Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Mol Ther ; 22(3): 535-546, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24281246

RESUMO

Delivering neurotherapeutics to target brain-associated diseases is a major challenge. Therefore, we investigated oral delivery of green fluorescence protein (GFP) or myelin basic protein (MBP) fused with the transmucosal carrier cholera toxin B subunit (CTB), expressed in chloroplasts (bioencapsulated within plant cells) to the brain and retinae of triple transgenic Alzheimer's disease (3×TgAD) mice, across the blood-brain barriers (BBB) and blood-retinal barriers (BRB). Human neuroblastoma cells internalized GFP when incubated with CTB-GFP but not with GFP alone. Oral delivery of CTB-MBP in healthy and 3×TgAD mice shows increased MBP levels in different regions of the brain, crossing intact BBB. Thioflavin S-stained amyloid plaque intensity was reduced up to 60% by CTB-MBP incubation with human AD and 3×TgAD mice brain sections ex vivo. Amyloid loads were reduced in vivo by 70% in hippocampus and cortex brain regions of 3×TgAD mice fed with bioencapsulated CTB-MBP, along with reduction in the ratio of insoluble amyloid ß 42 (Aß42) to soluble fractions. CTB-MBP oral delivery reduced Aß42 accumulation in retinae and prevented loss of retinal ganglion cells in 3×TgAD mice. Lyophilization of leaves increased CTB-MBP concentration by 17-fold and stabilized it during long-term storage in capsules, facilitating low-cost oral delivery of therapeutic proteins across the BBB and BRB.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Barreira Hematoencefálica/metabolismo , Barreira Hematorretiniana/metabolismo , Cloroplastos/metabolismo , Toxina da Cólera/metabolismo , Proteína Básica da Mielina/metabolismo , Placa Amiloide/tratamento farmacológico , Administração Oral , Doença de Alzheimer/patologia , Animais , Cápsulas , Linhagem Celular Tumoral , Toxina da Cólera/genética , Modelos Animais de Doenças , Feminino , Humanos , Técnicas In Vitro , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteína Básica da Mielina/genética , Folhas de Planta/citologia , Placa Amiloide/patologia , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
2.
Hum Mol Genet ; 21(5): 963-77, 2012 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-22045699

RESUMO

Endoplasmic reticulum (ER) stress has been implicated as an initiator or contributing factor in neurodegenerative diseases. The mechanisms that lead to ER stress and whereby ER stress contributes to the degenerative cascades remain unclear but their understanding is critical to devising effective therapies. Here we show that knockdown of Herp (Homocysteine-inducible ER stress protein), an ER stress-inducible protein with an ubiquitin-like (UBL) domain, aggravates ER stress-mediated cell death induced by mutant α-synuclein (αSyn) that causes an inherited form of Parkinson's disease (PD). Functionally, Herp plays a role in maintaining ER homeostasis by facilitating proteasome-mediated degradation of ER-resident Ca(2+) release channels. Deletion of the UBL domain or pharmacological inhibition of proteasomes abolishes the Herp-mediated stabilization of ER Ca(2+) homeostasis. Furthermore, knockdown or pharmacological inhibition of ER Ca(2+) release channels ameliorates ER stress, suggesting that impaired homeostatic regulation of Ca(2+) channels promotes a protracted ER stress with the consequent activation of ER stress-associated apoptotic pathways. Interestingly, sustained upregulation of ER stress markers and aberrant accumulation of ER Ca(2+) release channels were detected in transgenic mutant A53T-αSyn mice. Collectively, these data establish a causative link between impaired ER Ca(2+) homeostasis and chronic ER stress in the degenerative cascades induced by mutant αSyn and suggest that Herp is essential for the resolution of ER stress through maintenance of ER Ca(2+) homeostasis. Our findings suggest a therapeutic potential in PD for agents that increase Herp levels or its ER Ca(2+)-stabilizing action.


Assuntos
Cálcio/metabolismo , Retículo Endoplasmático/fisiologia , Proteínas de Membrana/metabolismo , Estresse Fisiológico , alfa-Sinucleína/metabolismo , Animais , Canais de Cálcio/metabolismo , Morte Celular , Degradação Associada com o Retículo Endoplasmático , Células HEK293 , Homeostase , Humanos , Receptores de Inositol 1,4,5-Trifosfato/genética , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Proteínas de Membrana/genética , Camundongos , Camundongos Transgênicos , Proteínas Mutantes/metabolismo , Células PC12 , Interferência de RNA , Ratos , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , alfa-Sinucleína/genética
3.
Hum Mol Genet ; 20(4): 659-69, 2011 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-21106706

RESUMO

Huntington's disease (HD) is an inherited neurodegenerative disorder caused by expanded polyglutamine repeats in the huntingtin (Htt) protein. Mutant Htt may damage and kill striatal neurons by a mechanism involving reduced production of brain-derived neurotrophic factor (BDNF) and increased oxidative and metabolic stress. Because electroconvulsive shock (ECS) can stimulate the production of BDNF and protect neurons against stress, we determined whether ECS treatment would modify the disease process and provide a therapeutic benefit in a mouse model of HD. ECS (50 mA for 0.2 s) or sham treatment was administered once weekly to male N171-82Q Htt mutant mice beginning at 2 months of age. Endpoints measured included motor function, striatal and cortical pathology, and levels of protein chaperones and BDNF. ECS treatment delayed the onset of motor symptoms and body weight loss and extended the survival of HD mice. Striatal neurodegeneration was attenuated and levels of protein chaperones (Hsp70 and Hsp40) and BDNF were elevated in striatal neurons of ECS-treated compared with sham-treated HD mice. Our findings demonstrate that ECS can increase the resistance of neurons to mutant Htt resulting in improved functional outcome and extended survival. The potential of ECS as an intervention in subjects that inherit the mutant Htt gene merits further consideration.


