronegative L5 LDL exhibits atherogenic properties in vitro and in vivo, and its levels are elevated in patients with increased cardiovascular risk. Apolipoprotein E (APOE) content is increased in L5, but what role APOE plays in L5 function remains unclear. Here, we characterized the contributions of APOE posttranslational modification to L5's atherogenicity. Using two-dimensional electrophoresis and liquid chromatography-mass spectrometry, we studied APOE's posttranslational modification in L5 from human plasma. APOE structures with various glycan residues were predicted. Molecular docking and molecular dynamics simulation were performed to examine the functional changes of APOE resulting from glycosylation. We also examined the effects of L5 deglycosylation on endothelial cell apoptosis. The glycan sequence N-acetylgalactosamine, galactose, and sialic acid was consistently expressed on serine 94, threonine 194, and threonine 289 of APOE in L5 and was predicted to contribute to L5's negative surface charge and hydrophilicity. The electrostatic force between the negatively charged sialic acid-containing glycan residue of APOE and positively charged amino acids at the receptor-binding area suggested that glycosylation interferes with APOE's attraction to receptors, lipid-binding ability, and lipid transportation and metabolism functions. Importantly, L5 containing glycosylated APOE induced apoptosis in cultured endothelial cells through lectin-like oxidized LDL receptor-1 (LOX-1) signaling, and glycosylation removal from L5 attenuated L5-induced apoptosis. APOE glycosylation may contribute to the atherogenicity of L5 and be a useful biomarker for rapidly quantifying L5.


Assuntos
Apolipoproteínas E/química , Aterosclerose/patologia , Células Endoteliais/patologia , Lipoproteínas LDL/efeitos adversos , Síndrome Metabólica/fisiopatologia , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Apolipoproteínas E/metabolismo , Apoptose , Aterosclerose/induzido quimicamente , Estudos de Casos e Controles , Células Cultivadas , Células Endoteliais/efeitos dos fármacos , Glicosilação , Humanos , Simulação de Acoplamento Molecular , Conformação Proteica , Transdução de Sinais
6.
J Clin Lab Anal ; 35(5): e23751, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33792986

RESUMO

Single nucleotide polymorphisms (SNPs) in the promoter region of CD209 (cluster of differentiation 209) may influence expression levels, and higher expression of CD209 on immune cells correlate with severity of cartilage destruction in patients with rheumatoid arthritis (RA). Due to the lack of a comprehensive study, this study aimed to investigate the CD209 promoter variants and haplotypes in a Taiwanese population and the association with RA development. Deoxyribonucleic acid (DNA) of peripheral blood mononuclear cells from 126 RA patients and 124 healthy controls was purified, and the CD209 gene promoter was amplified by polymerase chain reaction and analyzed by Sanger sequencing. Results showed that a novel variant -96C>A polymorphism in CD209 promoter was identified in the Taiwanese population, and the frequency was significantly higher in RA patients than in controls (11.51% vs. 2.42%, P < .0001). The odds ratio (OR) for the development of RA was 5.88 (95% CI 2.35-14.74, P < .0001). Other known variants were also evaluated; for instance, -1180 T/T (rs7359874) was increased in RA patients, and the OR for the development of RA was 3.26, 95% CI 0.85-12.52, P = .07). Besides, the haplotype frequencies were calculated; -1180A-939C-871 T-336 T-139 T-96A and -1180 T-939 T-871C-336 T-139C-96A were increased in RA patients (P = .004 and 0.05, respectively). In summary, CD209-96A variant could be an important factor for the development of RA in the Taiwanese population.


Assuntos
Artrite Reumatoide/genética , Moléculas de Adesão Celular/genética , Estudos de Associação Genética , Predisposição Genética para Doença , Lectinas Tipo C/genética , Polimorfismo de Nucleotídeo Único/genética , Receptores de Superfície Celular/genética , Alelos , Sequência de Bases , Estudos de Casos e Controles , Feminino , Frequência do Gene , Haplótipos/genética , Humanos , Desequilíbrio de Ligação/genética , Masculino , Pessoa de Meia-Idade , Regiões Promotoras Genéticas , Taiwan
7.
Blood ; 127(10): 1336-45, 2016 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-26679863

RESUMO

L5, the most electronegative and atherogenic subfraction of low-density lipoprotein (LDL), induces platelet activation. We hypothesized that plasma L5 levels are increased in acute ischemic stroke patients and examined whether lectin-like oxidized LDL receptor-1 (LOX-1), the receptor for L5 on endothelial cells and platelets, plays a critical role in stroke. Because amyloid ß (Aß) stimulates platelet aggregation, we studied whether L5 and Aß function synergistically to induce prothrombotic pathways leading to stroke. Levels of plasma L5, serum Aß, and platelet LOX-1 expression were significantly higher in acute ischemic stroke patients than in controls without metabolic syndrome (P < .01). In mice subjected to focal cerebral ischemia, L5 treatment resulted in larger infarction volumes than did phosphate-buffered saline treatment. Deficiency or neutralizing of LOX-1 reduced infarct volume up to threefold after focal cerebral ischemia in mice, illustrating the importance of LOX-1 in stroke injury. In human platelets, L5 but not L1 (the least electronegative LDL subfraction) induced Aß release via IκB kinase 2 (IKK2). Furthermore, L5+Aß synergistically induced glycoprotein IIb/IIIa receptor activation; phosphorylation of IKK2, IκBα, p65, and c-Jun N-terminal kinase 1; and platelet aggregation. These effects were blocked by inhibiting IKK2, LOX-1, or nuclear factor-κB (NF-κB). Injecting L5+Aß shortened tail-bleeding time by 50% (n = 12; P < .05 vs L1-injected mice), which was prevented by the IKK2 inhibitor. Our findings suggest that, through LOX-1, atherogenic L5 potentiates Aß-mediated platelet activation, platelet aggregation, and hemostasis via IKK2/NF-κB signaling. L5 elevation may be a risk factor for cerebral atherothrombosis, and downregulating LOX-1 and inhibiting IKK2 may be novel antithrombotic strategies.


Assuntos
Isquemia Encefálica/sangue , Lipoproteínas LDL/sangue , Agregação Plaquetária , Acidente Vascular Cerebral/sangue , Peptídeos beta-Amiloides/sangue , Animais , Isquemia Encefálica/patologia , Modelos Animais de Doenças , Feminino , Humanos , Quinase I-kappa B/metabolismo , Arteriosclerose Intracraniana/sangue , Arteriosclerose Intracraniana/patologia , Trombose Intracraniana/sangue , Trombose Intracraniana/patologia , Masculino , Camundongos , Camundongos Knockout , Receptores Depuradores Classe E/metabolismo , Transdução de Sinais , Acidente Vascular Cerebral/patologia
8.
J Lipid Res ; 57(8): 1435-46, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27256691

RESUMO

Dyslipidemia has been proven to capably develop and aggravate chronic kidney disease. We also report that electronegative LDL (L5) is the most atherogenic LDL. On the other hand, retinoic acid (RA) and RA receptor (RAR) agonist are reported to be beneficial in some kidney diseases. "Stimulated by retinoic acid 6" (STRA6), one retinol-binding protein 4 receptor, was recently identified to regulate retinoid homeostasis. Here, we observed that L5 suppressed STRA6 cascades [STRA6, cellular retinol-binding protein 1 (CRBP1), RARs, retinoid X receptor α, and retinol, RA], but L5 simultaneously induced apoptosis and fibrosis (TGFß1, Smad2, collagen 1, hydroxyproline, and trichrome) in kidneys of L5-injected mice and L5-treated renal tubular cells. These L5-induced changes of STRA6 cascades, renal apoptosis, and fibrosis were reversed in kidneys of LOX1(-/-) mice. LOX1 RNA silencing and inhibitor of c-Jun N-terminal kinase and p38MAPK rescued the suppression of STRA6 cascades and apoptosis and fibrosis in L5-treated renal tubular cells. Furthermore, crbp1 gene transfection reversed downregulation of STRA6 cascades, apoptosis, and fibrosis in L5-treated renal tubular cells. For mimicking STRA6 deficiency, efficient silencing of STRA6 RNA was performed and was found to repress STRA6 cascades and caused apoptosis and fibrosis in L1-treated renal tubular cells. In summary, this study reveals that electronegative L5 can cause kidney apoptosis and fibrosis via the suppression of STRA6 cascades, and implicates that STRA6 signaling may be involved in dyslipidemia-mediated kidney disease.


Assuntos
Apoptose , Rim/patologia , Lipoproteínas LDL/fisiologia , Proteínas de Membrana/metabolismo , Animais , Linhagem Celular , Dislipidemias/complicações , Dislipidemias/metabolismo , Fibrose , Humanos , Rim/metabolismo , Nefropatias/etiologia , Nefropatias/metabolismo , Sistema de Sinalização das MAP Quinases , Masculino , Camundongos Endogâmicos C57BL , Receptores Depuradores Classe E/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
9.
Acta Cardiol Sin ; 32(6): 667-675, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27899853

RESUMO

BACKGROUND: Significantly higher cytotoxic and thrombogenic human electronegative low-density lipoprotein (LDL), or L5, has been found in patients with stable coronary artery disease and acute coronary syndrome. We hypothesized that the statin-benefit groups (SBGs) defined by the new cholesterol guideline were of higher electronegative L5. METHODS: In total, 62 hyperlipidemia patients (mean age 59.4 ± 10.5, M/F 40/22) were retrospectively divided into SBGs (n = 44) and N-SBGs (n = 18). The levels of complete basic lipid panel, biochemical profile and electronegative L5 of each individual were obtained before and after rosuvastatin 10 mg/day for 3 months. RESULTS: After 3 months' statin therapy, significant reduction of total cholesterol, LDL-C and triglyceride were demonstrated (all p-values < 0.05), with 38.4% LDL-C reduction. The percentage of L5 was significantly reduced by 40.9% (from 4.4% to 2.6%) after statin therapy (p = 0.001). Regarding absolute L5 concentration, derived from L5% multiplied by LDL-C, there was approximate 63.8% reduction (from 6.3 mg/dL to 2.3 mg/dL) of absolute L5 (p < 0.001) after statin treatment. Notably, while plasma LDL-C levels were similar between SBGs and N-SBGs (152.8 ± 48.6 vs. 146.9 ± 35.0 mg/dL), the SBGs had significantly elevated L5% (5.2 ± 7.4% vs. 2.6 ± 1.9%, p = 0.031) and higher absolute L5 concentration (7.4 ± 10.4 vs. 3.7 ± 3.1 mg/dL, p = 0.036). Linear regression showed the significantly positive correlation between the plasma L5 concentration and the 10-year cardiovascular risk by pooled cohort equation (r = 0.297, p < 0.05). CONCLUSIONS: The four SBGs defined by the 2013 ACC/AHA new cholesterol guideline tend to have increased atherogenic electronegative L5. Statin therapy can effectively reduce the electronegative L5 of these four major SBGs.

10.
J Mol Cell Cardiol ; 84: 36-44, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25871829

RESUMO

Chronic kidney disease (CKD), an independent risk factor for cardiovascular disease, is associated with abnormal lipoprotein metabolism. We examined whether electronegative low-density lipoprotein (LDL) is mechanistically linked to cardiac dysfunction in patients with early CKD. We compared echocardiographic parameters between patients with stage 2 CKD (n = 88) and normal controls (n = 89) and found that impaired relaxation was more common in CKD patients. Reduction in estimated glomerular filtration rate was an independent predictor of left ventricular relaxation dysfunction. We then examined cardiac function in a rat model of early CKD induced by unilateral nephrectomy (UNx) by analyzing pressure-volume loop data. The time constant of isovolumic pressure decay was longer and the maximal velocity of pressure fall was slower in UNx rats than in controls. When we investigated the mechanisms underlying relaxation dysfunction, we found that LDL from CKD patients and UNx rats was more electronegative than LDL from their respective controls and that LDL from UNx rats induced intracellular calcium overload in H9c2 cardiomyocytes in vitro. Furthermore, chronic administration of electronegative LDL, which signals through lectin-like oxidized LDL receptor-1 (LOX-1), induced relaxation dysfunction in wild-type but not LOX-1(-/-) mice. In in vitro and in vivo experiments, impaired cardiac relaxation was associated with increased calcium transient resulting from nitric oxide (NO)-dependent nitrosylation of SERCA2a due to increases in inducible NO synthase expression and endothelial NO synthase uncoupling. In conclusion, LDL becomes more electronegative in early CKD. This change disrupts SERCA2a-regulated calcium homeostasis, which may be the mechanism underlying cardiorenal syndrome.


Assuntos
Cálcio/metabolismo , Homeostase , Lipoproteínas LDL/metabolismo , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/fisiopatologia , Adulto , Animais , Estudos de Casos e Controles , Demografia , Feminino , Fibrose , Coração , Humanos , Masculino , Camundongos Endogâmicos C57BL , Modelos Biológicos , Miócitos Cardíacos/metabolismo , Nefrectomia , Óxido Nítrico Sintase Tipo II/metabolismo , Nitrosação , Ratos Sprague-Dawley , Receptores de LDL Oxidado/metabolismo , Insuficiência Renal Crônica/diagnóstico por imagem , Sistema Renina-Angiotensina , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Ultrassonografia , Regulação para Cima , Vasodilatação , Proteínas tau/metabolismo
11.
Blood ; 122(22): 3632-41, 2013 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-24030386

RESUMO

Platelet activation and aggregation underlie acute thrombosis that leads to ST-elevation myocardial infarction (STEMI). L5-highly electronegative low-density lipoprotein (LDL)-is significantly elevated in patients with STEMI. Thus, we examined the role of L5 in thrombogenesis. Plasma LDL from patients with STEMI (n = 30) was chromatographically resolved into 5 subfractions (L1-L5) with increasing electronegativity. In vitro, L5 enhanced adenosine diphosphate-stimulated platelet aggregation twofold more than did L1 and induced platelet-endothelial cell (EC) adhesion. L5 also increased P-selectin expression and glycoprotein (GP)IIb/IIIa activation and decreased cyclic adenosine monophosphate levels (n = 6, P < .01) in platelets. In vivo, injection of L5 (5 mg/kg) into C57BL/6 mice twice weekly for 6 weeks shortened tail bleeding time by 43% (n = 3; P < .01 vs L1-injected mice) and increased P-selectin expression and GPIIb/IIIa activation in platelets. Pharmacologic blockade experiments revealed that L5 signals through platelet-activating factor receptor and lectin-like oxidized LDL receptor-1 to attenuate Akt activation and trigger granule release and GPIIb/IIIa activation via protein kinase C-α. L5 but not L1 induced tissue factor and P-selectin expression in human aortic ECs (P < .01), thereby triggering platelet activation and aggregation with activated ECs. These findings indicate that elevated plasma levels of L5 may promote thrombosis that leads to STEMI.


Assuntos
Lipoproteínas LDL/sangue , Infarto do Miocárdio/sangue , Ativação Plaquetária/fisiologia , Agregação Plaquetária/fisiologia , Animais , Estudos de Casos e Controles , AMP Cíclico/sangue , Eletroquímica , Células Endoteliais/fisiologia , Humanos , Lipoproteínas LDL/química , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infarto do Miocárdio/etiologia , Selectina-P/sangue , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Glicoproteínas da Membrana de Plaquetas/antagonistas & inibidores , Proteína Quinase C-alfa/sangue , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores Acoplados a Proteínas G/sangue , Receptores Depuradores Classe E/antagonistas & inibidores , Receptores Depuradores Classe E/sangue , Receptores Depuradores Classe E/deficiência , Receptores Depuradores Classe E/genética , Transdução de Sinais , Trombose/sangue , Trombose/etiologia
12.
Cardiovasc Diabetol ; 13: 64, 2014 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-24666525

RESUMO

BACKGROUND: Increased levels of the most electronegative type of LDL, L5, have been observed in the plasma of patients with metabolic syndrome (MetS) and ST-segment elevation myocardial infarction and can induce endothelial dysfunction. Because men have a higher predisposition to developing coronary artery disease than do premenopausal women, we hypothesized that LDL electronegativity is increased in men and promotes endothelial damage. METHODS: L5 levels were compared between middle-aged men and age-matched, premenopausal women with or without MetS. We further studied the effects of gender-influenced LDL electronegativity on aortic cellular senescence and DNA damage in leptin receptor-deficient (db/db) mice by using senescence-associated-ß-galactosidase and γH2AX staining, respectively. We also studied the protective effects of 17ß-estradiol and genistein against electronegative LDL-induced senescence in cultured bovine aortic endothelial cells (BAECs). RESULTS: L5 levels were higher in MetS patients than in healthy subjects (P < 0.001), particularly in men (P = 0.001). LDL isolated from male db/db mice was more electronegative than that from male or female wild-type mice. In addition, LDL from male db/db mice contained abundantly more apolipoprotein CIII and induced more BAEC senescence than did female db/db or wild-type LDL. In the aortas of db/db mice but not wild-type mice, we observed cellular senescence and DNA damage, and the effect was more significant in male than in female db/db mice. Pretreatment with 17ß-estradiol or genistein inhibited BAEC senescence induced by male or female db/db LDL and downregulated the expression of lectin-like oxidized LDL receptor-1 and tumor necrosis factor-alpha protein. CONCLUSION: The gender dichotomy of LDL-induced cardiovascular damage may underlie the increased propensity to coronary artery disease in men.


Assuntos
Aorta/efeitos dos fármacos , Aorta/patologia , Estrogênios/farmacologia , Lipoproteínas LDL/toxicidade , Caracteres Sexuais , Animais , Doenças Cardiovasculares/patologia , Doenças Cardiovasculares/prevenção & controle , Bovinos , Células Cultivadas , Dano ao DNA/efeitos dos fármacos , Dano ao DNA/fisiologia , Feminino , Humanos , Lipoproteínas LDL/biossíntese , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Técnicas de Cultura de Órgãos
13.
Int J Biol Macromol ; 250: 126069, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37536403

RESUMO

The fifth subfraction of low-density lipoprotein (L5 LDL) can be separated from human LDL using fast-protein liquid chromatography with an anion exchange column. L5 LDL induces vascular endothelial injury both in vitro and in vivo through the lectin-like oxidized LDL receptor-1 (LOX-1). However, no in vivo evidence shows the tendency of L5 LDL deposition on vascular endothelium and links to dysfunction. This study aimed to investigate L5 LDL retention in vivo using SPECT/CT imaging, with Iodine-131 (131I)-labeled and injected into six-month-old apolipoprotein E knockout (apoE-/-) mice through tail veins. Besides, we examined the biodistribution of L5 LDL in tissues and analyzed the intracellular trafficking in human aortic endothelial cells (HAoECs) by confocal microscopy. The impacts of L5 LDL on HAoECs were analyzed using electron microscopy for mitochondrial morphology and western blotting for signaling. Results showed 131I-labeled-L5 was preferentially deposited in the heart and vessels compared to L1 LDL. Furthermore, L5 LDL was co-localized with the mitochondria and associated with mitofusin (MFN1/2) and optic atrophy protein 1 (OPA1) downregulation, leading to mitochondrial fission. In summary, L5 LDL exhibits a propensity for subendothelial retention, thereby promoting endothelial dysfunction and the formation of atherosclerotic lesions.

14.
Apoptosis ; 17(9): 1009-18, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22562555

RESUMO

Cardiomyocyte apoptosis has a critical role in the pathogenesis of heart failure. L5, the most negatively charged subfraction of human plasma low-density lipoprotein (LDL), induces several atherogenic responses in endothelial cells (ECs), including apoptosis. We hypothesized that L5 also contributes to cardiomyocyte apoptosis and studied whether it does so indirectly by inducing the secretion of factors from ECs. We examined apoptosis of rat cardiomyocytes treated with culture-conditioned medium (CCM) of rat ECs that were exposed to L5 or L1 (the least negatively charged LDL subfraction). Apoptosis at early and late time points was twofold greater in cardiomyocytes treated with L5 CCM than in those treated with L1 CCM. The indirect effect of L5 on cardiomyocyte apoptosis was significantly reduced by pretreating ECs with inhibitors of phosphatidylinositol 3-kinase (PI3K) or CXC receptor 2 (CXCR2). Studies with cytokine protein arrays revealed that L5 CCM, but not L1 CCM, contained high levels of ELR(+) CXC chemokines, including lipopolysaccharide-induced chemokine (LIX) and interleukin (IL)-8. The L5-induced release of these chemokines from ECs was abolished by inhibiting the lectin-like oxidized LDL receptor-1 (LOX-1). Addition of recombinant LIX or IL-8 to CCM-free cardiomyocyte cultures increased apoptosis and enhanced production of tumor necrosis factor (TNF)-α and IL-1ß by increasing the translocation of NF-κB into the nucleus; these effects were attenuated by inhibiting PI3K and CXCR2. In conclusion, L5 may indirectly induce cardiomyocyte apoptosis by enhancing secretion of ELR(+) CXC chemokines from ECs, which in turn activate CXCR2/PI3K/NF-κB signaling to increase the release of TNF-α and IL-1ß.


Assuntos
Apoptose/efeitos dos fármacos , Quimiocina CXCL5/metabolismo , Interleucina-8/metabolismo , Lipoproteínas LDL/farmacologia , Miócitos Cardíacos/fisiologia , Transporte Ativo do Núcleo Celular , Animais , Células Cultivadas , Quimiocinas , Meios de Cultivo Condicionados , Células Endoteliais/metabolismo , Insuficiência Cardíaca , Interleucina-1beta/metabolismo , Masculino , Miócitos Cardíacos/citologia , NF-kappa B/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Transporte Proteico , Ratos , Ratos Sprague-Dawley , Receptores de Interleucina-8B/antagonistas & inibidores , Receptores de Interleucina-8B/metabolismo , Receptores Depuradores Classe E/antagonistas & inibidores , Receptores Depuradores Classe E/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo
15.
Pure Appl Chem ; 83(9)2011.
Artigo em Inglês | MEDLINE | ID: mdl-24198440

RESUMO

Anion-exchange chromatography resolves human plasma low-density lipoprotein (LDL) into 5 subfractions, with increasing negative surface charge in the direction of L1 to L5. Unlike the harmless L1 to L4, the exclusively atherogenic L5 is rejected by the normal LDL receptor (LDLR) but endocytosed into vascular endothelial cells through the lectin-like oxidized LDL receptor-1 (LOX-1). Analysis with SDS-PAGE and 2-dimensional electrophoresis showed that the protein framework of L1 was composed mainly of apolipoprotein (apo) B100, with an isoelectric point (pI) of 6.620. There was a progressively increased association of additional proteins, including apoE (pI 5.5), apoAI (pI 5.4), apoCIII (pI 5.1), and apo(a) (pI 5.5), from L1 to L5. LC/MSE was used to quantify protein distribution in all subfractions. On the basis of weight percentages, L1 contained 99% apoB-100 and trace amounts of other proteins. In contrast, L5 contained 60% apoB100 and substantially increased amounts of apo(a), apoE, apoAI, and apoCIII. The compositional characteristics contribute to L5's electronegativity, rendering it unrecognizable by LDLR. LOX-1, which has a high affinity for negatively charged ligands, is known to mediate the signaling of proinflammatory cytokines. Thus, the chemical composition-oriented receptor selectivity hinders normal metabolism of L5, enhancing its atherogenicity through abnormal receptors, such as LOX-1.

16.
Metabolism ; 113: 154403, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33065162

RESUMO

BACKGROUND: Retinol-binding protein 4 (RBP4) is elevated and associated with inflammation in metabolic diseases. Disruption of the retinol cascade and O-GlcNAcylation of the RBP4 receptor (STRA6) are found in diabetic kidneys. OBJECTIVES: We investigated whether the disruption of the retinol cascade induces RBP4 overproduction and if O-linked GlcNAc modification targets RBPR2 and contributes to the disruption of retinol cascades in diabetic livers. METHODS: Western blot or immunohistochemistry for RBPR2, CRBP1, LRAT, RALDH, RARα, RARγ, RXRα, RBP4, GFAT, OGT, OGA and inflammatory markers, as well as ELISA for RBP4, were performed in livers of db/db and ob/ob mice and high glucose-cultured hepatocytes. Immunoprecipitation and dual fluorescence staining were used to explore O-GlcNAc-modified RBPR2 and RBP4 binding activity on RBPR2. Transfection of the CRBP1 gene was done to verify whether a disrupted retinol cascade induces RBP4 overproduction. OGT silencing was done to investigate the association of O-GlcNAcylation with the disruption of retinol cascade. RESULTS: Disruption of retinol cascade, RBP4 overproduction, O-GlcNAcylation of RBPR2, decreased RBP4 binding activity on RBPR2 and inflammation were found in livers of db/db and ob/ob mice and high glucose-cultured hepatocytes. CRBP1 gene transfection reversed the suppression of the cellular retinol cascade and simultaneously attenuated the RBP4 overproduction and inflammation in high glucose-treated hepatocytes. The silencing of OGT reversed the disruption of the cellular retinol cascade, RBP4 overproduction and inflammation induced by high glucose in hepatocytes. CONCLUSIONS: This study indicates that the disruption of cellular retinol cascade is strongly associated with RBP4 overproduction and inflammation in diabetic livers. RBPR2 is one target for high glucose-mediated O-linked GlcNAc modification, which causes liver retinol dyshomeostasis.


Assuntos
Diabetes Mellitus/metabolismo , Homeostase , Proteínas Plasmáticas de Ligação ao Retinol/metabolismo , Vitamina A/metabolismo , Tecido Adiposo/metabolismo , Animais , Hepatite Animal/complicações , Hiperglicemia/complicações , Hiperlipidemias/complicações , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Celulares de Ligação ao Retinol/genética , Proteínas Plasmáticas de Ligação ao Retinol/genética , Transdução de Sinais
17.
Biomedicines ; 8(12)2020 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-33260304

RESUMO

Dysregulation of glucose and lipid metabolism increases plasma levels of lipoproteins and triglycerides, resulting in vascular endothelial damage. Remarkably, the oxidation of lipid and lipoprotein particles generates electronegative lipoproteins that mediate cellular deterioration of atherosclerosis. In this review, we examined the core of atherosclerotic plaque, which is enriched by byproducts of lipid metabolism and lipoproteins, such as oxidized low-density lipoproteins (oxLDL) and electronegative subfraction of LDL (LDL(-)). We also summarized the chemical properties, receptors, and molecular mechanisms of LDL(-). In combination with other well-known markers of inflammation, namely metabolic diseases, we concluded that LDL(-) can be used as a novel prognostic tool for these lipid disorders. In addition, through understanding the underlying pathophysiological molecular routes for endothelial dysfunction and inflammation, we may reassess current therapeutics and might gain a new direction to treat atherosclerotic cardiovascular diseases, mainly targeting LDL(-) clearance.

18.
Biomedicines ; 8(8)2020 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-32751498

RESUMO

Despite the numerous risk factors for atherosclerotic cardiovascular diseases (ASCVD), cumulative evidence shows that electronegative low-density lipoprotein (L5 LDL) cholesterol is a promising biomarker. Its toxicity may contribute to atherothrombotic events. Notably, plasma L5 LDL levels positively correlate with the increasing severity of cardiovascular diseases. In contrast, traditional markers such as LDL-cholesterol and triglyceride are the therapeutic goals in secondary prevention for ASCVD, but that is controversial in primary prevention for patients with low risk. In this review, we point out the clinical significance and pathophysiological mechanisms of L5 LDL, and the clinical applications of L5 LDL levels in ASCVD can be confidently addressed. Based on the previously defined cut-off value by receiver operating characteristic curve, the acceptable physiological range of L5 concentration is proposed to be below 1.7 mg/dL. When L5 LDL level surpass this threshold, clinically relevant ASCVD might be present, and further exams such as carotid intima-media thickness, pulse wave velocity, exercise stress test, or multidetector computed tomography are required. Notably, the ultimate goal of L5 LDL concentration is lower than 1.7 mg/dL. Instead, with L5 LDL greater than 1.7 mg/dL, lipid-lowering treatment may be required, including statin, ezetimibe or PCSK9 inhibitor, regardless of the low-density lipoprotein cholesterol (LDL-C) level. Since L5 LDL could be a promising biomarker, we propose that a high throughput, clinically feasible methodology is urgently required not only for conducting a prospective, large population study but for developing therapeutics strategies to decrease L5 LDL in the blood.

19.
Biomedicines ; 8(12)2020 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-33256187

RESUMO

High-density lipoprotein (HDL) plays a vital role in lipid metabolism and anti-inflammatory activities; a dysfunctional HDL impairs cholesterol efflux pathways. To understand HDL's role in patients with Alzheimer's disease (AD), we analyzed the chemical properties and function. HDL from AD patients (AD-HDL) was separated into five subfractions, H1-H5, using fast-protein liquid chromatography equipped with an anion-exchange column. Subfraction H5, defined as the most electronegative HDL, was increased 5.5-fold in AD-HDL (23.48 ± 17.83%) in comparison with the control HDL (4.24 ± 3.22%). By liquid chromatography mass spectrometry (LC/MSE), AD-HDL showed that the level of apolipoprotein (apo)CIII was elevated but sphingosine-1-phosphate (S1P)-associated apoM and anti-oxidative paraoxonase 1 (PON1) were reduced. AD-HDL showed a lower cholesterol efflux capacity that was associated with the post-translational oxidation of apoAI. Exposure of murine macrophage cell line, RAW 264.7, to AD-HDL induced a vibrant expression of ganglioside GM1 in colocalization with apoCIII on lipid rafts alongside a concomitant increase of tumor necrosis factor-α (TNF-α) detectable in the cultured medium. In conclusion, AD-HDL had a higher proportion of H5, an apoCIII-rich electronegative HDL subfraction. The associated increase in pro-inflammatory (apoCIII, TNF-α) components might favor Amyloid ß assembly and neural inflammation. A compromised cholesterol efflux capacity of AD-HDL may also contribute to cognitive impairment.

20.
J Diabetes Investig ; 11(3): 535-544, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31597015

RESUMO

AIMS/INTRODUCTION: Electronegative low-density lipoprotein (L5) is the most atherogenic fraction of low-density lipoprotein and is elevated in people with metabolic syndrome (MetS), whereas the retinol-binding protein 4 receptor (stimulated by retinoic acid 6 [STRA6]) cascade is disrupted in various organs of patients with obesity-related diseases. Our objective was to investigate whether L5 from MetS patients capably induces pathogenesis of aorta through disrupting the STRA6 cascade. MATERIAL AND METHODS: We examined the in vivo and in vitro effects of L5 on the STRA6 cascade and aortic atherogenic markers. To investigate the role of this cascade on atherosclerotic formation, crbp1 transfection was carried out in vitro. RESULTS: This study shows that L5 activates atherogenic markers (p38 mitogen-activated protein kinases, pSmad2 and matrix metallopeptidase 9) and simultaneously suppresses STRA6 signals (STRA6, cellular retinol-binding protein 1, lecithin-retinol acyltransferase, retinoic acid receptor-α and retinoid X receptor-α) in aortas of L5-injected mice and L5-treated human aortic endothelial cell lines and human aortic smooth muscle cell lines. These L5-induced changes of the STRA6 cascade and atherogenic markers were reversed in aortas of LOX1-/- mice and in LOX1 ribonucleic acid-silenced human aortic endothelial cell lines and human aortic smooth muscle cell lines. Furthermore, crbp1 gene transfection reversed the disruption of the STRA6 cascade, the phosphorylation of p38 mitogen-activated protein kinases and Smad2, and the elevation of matrix metallopeptidase 9 in L5-treated human aortic endothelial cell lines. CONCLUSIONS: This study shows that L5 from MetS patients induces atherogenic markers by disrupting STRA6 signaling. Suppression of STRA6 might be one novel pathogenesis of aorta in patients with MetS.


Assuntos
Doenças da Aorta/metabolismo , Doenças da Aorta/patologia , Lipoproteínas LDL/metabolismo , Proteínas de Membrana/metabolismo , Síndrome Metabólica/metabolismo , Animais , Doenças da Aorta/complicações , Células Cultivadas , Feminino , Humanos , Masculino , Síndrome Metabólica/complicações , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA