RESUMO
Multiplexed analysis has the advantage of allowing for simultaneous detection of multiple analytes in a single reaction vessel which reduces time, labor, and cost as compared to single-reaction-based detection methods. Microsphere-based suspension array technologies, such as the Luminex® xMAP® system, offer high-throughput detection of both protein and nucleic acid targets in multiple assay chemistries. After Luminex's founding in 1995, it quickly became the leader in bead-based multiplexing solutions. Today, xMAP Technology is the most widely adopted bead-based multiplexing platform with over 35,000 peer-reviewed publications, an installed base of approximately 15,500 instruments, and over 70 Luminex Partners offering more than 1300 research use kits as well as custom assay solutions. Because of the open architecture of the xMAP platform it has been implemented in a variety of applications that range from transplant medicine, biomarker discovery and validation, pathogen detection, drug discovery, vaccine development, personalized medicine, neurodegeneration, and cancer research.
Assuntos
Ensaios de Triagem em Larga Escala/história , Microesferas , Biomarcadores/análise , Ensaios Enzimáticos/história , Ensaios Enzimáticos/instrumentação , Ensaios Enzimáticos/métodos , Ensaios Enzimáticos/tendências , Citometria de Fluxo/história , Citometria de Fluxo/instrumentação , Citometria de Fluxo/métodos , Citometria de Fluxo/tendências , Ensaios de Triagem em Larga Escala/instrumentação , Ensaios de Triagem em Larga Escala/métodos , Ensaios de Triagem em Larga Escala/tendências , História do Século XX , História do Século XXI , Humanos , Imunoensaio/história , Imunoensaio/instrumentação , Imunoensaio/métodos , Imunoensaio/tendências , Fenômenos Magnéticos , Hibridização de Ácido NucleicoRESUMO
Chromophores that incorporate f-block elements have considerable potential for use in bioimaging applications because of their advantageous photophysical properties compared to organic dye, which are currently widely used. We are developing new classes of lanthanide-based self-assembling molecular nanoparticles as reporters for imaging and as multi-functional nanoprobes or nanosensors for use with biological samples. One class of these materials, which we call lanthanide "nano-drums", are homogeneous 4d-4f clusters approximately 25 to 30 Å in diameter. These are capable of emitting from the visible to near-infrared wavelengths. Here, we present the synthesis, crystal structure, photophysical properties and comparative cytotoxicity data for a 32 metal Eu-Cd nano-drum [Eu(8)Cd(24)L(12)(OAc)(48)] (1). We also explored the imaging capabilities of this nano-drum using epifluorescence, TIRF, and two-photon microscopy platforms.
Assuntos
Elementos da Série dos Lantanídeos/química , Nanopartículas/química , Imagem Óptica , Compostos Organometálicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Modelos Moleculares , Estrutura Molecular , Compostos Organometálicos/síntese química , Compostos Organometálicos/química , Relação Estrutura-AtividadeRESUMO
We are developing a new class of lanthanide-based self-assembling molecular nanoparticles as potential reporter molecules for imaging, and as multi-functional nanoprobes or nanosensors in diagnostic systems. These lanthanide "nano-drums" are homogeneous 4d-4f clusters approximately 25 to 30 Å in diameter that can emit from the visible to near-infrared (NIR) wavelengths. Here, we present syntheses, crystal structures, photophysical properties, and comparative cytotoxicity data for six nano-drums containing either Eu, Tb, Lu, Er, Yb or Ho. Imaging capabilities of these nano-drums are demonstrated using epifluorescence, total internal reflection fluorescence (TIRF), and two-photon microscopy. We discuss how these molecular nanoparticles can to be adapted for a range of assays, particularly by taking advantage of functionalization strategies with chemical moieties to enable conjugation to protein or nucleic acids.