Assuntos
Progressão da Doença , Eletrochoque , Doença de Huntington/patologia , Doença de Huntington/terapia , Mutação/genética , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Modelos Animais de Doenças , Regulação da Expressão Gênica , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Doença de Huntington/genética , Masculino , Camundongos , Camundongos Transgênicos , Degeneração Neural/genética , Degeneração Neural/metabolismo , Degeneração Neural/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Transdução de Sinais , Análise de Sobrevida
4.
Nat Med ; 12(6): 621-3, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16680150

RESUMO

Mice transgenic for antisense Notch and normal mice treated with inhibitors of the Notch-activating enzyme gamma-secretase showed reduced damage to brain cells and improved functional outcome in a model of focal ischemic stroke. Notch endangers neurons by modulating pathways that increase their vulnerability to apoptosis, and by activating microglial cells and stimulating the infiltration of proinflammatory leukocytes. These findings suggest that Notch signaling may be a therapeutic target for treatment of stroke and related neurodegenerative conditions.


Assuntos
Isquemia Encefálica/patologia , Encéfalo/patologia , Endopeptidases/metabolismo , Receptor Notch1/metabolismo , Transdução de Sinais/fisiologia , Acidente Vascular Cerebral/patologia , Secretases da Proteína Precursora do Amiloide , Animais , Apoptose , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Ácido Aspártico Endopeptidases/genética , Ácido Aspártico Endopeptidases/metabolismo , Encéfalo/citologia , Encéfalo/metabolismo , Isquemia Encefálica/metabolismo , Isquemia Encefálica/terapia , Células Cultivadas , Endopeptidases/genética , Inibidores Enzimáticos/metabolismo , Humanos , Leucócitos/metabolismo , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Microglia/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Peptídeos/genética , Peptídeos/metabolismo , Ratos , Receptor Notch1/genética , Traumatismo por Reperfusão , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/terapia , Resultado do Tratamento
5.
J Neurochem ; 122(2): 321-32, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22494053

RESUMO

Intravenous immunoglobulin (IVIg) preparations obtained by fractionating blood plasma, are increasingly being used increasingly as an effective therapeutic agent in treatment of several inflammatory diseases. Its use as a potential therapeutic agent for treatment of stroke and Alzheimer's disease has been proposed, but little is known about the neuroprotective mechanisms of IVIg. In this study, we investigated the effect of IVIg on downstream signaling pathways that are involved in neuronal cell death in experimental models of stroke and Alzheimer's disease. Treatment of cultured neurons with IVIg reduced simulated ischemia- and amyloid ßpeptide (Aß)-induced caspase 3 cleavage, and phosphorylation of the cell death-associated kinases p38MAPK, c-Jun NH2 -terminal kinase and p65, in vitro. Additionally, Aß-induced accumulation of the lipid peroxidation product 4-hydroxynonenal was attenuated in neurons treated with IVIg. IVIg treatment also up-regulated the anti-apoptotic protein, Bcl2 in cortical neurons under ischemia-like conditions and exposure to Aß. Treatment of mice with IVIg reduced neuronal cell loss, apoptosis and infarct size, and improved functional outcome in a model of focal ischemic stroke. Together, these results indicate that IVIg acts directly on neurons to protect them against ischemic stroke and Aß-induced neuronal apoptosis by inhibiting cell death pathways and by elevating levels of the anti-apoptotic protein Bcl2.


Assuntos
Peptídeos beta-Amiloides/antagonistas & inibidores , Peptídeos beta-Amiloides/toxicidade , Isquemia Encefálica/prevenção & controle , Morte Celular/efeitos dos fármacos , Imunoglobulinas Intravenosas/farmacologia , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores , Transdução de Sinais/efeitos dos fármacos , Acidente Vascular Cerebral/prevenção & controle , Peptídeos beta-Amiloides/farmacologia , Animais , Western Blotting , Isquemia Encefálica/patologia , Mapeamento Encefálico , Hipóxia Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Glucose/deficiência , Imuno-Histoquímica , Marcação In Situ das Extremidades Cortadas , Infarto da Artéria Cerebral Média/patologia , Imageamento por Ressonância Magnética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fragmentos de Peptídeos/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/biossíntese , Acidente Vascular Cerebral/patologia , Resultado do Tratamento , Regulação para Cima
6.
Acta Neurochir Suppl ; 113: 59-64, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22116425

RESUMO

Acetazolamide (AZA), used in treatment of early or infantile hydrocephalus, is effective in some cases, while its effect on the choroid plexus (CP) remains ill-defined. The drug reversibly inhibits aquaporin-4 (AQP4), the most ubiquitous "water pore" in the brain, and perhaps modulation of AQP1 (located apically on CP cells) by AZA may reduce cerebrospinal fluid (CSF) production. We sought to elucidate the effect of AZA on AQP1 and fluid flow in CP cell cultures.CP tissue culture from 10-day Sprague-Dawley rats and a TRCSF-B cell line were grown on Transwell permeable supports and treated with 100 µM AZA. Fluid assays to assess direction and extent of fluid flow, and AQP1 expression patterns by immunoblot, Immuncytochemistry (ICC), and quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) were performed.Immunoblots and ICC analyses showed a decrease in AQP1 protein shortly after AZA treatment (lowest at 12 h), with transient AQP1 reduction mediated by mRNA expression (lowest at 6 h). Transwell fluid assays indicated a fluid shift at 2 h, before significant changes in AQP1 mRNA or protein levels.Timing of AZA effect on AQP1 suggests the drug alters protein transcription, while affecting fluid flow by a concomitant method. It is plausible that other mechanisms account for these phenomena, as the processes may occur independently.


Assuntos
Acetazolamida/farmacologia , Aquaporina 1/metabolismo , Inibidores da Anidrase Carbônica/farmacologia , Plexo Corióideo/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Permeabilidade Capilar/efeitos dos fármacos , Plexo Corióideo/metabolismo , Dextranos , Hidrodinâmica , Técnicas de Cultura de Órgãos , RNA Mensageiro/metabolismo , Ratos , Rodaminas , Fatores de Tempo
7.
Mol Pharmacol ; 80(1): 23-31, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21450930

RESUMO

Notch-1 (Notch) is a cell surface receptor that regulates cell-fate decisions in the developing nervous system, and it may also have roles in synaptic plasticity in the adult brain. Binding of its ligands results in the proteolytic cleavage of Notch by the γ-secretase enzyme complex, thereby causing the release of a Notch intracellular domain (NICD) that translocates to the nucleus, in which it regulates transcription. Here we show that activation of Notch modulates ischemic neuronal cell death in vitro and in vivo. Specifically, our findings from the use of Notch-1 siRNA or the overexpression of NICD indicate that Notch activation contributes to cell death. Using modified NICD, we demonstrate an apoptosis-inducing function of NICD in both the nucleus and the cytosol. NICD transfection-induced cell death was reduced by blockade of calcium signaling, caspase activation, and Janus kinase signaling. Inhibition of the Notch-activating enzyme, γ-secretase, protected against ischemic neuronal cell death by targeting an apoptotic protease, cleaved caspase-3, nuclear factor-κB (NF-κB), and the pro-death BH3-only protein, Bcl-2-interacting mediator of cell death (Bim). Treatment of mice with a γ-secretase inhibitor, compound E, reduced infarct size and improved functional outcome in a model of focal ischemic stroke. Furthermore, γ-secretase inhibition reduced NICD, p-p65, and Bim levels in vivo. These findings suggest that Notch signaling endangers neurons after ischemic stroke by modulating the NF-κB, pro-death protein Bim, and caspase pathways.


Assuntos
Secretases da Proteína Precursora do Amiloide/metabolismo , Isquemia Encefálica/patologia , Morte Celular/fisiologia , NF-kappa B/metabolismo , Neurônios/citologia , Proteínas Proto-Oncogênicas c-bcl-2/fisiologia , Receptores Notch/metabolismo , Transdução de Sinais , Acidente Vascular Cerebral/patologia , Animais , Isquemia Encefálica/enzimologia , Isquemia Encefálica/metabolismo , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Inibidores Enzimáticos/farmacologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Ratos Sprague-Dawley , Acidente Vascular Cerebral/enzimologia , Acidente Vascular Cerebral/metabolismo
8.
J Biol Chem ; 285(9): 6811-25, 2010 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-20038578

RESUMO

The Notch signaling pathway plays an essential role in the regulation of cell specification by controlling differentiation, proliferation, and apoptosis. Numb is an intrinsic regulator of the Notch pathway and exists in four alternative splice variants that differ in the length of their phosphotyrosine-binding domain (PTB) and proline-rich region domains. The physiological relevance of the existence of the Numb splice variants and their exact regulation are still poorly understood. We previously reported that Numb switches from isoforms containing the insertion in PTB to isoforms lacking this insertion in neuronal cells subjected to trophic factor withdrawal (TFW). The functional relevance of the TFW-induced switch in Numb isoforms is not known. Here we provide evidence that the TFW-induced switch in Numb isoforms regulates Notch signaling strength and Notch target gene expression. PC12 cells stably overexpressing Numb isoforms lacking the PTB insertion exhibited higher basal Notch activity and Notch-dependent transcription of the transient receptor potential channel 6 (TRPC6) when compared with those overexpressing Numb isoforms with the PTB insertion. The differential regulation of TRPC6 expression is correlated with perturbed calcium signaling and increased neuronal vulnerability to TFW-induced death. Pharmacological inhibition of the Notch pathway or knockdown of TRPC6 function ameliorates the adverse effects caused by the TFW-induced switch in Numb isoforms. Taken together, our results indicate that Notch and Numb interaction may influence the sensitivity of neuronal cells to injurious stimuli by modulating calcium-dependent apoptotic signaling cascades.


Assuntos
Proteínas de Membrana/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Receptores Notch/metabolismo , Canais de Cátion TRPC/genética , Animais , Sinalização do Cálcio , Morte Celular , Humanos , Neurônios/metabolismo , Células PC12 , Isoformas de Proteínas , Ratos , Transdução de Sinais , Estresse Fisiológico , Regulação para Cima/genética
9.
Stroke ; 42(9): 2589-94, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21737799

RESUMO

BACKGROUND AND PURPOSE: Activation of Notch worsens ischemic brain damage as antisense knockdown or pharmacological inhibition of the Notch pathway reduces the infarct size and improves the functional outcome in a mouse model of stroke. We sought to determine whether Notch activation contributes to postischemic inflammation by directly modulating the microglial innate response. METHODS: The microglial response and the attendant inflammatory reaction were evaluated in Notch1 antisense transgenic (Tg) and in nontransgenic (non-Tg) mice subjected to middle cerebral artery occlusion with or without treatment with a γ-secretase inhibitor (GSI). To investigate the impact of Notch on microglial effector functions, primary mouse microglia and murine BV-2 microglial cell line were exposed to oxygen glucose deprivation or lipopolysaccharide in the presence or absence of GSI. Immunofluorescence labeling, Western blotting, and reverse-transcription polymerase chain reaction were performed to measure microglial activation and production of inflammatory cytokines. The nuclear translocation of nuclear factor-κB in microglia was assessed by immunohistochemistry. The neurotoxic potential of microglia was determined in cocultures. RESULTS: Notch1 antisense mice exhibit significantly lower numbers of activated microglia and reduced proinflammatory cytokine expression in the ipsilateral ischemic cortices compared to non-Tg mice. Microglial activation also was attenuated in Notch1 antisense cultures and in non-Tg cultures treated with GSI. GSI significantly reduced nuclear factor-κB activation and expression of proinflammatory mediators and markedly attenuated the neurotoxic activity of microglia in cocultures. CONCLUSIONS: These findings establish a role for Notch signaling in modulating the microglia innate response and suggest that inhibition of Notch might represent a complementary therapeutic approach to prevent reactive gliosis in stroke and neuroinflammation-related degenerative disorders.


Assuntos
Isquemia Encefálica/metabolismo , Núcleo Celular/metabolismo , Gliose/metabolismo , Microglia/metabolismo , Receptor Notch1/metabolismo , Transporte Ativo do Núcleo Celular/genética , Transporte Ativo do Núcleo Celular/imunologia , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Secretases da Proteína Precursora do Amiloide/genética , Secretases da Proteína Precursora do Amiloide/imunologia , Secretases da Proteína Precursora do Amiloide/metabolismo , Animais , Isquemia Encefálica/genética , Isquemia Encefálica/imunologia , Isquemia Encefálica/patologia , Isquemia Encefálica/terapia , Linhagem Celular , Núcleo Celular/genética , Núcleo Celular/imunologia , Técnicas de Cocultura , Citocinas/biossíntese , Citocinas/genética , Citocinas/imunologia , Regulação da Expressão Gênica/genética , Regulação da Expressão Gênica/imunologia , Gliose/genética , Gliose/imunologia , Gliose/patologia , Gliose/terapia , Imunidade Inata/genética , Imunidade Inata/imunologia , Inflamação/genética , Inflamação/imunologia , Inflamação/metabolismo , Inflamação/patologia , Inflamação/terapia , Mediadores da Inflamação/imunologia , Mediadores da Inflamação/metabolismo , Camundongos , Camundongos Transgênicos , Microglia/imunologia , Microglia/patologia , NF-kappa B/genética , NF-kappa B/imunologia , NF-kappa B/metabolismo , Oligopeptídeos/farmacologia , Receptor Notch1/antagonistas & inibidores , Receptor Notch1/genética , Receptor Notch1/imunologia
10.
J Gerontol A Biol Sci Med Sci ; 76(1): 23-31, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32154567

RESUMO

The accumulation of amyloid-ß (Aß) is a characteristic event in the pathogenesis of Alzheimer's disease (AD). Aquaporin 1 (AQP1) is a membrane water channel protein belonging to the AQP family. AQP1 levels are elevated in the cerebral cortex during the early stages of AD, but the role of AQP1 in AD pathogenesis is unclear. We first determined the expression and distribution of AQP1 in brain tissue samples of AD patients and two AD mouse models (3xTg-AD and 5xFAD). AQP1 accumulation was observed in vulnerable neurons in the cerebral cortex of AD patients, and in neurons affected by the Aß or tau pathology in the 3xTg-AD and 5xFAD mice. AQP1 levels increased in neurons as aging progressed in the AD mouse models. Stress stimuli increased AQP1 in primary cortical neurons. In response to cellular stress, AQP1 appeared to translocate to endocytic compartments of ß- and γ-secretase activities. Ectopic expression of AQP1 in human neuroblastoma cells overexpressing amyloid precussir protein (APP) with the Swedish mutations reduced ß-secretase (BACE1)-mediated cleavage of APP and reduced Aß production without altering the nonamyloidogenic pathway. Conversely, knockdown of AQP1 enhanced BACE1 activity and Aß production. Immunoprecipitation experiments showed that AQP1 decreased the association of BACE1 with APP. Analysis of a human database showed that the amount of Aß decreases as the expression of AQP1 increases. These results suggest that the upregulation of AQP1 is an adaptive response of neurons to stress that reduces Aß production by inhibiting the binding between BACE1 and APP.


Assuntos
Secretases da Proteína Precursora do Amiloide/fisiologia , Precursor de Proteína beta-Amiloide/fisiologia , Amiloide/biossíntese , Aquaporina 1/fisiologia , Doença de Alzheimer/metabolismo , Animais , Aquaporina 1/metabolismo , Modelos Animais de Doenças , Humanos , Camundongos , Neurônios/metabolismo
11.
J Biol Chem ; 284(27): 18323-33, 2009 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-19447887

RESUMO

The endoplasmic reticulum (ER) is a key organelle regulating intracellular Ca(2+) homeostasis. Oxidants and mitochondria-derived free radicals can target ER-based Ca(2+) regulatory proteins and cause uncontrolled Ca(2+) release that may contribute to protracted ER stress and apoptosis. Several ER stress proteins have been suggested to counteract the deregulation of ER Ca(2+) homeostasis and ER stress. Here we showed that knockdown of Herp, an ubiquitin-like domain containing ER stress protein, renders PC12 and MN9D cells vulnerable to 1-methyl-4-phenylpyridinium-induced cytotoxic cell death by a mechanism involving up-regulation of CHOP expression and ER Ca(2+) depletion. Conversely, Herp overexpression confers protection by blocking 1-methyl-4-phenylpyridinium-induced CHOP up-regulation, ER Ca(2+) store depletion, and mitochondrial Ca(2+) accumulation in a manner dependent on a functional ubiquitin-proteasomal protein degradation pathway. Deletion of the ubiquitin-like domain of Herp or treatment with a proteasomal inhibitor abolished the central function of Herp in ER Ca(2+) homeostasis. Thus, elucidating the underlying molecular mechanism(s) whereby Herp counteracts Ca(2+) disturbances will provide insights into the molecular cascade of cell death in dopaminergic neurons and may uncover novel therapeutic strategies to prevent and ameliorate Parkinson disease progression.


Assuntos
1-Metil-4-fenilpiridínio/toxicidade , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Cálcio/metabolismo , Intoxicação por MPTP/fisiopatologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Neurônios/fisiologia , Animais , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Retículo Endoplasmático/metabolismo , Homeostase/fisiologia , Humanos , Intoxicação por MPTP/metabolismo , Intoxicação por MPTP/patologia , Proteínas de Membrana/química , Camundongos , Neurônios/citologia , Células PC12 , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , RNA Interferente Pequeno , Ratos , Estresse Fisiológico/fisiologia , Fator de Transcrição CHOP/genética , Fator de Transcrição CHOP/metabolismo , Transfecção , Ubiquitina/metabolismo
12.
Neuron ; 41(4): 549-61, 2004 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-14980204

RESUMO

Increasing evidence indicates that neurodegeneration involves the activation of the cell cycle machinery in postmitotic neurons. However, the purpose of these cell cycle-associated events in neuronal apoptosis remains unknown. Here we tested the hypothesis that cell cycle activation is a critical component of the DNA damage response in postmitotic neurons. Different genotoxic compounds (etoposide, methotrexate, and homocysteine) induced apoptosis accompanied by cell cycle reentry of terminally differentiated cortical neurons. In contrast, apoptosis initiated by stimuli that do not target DNA (staurosporine and colchicine) did not initiate cell cycle activation. Suppression of the function of ataxia telangiectasia mutated (ATM), a proximal component of DNA damage-induced cell cycle checkpoint pathways, attenuated both apoptosis and cell cycle reentry triggered by DNA damage but did not change the fate of neurons exposed to staurosporine and colchicine. Our data suggest that cell cycle activation is a critical element of the DNA damage response of postmitotic neurons leading to apoptosis.


Assuntos
Apoptose/genética , Ciclo Celular/genética , Dano ao DNA/genética , Degeneração Neural/genética , Neurônios/metabolismo , Animais , Apoptose/efeitos dos fármacos , Proteínas Mutadas de Ataxia Telangiectasia , Ciclo Celular/efeitos dos fármacos , Proteínas de Ciclo Celular , Células Cultivadas , Colchicina/farmacologia , Dano ao DNA/efeitos dos fármacos , Proteínas de Ligação a DNA , Etoposídeo/farmacologia , Feminino , Homocisteína/farmacologia , Masculino , Metotrexato/farmacologia , Camundongos , Degeneração Neural/metabolismo , Neurônios/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , Ratos , Estaurosporina/farmacologia , Proteínas Supressoras de Tumor
13.
Brain Res ; 1131(1): 112-7, 2007 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-17157827

RESUMO

Cleavage of the beta-amyloid precursor protein (APP) by alpha-secretase releases a secreted form of APP (sAPP) from cells. sAPP is released from neurons in an activity-dependent manner and is believed to play roles in synaptic plasticity and neuroprotection. We determined whether sAPP modulates electrophysiological and cerebrovascular processes in vivo. The effects of recombinant sAPP, applied by intracerebroventricular infusion, on hippocampal and cortical electroencephalographic (EEG) activity and hippocampal blood flow in young adult and middle-aged Long-Evans rats were measured. sAPP increased the power spectrum density of low frequency EEG bands in the hippocampus and cortex of middle-aged rats without affecting hippocampal blood flow. The neurophysiological effects of sAPP were observed in middle-aged, but not in young rats. The results of this study indicate that hippocampal and cortical electrophysiological processes are sensitive to sAPP, whereas the cerebral vasculature may not be regulated by sAPP. The age-dependent change in the sensitivity of neuronal activity to sAPP suggests the possibility of an important role for this APP product in brain functioning in mid life.


Assuntos
Precursor de Proteína beta-Amiloide/biossíntese , Encéfalo/metabolismo , Artérias Cerebrais/fisiologia , Circulação Cerebrovascular/fisiologia , Fármacos Neuroprotetores/metabolismo , Envelhecimento/fisiologia , Secretases da Proteína Precursora do Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/farmacologia , Animais , Encéfalo/irrigação sanguínea , Encéfalo/efeitos dos fármacos , Artérias Cerebrais/efeitos dos fármacos , Córtex Cerebral/irrigação sanguínea , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Circulação Cerebrovascular/efeitos dos fármacos , Demência/tratamento farmacológico , Demência/metabolismo , Demência/fisiopatologia , Modelos Animais de Doenças , Eletroencefalografia/efeitos dos fármacos , Hipocampo/irrigação sanguínea , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Injeções Intraventriculares , Masculino , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/metabolismo , Transtornos da Memória/fisiopatologia , Fármacos Neuroprotetores/farmacologia , Ratos , Ratos Long-Evans , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes de Fusão/farmacologia , Vasodilatação/efeitos dos fármacos , Vasodilatação/fisiologia
14.
Front Neurosci ; 11: 138, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28400714

RESUMO

Transient receptor potential canonical 6 (TRPC6) channels are permeable to Na+ and Ca2+ and are widely expressed in the brain. In this study, the role of TRPC6 was investigated following ischemia/reperfusion (I/R) and oxygen-glucose deprivation (OGD). We found that TRPC6 expression was increased in wild-type (WT) mice cortical neurons following I/R and in primary neurons with OGD, and that deletion of TRPC6 reduced the I/R-induced brain infarct in mice and the OGD- /neurotoxin-induced neuronal death. Using live-cell imaging to examine intracellular Ca2+ levels ([Ca2+] i ), we found that OGD induced a significant higher increase in glutamate-evoked Ca2+ influx compared to untreated control and such an increase was reduced by TRPC6 deletion. Enhancement of TRPC6 expression using AdCMV-TRPC6-GFP infection in WT neurons increased [Ca2+] i in response to glutamate application compared to AdCMV-GFP control. Inhibition of N-methyl-d-aspartic acid receptor (NMDAR) with MK801 decreased TRPC6-dependent increase of [Ca2+] i in TRPC6 infected cells, indicating that such a Ca2+ influx was NMDAR dependent. Furthermore, TRPC6-dependent Ca2+ influx was blunted by blockade of Na+ entry in TRPC6 infected cells. Finally, OGD-enhanced Ca2+ influx was reduced, but not completely blocked, in the presence of voltage-dependent Na+ channel blocker tetrodotoxin (TTX) and dl-α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) blocker CNQX. Altogether, we concluded that I/R-induced brain damage was, in part, due to upregulation of TRPC6 in cortical neurons. We postulate that overexpression of TRPC6 following I/R may induce neuronal death partially through TRPC6-dependent Na+ entry which activated NMDAR, thus leading to a damaging Ca2+ overload. These findings may provide a potential target for future intervention in stroke-induced brain damage.

15.
Neuromolecular Med ; 8(3): 389-414, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16775390

RESUMO

The high-metabolic demand of neurons and their reliance on glucose as an energy source places them at risk for dysfunction and death under conditions of metabolic and oxidative stress. Uncoupling proteins (UCPs) are mitochondrial inner membrane proteins implicated in the regulation of mitochondrial membrane potential (Deltapsim) and cellular energy metabolism. The authors cloned UCP4 cDNA from mouse and rat brain, and demonstrate that UCP4 mRNA is expressed abundantly in brain and at particularly high levels in populations of neurons believed to have high-energy requirements. Neural cells with increased levels of UCP4 exhibit decreased Deltapsim, reduced reactive oxygen species (ROS) production and decreased mitochondrial calcium accumulation. UCP4 expressing cells also exhibited changes of oxygen-consumption rate, GDP sensitivity, and response of Deltapsim to oligomycin that were consistent with mitochondrial uncoupling. UCP4 modulates neuronal energy metabolism by increasing glucose uptake and shifting the mode of ATP production from mitochondrial respiration to glycolysis, thereby maintaining cellular ATP levels. The UCP4-mediated shift in energy metabolism reduces ROS production and increases the resistance of neurons to oxidative and mitochondrial stress. Knockdown of UCP4 expression by RNA interference in primary hippocampal neurons results in mitochondrial calcium overload and cell death. UCP4-mRNA expression is increased in neurons exposed to cold temperatures and in brain cells of rats maintained on caloric restriction, suggesting a role for UCP4 in the previously reported antiageing and neuroprotective effects of caloric restriction. By shifting energy metabolism to reduce ROS production and cellular reliance on mitochondrial respiration, UCP4 can protect neurons against oxidative stress and calcium overload.


Assuntos
Metabolismo Energético , Canais Iônicos/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Neurônios/metabolismo , Estresse Oxidativo , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Animais , Apoptose/fisiologia , Encéfalo/anatomia & histologia , Encéfalo/metabolismo , Cálcio/metabolismo , Restrição Calórica , Células Cultivadas , Temperatura Baixa , Glucose/metabolismo , Humanos , Hibridização In Situ , Canais Iônicos/química , Canais Iônicos/genética , Ácido Láctico/metabolismo , Masculino , Potenciais da Membrana/fisiologia , Camundongos , Proteínas Mitocondriais/química , Proteínas Mitocondriais/genética , Proteínas de Desacoplamento Mitocondrial , Dados de Sequência Molecular , Neurônios/citologia , Oxigênio/metabolismo , Estrutura Terciária de Proteína , RNA Interferente Pequeno/metabolismo , Ratos , Ratos Endogâmicos F344 , Espécies Reativas de Oxigênio/metabolismo , Alinhamento de Sequência
17.
J Neurosci ; 24(35): 7707-17, 2004 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-15342738

RESUMO

Alzheimer's disease (AD) may be caused by the abnormal processing of the amyloid precursor protein (APP) and the accumulation of beta-amyloid (Abeta). The amyloid precursor protein can be proteolytically cleaved into multiple fragments, many of which have distinct biological actions. Although a high level of Abeta can be toxic, the alpha-secretase cleaved APP (sAPPalpha) is neuroprotective. However, the mechanism of sAPPalpha protection is unknown. Here, we show that sAPPalpha increases the expression levels of several neuroprotective genes and protects organotypic hippocampal cultures from Abeta-induced tau phosphorylation and neuronal death. Antibody interference and small interfering RNA knock-down demonstrate that the sAPPalpha-driven expression of transthyretin and insulin-like growth factor 2 is necessary for protection against Abeta-induced neuronal death. Mice overexpressing mutant APP possess high levels of sAPPalpha and transthyretin and do not develop the tau phosphorylation or neuronal loss characteristic of human AD. Chronic infusion of an antibody against transthyretin into the hippocampus of mice overexpressing APP with the Swedish mutation (APP(Sw)) leads to increased Abeta, tau phosphorylation, and neuronal loss and apoptosis within the CA1 neuronal field. Therefore, the elevated expression of transthyretin is mediated by sAPPalpha and protects APP(Sw) mice from developing many of the neuropathologies observed in AD.


Assuntos
Precursor de Proteína beta-Amiloide/fisiologia , Pré-Albumina/fisiologia , Receptores de Superfície Celular/fisiologia , Envelhecimento , Doença de Alzheimer , Secretases da Proteína Precursora do Amiloide , Peptídeos beta-Amiloides/toxicidade , Precursor de Proteína beta-Amiloide/genética , Animais , Apoptose , Ácido Aspártico Endopeptidases , Proteínas de Transporte/metabolismo , Endopeptidases/metabolismo , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Humanos , Fator de Crescimento Insulin-Like II/biossíntese , Fator de Crescimento Insulin-Like II/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Modelos Animais , Degeneração Neural/genética , Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/genética , Técnicas de Cultura de Órgãos , Fragmentos de Peptídeos/toxicidade , Fosforilação , Proteínas PrPC/genética , Pré-Albumina/antagonistas & inibidores , Pré-Albumina/biossíntese , Pré-Albumina/genética , Pré-Albumina/imunologia , Regiões Promotoras Genéticas , Nexinas de Proteases , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , RNA Interferente Pequeno/farmacologia , Receptores de Superfície Celular/genética , Transgenes , Proteína de Morte Celular Associada a bcl , Proteínas tau/metabolismo
18.
FASEB J ; 17(6): 767-9, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12594176

RESUMO

The catalytic subunit of telomerase (TERT) is a reverse transcriptase (RT) that adds a six-base DNA repeat onto chromosome ends and prevents their shortening during successive cell divisions. Telomerase is associated with cell immortality and cancer, which may by related to the ability of TERT to prevent apoptosis by stabilizing telomeres. However, fundamental information concerning the antiapoptotic function of TERT is lacking, including whether RT activity and/or nuclear localization are required and where telomerase acts to suppress the cell death process. Here, we show that overexpression of wild-type human TERT in HeLa cells, and in a cells lacking TERT but containing the telomerase RNA template, increases their resistance to apoptosis induced by the DNA damaging agent etoposide or the bacterial alkaloid staurosporine. In contrast, TERT mutants with disruptions of either the RT domain or a 14-3-3 binding domain fail to protect cells against apoptosis, and overexpression of TERT in cells lacking the telomerase RNA template is also ineffective in preventing apoptosis. Additional findings show that TERT suppresses apoptosis at an early step before release of cytochrome c and apoptosis-inducing factor from mitochondria. We conclude that both RT activity and 14-3-3 protein binding ability are required for the antiapoptotic function of TERT in tumor cells and that TERT can suppress a nuclear signal(s) that is an essential component of apoptotic cascades triggered by diverse stimuli.


Assuntos
Apoptose/fisiologia , Mitocôndrias/metabolismo , DNA Polimerase Dirigida por RNA/metabolismo , Telomerase/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo , Proteínas 14-3-3 , Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Fator de Indução de Apoptose , Sítios de Ligação/genética , Transporte Biológico/efeitos dos fármacos , Linhagem Celular , Núcleo Celular/metabolismo , Grupo dos Citocromos c/metabolismo , Proteínas de Ligação a DNA , Inibidores Enzimáticos/farmacologia , Etoposídeo/farmacologia , Flavoproteínas/metabolismo , Células HeLa , Humanos , Proteínas de Membrana/metabolismo , Mitocôndrias/efeitos dos fármacos , Mutação , Ligação Proteica , DNA Polimerase Dirigida por RNA/genética , Estaurosporina/farmacologia , Telomerase/genética , Tirosina 3-Mono-Oxigenase/genética
19.
Cell Calcium ; 34(4-5): 385-97, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-12909083

RESUMO

Cognitive impairment and emotional disturbances in Alzheimer's disease (AD) result from the degeneration of synapses and death of neurons in the limbic system and associated regions of the cerebral cortex. An alteration in the proteolytic processing of the amyloid precursor protein (APP) results in increased production and accumulation of amyloid beta-peptide (Abeta) in the brain. Abeta has been shown to cause synaptic dysfunction and can render neurons vulnerable to excitotoxicity and apoptosis by a mechanism involving disruption of cellular calcium homeostasis. By inducing membrane lipid peroxidation and generation of the aldehyde 4-hydroxynonenal, Abeta impairs the function of membrane ion-motive ATPases and glucose and glutamate transporters, and can enhance calcium influx through voltage-dependent and ligand-gated calcium channels. Reduced levels of a secreted form of APP which normally regulates synaptic plasticity and cell survival may also promote disruption of synaptic calcium homeostasis in AD. Some cases of inherited AD are caused by mutations in presenilins 1 and 2 which perturb endoplasmic reticulum (ER) calcium homeostasis such that greater amounts of calcium are released upon stimulation, possibly as the result of alterations in IP(3) and ryanodine receptor channels, Ca(2+)-ATPases and the ER stress protein Herp. Abnormalities in calcium regulation in astrocytes, oligodendrocytes, and microglia have also been documented in studies of experimental models of AD, suggesting contributions of these alterations to neuronal dysfunction and cell death in AD. Collectively, the available data show that perturbed cellular calcium homeostasis plays a prominent role in the pathogenesis of AD, suggesting potential benefits of preventative and therapeutic strategies that stabilize cellular calcium homeostasis.


Assuntos
Doença de Alzheimer/fisiopatologia , Sinalização do Cálcio/fisiologia , Neuroglia/fisiologia , Neurônios/fisiologia , Trifosfato de Adenosina/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/terapia , Animais , Apolipoproteínas E/fisiologia , Astrócitos/fisiologia , Homeostase/fisiologia , Humanos , Proteínas de Membrana/fisiologia , Microglia/fisiologia , Oligodendroglia/fisiologia , Presenilina-1 , Presenilina-2 , Sinapses/fisiologia
20.
Neurobiol Aging ; 23(5): 695-705, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12392775

RESUMO

Cells in the brain deploy multiple mechanisms to maintain the integrity of nerve cell circuits, and to facilitate responses to environmental demands and promote recovery of function after injury. The mechanisms include production of neurotrophic factors and cytokines, expression of various cell survival-promoting proteins (e.g. protein chaperones, antioxidant enzymes, Bcl-2 and inhibitor of apoptosis proteins), protection of the genome by telomerase and DNA repair proteins, and mobilization of neural stem cells to replace damaged neurons and glia. The aging process challenges such neuroprotective and neurorestorative mechanisms, often with devastating consequences as in Alzheimer's disease (AD), Parkinson's and Huntington's diseases and stroke. Genetic and environmental factors superimposed upon the aging process can determine whether brain aging is successful or unsuccessful. Mutations in genes that cause inherited forms of AD (amyloid precursor protein (APP) and presenilins), Parkinson's disease (alpha-synuclein and parkin) and trinucleotide repeat disorders (e.g. huntingtin and the androgen receptor) overwhelm endogenous neuroprotective mechanisms. On the other hand, neuroprotective mechanisms can be bolstered by dietary (caloric restriction, and folate and antioxidant supplementation) and behavioral (cognitive and physical activities) modifications. At the cellular and molecular levels, successful brain aging can be facilitated by activating a hormesis response to which neurons respond by upregulating the expression of neurotrophic factors and stress proteins. Neural stem cells that reside in the adult brain are also responsive to environmental demands, and appear capable of replacing lost or dysfunctional neurons and glial cells, perhaps even in the aging brain. The recent application of modem methods of molecular and cellular biology to the problem of brain aging is revealing a remarkable capacity within brain cells for adaptation to aging and resistance to disease.


Assuntos
Envelhecimento/fisiologia , Encefalopatias/genética , Encefalopatias/fisiopatologia , Encéfalo/fisiologia , Transdução de Sinais/fisiologia , Idoso , Encefalopatias/dietoterapia , Restrição Calórica , Dieta , Comportamentos Relacionados com a Saúde , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA