Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
Nature ; 612(7940): 495-502, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36450981

RESUMO

Fanconi anaemia (FA), a model syndrome of genome instability, is caused by a deficiency in DNA interstrand crosslink repair resulting in chromosome breakage1-3. The FA repair pathway protects against endogenous and exogenous carcinogenic aldehydes4-7. Individuals with FA are hundreds to thousands fold more likely to develop head and neck (HNSCC), oesophageal and anogenital squamous cell carcinomas8 (SCCs). Molecular studies of SCCs from individuals with FA (FA SCCs) are limited, and it is unclear how FA SCCs relate to sporadic HNSCCs primarily driven by tobacco and alcohol exposure or infection with human papillomavirus9 (HPV). Here, by sequencing genomes and exomes of FA SCCs, we demonstrate that the primary genomic signature of FA repair deficiency is the presence of high numbers of structural variants. Structural variants are enriched for small deletions, unbalanced translocations and fold-back inversions, and are often connected, thereby forming complex rearrangements. They arise in the context of TP53 loss, but not in the context of HPV infection, and lead to somatic copy-number alterations of HNSCC driver genes. We further show that FA pathway deficiency may lead to epithelial-to-mesenchymal transition and enhanced keratinocyte-intrinsic inflammatory signalling, which would contribute to the aggressive nature of FA SCCs. We propose that the genomic instability in sporadic HPV-negative HNSCC may arise as a result of the FA repair pathway being overwhelmed by DNA interstrand crosslink damage caused by alcohol and tobacco-derived aldehydes, making FA SCC a powerful model to study tumorigenesis resulting from DNA-crosslinking damage.


Assuntos
Reparo do DNA , Anemia de Fanconi , Genômica , Neoplasias de Cabeça e Pescoço , Humanos , Aldeídos/efeitos adversos , Aldeídos/metabolismo , Reparo do DNA/genética , Anemia de Fanconi/genética , Anemia de Fanconi/metabolismo , Anemia de Fanconi/patologia , Neoplasias de Cabeça e Pescoço/induzido quimicamente , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/metabolismo , Neoplasias de Cabeça e Pescoço/patologia , Infecções por Papillomavirus , Carcinoma de Células Escamosas de Cabeça e Pescoço/induzido quimicamente , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Dano ao DNA/efeitos dos fármacos
2.
Am J Hum Genet ; 110(4): 551-564, 2023 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-36933558

RESUMO

DNA variants that arise after conception can show mosaicism, varying in presence and extent among tissues. Mosaic variants have been reported in Mendelian diseases, but further investigation is necessary to broadly understand their incidence, transmission, and clinical impact. A mosaic pathogenic variant in a disease-related gene may cause an atypical phenotype in terms of severity, clinical features, or timing of disease onset. Using high-depth sequencing, we studied results from one million unrelated individuals referred for genetic testing for almost 1,900 disease-related genes. We observed 5,939 mosaic sequence or intragenic copy number variants distributed across 509 genes in nearly 5,700 individuals, constituting approximately 2% of molecular diagnoses in the cohort. Cancer-related genes had the most mosaic variants and showed age-specific enrichment, in part reflecting clonal hematopoiesis in older individuals. We also observed many mosaic variants in genes related to early-onset conditions. Additional mosaic variants were observed in genes analyzed for reproductive carrier screening or associated with dominant disorders with low penetrance, posing challenges for interpreting their clinical significance. When we controlled for the potential involvement of clonal hematopoiesis, most mosaic variants were enriched in younger individuals and were present at higher levels than in older individuals. Furthermore, individuals with mosaicism showed later disease onset or milder phenotypes than individuals with non-mosaic variants in the same genes. Collectively, the large compendium of variants, disease correlations, and age-specific results identified in this study expand our understanding of the implications of mosaic DNA variation for diagnosis and genetic counseling.


Assuntos
Variações do Número de Cópias de DNA , Mosaicismo , Variações do Número de Cópias de DNA/genética , Testes Genéticos , Fenótipo , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Mutação
3.
Blood ; 139(23): 3439-3449, 2022 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-35349664

RESUMO

We follow a patient with Diamond-Blackfan anemia (DBA) mosaic for a pathogenic RPS19 haploinsufficiency mutation with persistent transfusion-dependent anemia. Her anemia remitted on eltrombopag (EPAG), but surprisingly, mosaicism was unchanged, suggesting that both mutant and normal cells responded. When EPAG was withheld, her anemia returned. In addition to expanding hematopoietic stem/progenitor cells, EPAG aggressively chelates iron. Because DBA anemia, at least in part, results from excessive intracellular heme leading to ferroptotic cell death, we hypothesized that the excess heme accumulating in ribosomal protein-deficient erythroid precursors inhibited the growth of adjacent genetically normal precursors, and that the efficacy of EPAG reflected its ability to chelate iron, limit heme synthesis, and thus limit toxicity in both mutant and normal cells. To test this, we studied Rpl11 haploinsufficient (DBA) mice and mice chimeric for the cytoplasmic heme export protein, FLVCR. Flvcr1-deleted mice have severe anemia, resembling DBA. Mice transplanted with ratios of DBA to wild-type marrow cells of 50:50 are anemic, like our DBA patient. In contrast, mice transplanted with Flvcr1-deleted (unable to export heme) and wild-type marrow cells at ratios of 50:50 or 80:20 have normal numbers of red cells. Additional studies suggest that heme exported from DBA erythroid cells might impede the nurse cell function of central macrophages of erythroblastic islands to impair the maturation of genetically normal coadherent erythroid cells. These findings have implications for the gene therapy of DBA and may provide insights into why del(5q) myelodysplastic syndrome patients are anemic despite being mosaic for chromosome 5q deletion and loss of RPS14.


Assuntos
Anemia de Diamond-Blackfan , Anemia , Anemia/patologia , Anemia de Diamond-Blackfan/metabolismo , Animais , Deleção Cromossômica , Células Eritroides/metabolismo , Eritropoese/genética , Feminino , Heme/metabolismo , Humanos , Ferro/metabolismo , Camundongos , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo
4.
Proc Natl Acad Sci U S A ; 117(25): 14405-14411, 2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32518111

RESUMO

Periodic fever, aphthous stomatitis, pharyngitis, and cervical adenitis (PFAPA) syndrome is the most common periodic fever syndrome in children. The disease appears to cluster in families, but the pathogenesis is unknown. We queried two European-American cohorts and one Turkish cohort (total n = 231) of individuals with PFAPA for common variants previously associated with two other oropharyngeal ulcerative disorders, Behçet's disease and recurrent aphthous stomatitis. In a metaanalysis, we found that a variant upstream of IL12A (rs17753641) is strongly associated with PFAPA (OR 2.13, P = 6 × 10-9). We demonstrated that monocytes from individuals who are heterozygous or homozygous for this risk allele produce significantly higher levels of IL-12p70 upon IFN-γ and LPS stimulation than those from individuals without the risk allele. We also found that variants near STAT4, IL10, and CCR1-CCR3 were significant susceptibility loci for PFAPA, suggesting that the pathogenesis of PFAPA involves abnormal antigen-presenting cell function and T cell activity and polarization, thereby implicating both innate and adaptive immune responses at the oropharyngeal mucosa. Our results illustrate genetic similarities among recurrent aphthous stomatitis, PFAPA, and Behçet's disease, placing these disorders on a common spectrum, with recurrent aphthous stomatitis on the mild end, Behçet's disease on the severe end, and PFAPA intermediate. We propose naming these disorders Behçet's spectrum disorders to highlight their relationship. HLA alleles may be factors that influence phenotypes along this spectrum as we found new class I and II HLA associations for PFAPA distinct from Behçet's disease and recurrent aphthous stomatitis.


Assuntos
Síndrome de Behçet/genética , Febre/genética , Predisposição Genética para Doença , Linfadenite/genética , Faringite/genética , Estomatite Aftosa/genética , Alelos , Síndrome de Behçet/imunologia , Criança , Estudos de Coortes , Febre/imunologia , Genes MHC Classe I/genética , Genes MHC Classe I/imunologia , Genes MHC da Classe II/genética , Genes MHC da Classe II/imunologia , Loci Gênicos/imunologia , Humanos , Linfadenite/imunologia , Faringite/imunologia , Polimorfismo de Nucleotídeo Único , Fatores de Risco , Estomatite Aftosa/imunologia , Síndrome
5.
Proc Natl Acad Sci U S A ; 117(1): 552-562, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31871193

RESUMO

Systemic sclerosis (SSc) is a clinically heterogeneous autoimmune disease characterized by mutually exclusive autoantibodies directed against distinct nuclear antigens. We examined HLA associations in SSc and its autoantibody subsets in a large, newly recruited African American (AA) cohort and among European Americans (EA). In the AA population, the African ancestry-predominant HLA-DRB1*08:04 and HLA-DRB1*11:02 alleles were associated with overall SSc risk, and the HLA-DRB1*08:04 allele was strongly associated with the severe antifibrillarin (AFA) antibody subset of SSc (odds ratio = 7.4). These African ancestry-predominant alleles may help explain the increased frequency and severity of SSc among the AA population. In the EA population, the HLA-DPB1*13:01 and HLA-DRB1*07:01 alleles were more strongly associated with antitopoisomerase (ATA) and anticentromere antibody-positive subsets of SSc, respectively, than with overall SSc risk, emphasizing the importance of HLA in defining autoantibody subtypes. The association of the HLA-DPB1*13:01 allele with the ATA+ subset of SSc in both AA and EA patients demonstrated a transancestry effect. A direct correlation between SSc prevalence and HLA-DPB1*13:01 allele frequency in multiple populations was observed (r = 0.98, P = 3 × 10-6). Conditional analysis in the autoantibody subsets of SSc revealed several associated amino acid residues, mostly in the peptide-binding groove of the class II HLA molecules. Using HLA α/ß allelic heterodimers, we bioinformatically predicted immunodominant peptides of topoisomerase 1, fibrillarin, and centromere protein A and discovered that they are homologous to viral protein sequences from the Mimiviridae and Phycodnaviridae families. Taken together, these data suggest a possible link between HLA alleles, autoantibodies, and environmental triggers in the pathogenesis of SSc.


Assuntos
Autoanticorpos/imunologia , Autoantígenos/genética , Antígenos HLA/genética , Mimetismo Molecular/imunologia , Escleroderma Sistêmico/genética , Negro ou Afro-Americano/genética , Alelos , Sequência de Aminoácidos/genética , Antígenos Virais/genética , Antígenos Virais/imunologia , Autoantígenos/imunologia , Biologia Computacional , Conjuntos de Dados como Assunto , Feminino , Predisposição Genética para Doença , Antígenos HLA/imunologia , Humanos , Masculino , Mimiviridae/imunologia , Phycodnaviridae/imunologia , Estrutura Secundária de Proteína/genética , Medição de Risco , Escleroderma Sistêmico/epidemiologia , Escleroderma Sistêmico/imunologia , Homologia de Sequência de Aminoácidos , População Branca/genética
6.
Blood Cells Mol Dis ; 93: 102640, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34991062

RESUMO

Progressive pancytopenia is a common feature observed in DNA crosslink repair deficiency disorder, Fanconi anemia (FA). However, this phenotype has not been recapitulated in single FA gene knockout animal models. In this study, we analyzed hematological characteristics in zebrafish null mutants for two FA genes, fanca and fanco. In adult mutants, we demonstrate age-associated reduction in blood cell counts for all lineages, resembling progressive pancytopenia in FA patients. In larval mutants, we demonstrate vascular injury-induced thrombosis defects, particularly upon treatment with crosslinking agent diepoxybutane (DEB), indicating DNA damage induced inefficiency of thrombocytes.


Assuntos
Anemia de Fanconi , Pancitopenia , Trombose , Animais , Dano ao DNA , Anemia de Fanconi/genética , Humanos , Pancitopenia/genética , Trombose/genética , Peixe-Zebra
7.
Blood ; 135(18): 1588-1602, 2020 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-32106311

RESUMO

Fanconi anemia (FA) is the most common genetic cause of bone marrow failure and is caused by inherited pathogenic variants in any of 22 genes. Of these, only FANCB is X-linked. We describe a cohort of 19 children with FANCB variants, from 16 families of the International Fanconi Anemia Registry. Those with FANCB deletion or truncation demonstrate earlier-than-average onset of bone marrow failure and more severe congenital abnormalities compared with a large series of FA individuals in published reports. This reflects the indispensable role of FANCB protein in the enzymatic activation of FANCD2 monoubiquitination, an essential step in the repair of DNA interstrand crosslinks. For FANCB missense variants, more variable severity is associated with the extent of residual FANCD2 monoubiquitination activity. We used transcript analysis, genetic complementation, and biochemical reconstitution of FANCD2 monoubiquitination to determine the pathogenicity of each variant. Aberrant splicing and transcript destabilization were associated with 2 missense variants. Individuals carrying missense variants with drastically reduced FANCD2 monoubiquitination in biochemical and/or cell-based assays tended to show earlier onset of hematologic disease and shorter survival. Conversely, variants with near-normal FANCD2 monoubiquitination were associated with more favorable outcome. Our study reveals a genotype-phenotype correlation within the FA-B complementation group of FA, where severity is associated with level of residual FANCD2 monoubiquitination.


Assuntos
Proteínas de Grupos de Complementação da Anemia de Fanconi/genética , Anemia de Fanconi/diagnóstico , Anemia de Fanconi/genética , Estudos de Associação Genética , Predisposição Genética para Doença , Variação Genética , Alelos , Processamento Alternativo , Linhagem Celular Tumoral , Fibroblastos/metabolismo , Loci Gênicos , Humanos , Modelos Biológicos , Mutação , Fenótipo , Estabilidade de RNA , Índice de Gravidade de Doença , Ubiquitinação
8.
PLoS Genet ; 14(12): e1007821, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30540754

RESUMO

Fanconi Anemia (FA) is a genomic instability syndrome resulting in aplastic anemia, developmental abnormalities, and predisposition to hematological and other solid organ malignancies. Mutations in genes that encode proteins of the FA pathway fail to orchestrate the repair of DNA damage caused by DNA interstrand crosslinks. Zebrafish harbor homologs for nearly all known FA genes. We used multiplexed CRISPR/Cas9-mediated mutagenesis to generate loss-of-function mutants for 17 FA genes: fanca, fancb, fancc, fancd1/brca2, fancd2, fance, fancf, fancg, fanci, fancj/brip1, fancl, fancm, fancn/palb2, fanco/rad51c, fancp/slx4, fancq/ercc4, fanct/ube2t, and two genes encoding FA-associated proteins: faap100 and faap24. We selected two indel mutations predicted to cause premature truncations for all but two of the genes, and a total of 36 mutant lines were generated for 19 genes. Generating two independent mutant lines for each gene was important to validate their phenotypic consequences. RT-PCR from homozygous mutant fish confirmed the presence of transcripts with indels in all genes. Interestingly, 4 of the indel mutations led to aberrant splicing, which may produce a different protein than predicted from the genomic sequence. Analysis of RNA is thus critical in proper evaluation of the consequences of the mutations introduced in zebrafish genome. We used fluorescent reporter assay, and western blots to confirm loss-of-function for several mutants. Additionally, we developed a DEB treatment assay by evaluating morphological changes in embryos and confirmed that homozygous mutants from all the FA genes that could be tested (11/17), displayed hypersensitivity and thus were indeed null alleles. Our multiplexing strategy helped us to evaluate 11 multiple gene knockout combinations without additional breeding. Homozygous zebrafish for all 19 single and 11 multi-gene knockouts were adult viable, indicating FA genes in zebrafish are generally not essential for early development. None of the mutant fish displayed gross developmental abnormalities except for fancp-/- fish, which were significantly smaller in length than their wildtype clutch mates. Complete female-to-male sex reversal was observed in knockouts for 12/17 FA genes, while partial sex reversal was seen for the other five gene knockouts. All adult females were fertile, and among the adult males, all were fertile except for the fancd1 mutants and one of the fancj mutants. We report here generation and characterization of zebrafish knockout mutants for 17 FA disease-causing genes, providing an integral resource for understanding the pathophysiology associated with the disrupted FA pathway.


Assuntos
Anemia de Fanconi/genética , Peixe-Zebra/genética , Animais , Sistemas CRISPR-Cas , Dano ao DNA , Anemia de Fanconi/fisiopatologia , Feminino , Fertilidade/genética , Fertilidade/fisiologia , Mutação da Fase de Leitura , Técnicas de Inativação de Genes , Humanos , Masculino , Fenótipo , Splicing de RNA/genética , Processos de Determinação Sexual/genética , Processos de Determinação Sexual/fisiologia , Desenvolvimento Sexual/genética , Desenvolvimento Sexual/fisiologia , Peixe-Zebra/crescimento & desenvolvimento , Peixe-Zebra/fisiologia , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/fisiologia
9.
Hum Mutat ; 41(1): 122-128, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31513304

RESUMO

Fanconi anemia (FA) is a rare genetic disorder characterized by bone marrow failure, predisposition to cancer, and congenital abnormalities. FA is caused by pathogenic variants in any of 22 genes involved in the DNA repair pathway responsible for removing interstrand crosslinks. FANCL, an E3 ubiquitin ligase, is an integral component of the pathway, but patients affected by disease-causing FANCL variants are rare, with only nine cases reported worldwide. We report here a FANCL founder variant, anticipated to be synonymous, c.1092G>A;p.K364=, but demonstrated to induce aberrant splicing, c.1021_1092del;p.W341_K364del, that accounts for the onset of FA in 13 cases from South Asia, 12 from India and one from Pakistan. We comprehensively illustrate the pathogenic nature of the variant, provide evidence for a founder effect, and propose including this variant in genetic screening of suspected FA patients in India and Pakistan, as well as those with ancestry from these regions of South Asia.


Assuntos
Proteína do Grupo de Complementação L da Anemia de Fanconi/genética , Anemia de Fanconi/epidemiologia , Anemia de Fanconi/genética , Efeito Fundador , Variação Genética , Alelos , Ásia/epidemiologia , Aberrações Cromossômicas , Consanguinidade , Feminino , Genótipo , Humanos , Índia/epidemiologia , Masculino , Mutação , Prevalência
10.
Proc Natl Acad Sci U S A ; 114(8): 1964-1969, 2017 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-28167771

RESUMO

Genome integrity of induced pluripotent stem cells (iPSCs) has been extensively studied in recent years, but it is still unclear whether iPSCs contain more genomic variations than cultured somatic cells. One important question is the origin of genomic variations detected in iPSCs-whether iPSC reprogramming induces such variations. Here, we undertook a unique approach by deriving fibroblast subclones and clonal iPSC lines from the same fibroblast population and applied next-generation sequencing to compare genomic variations in these lines. Targeted deep sequencing of parental fibroblasts revealed that most variants detected in clonal iPSCs and fibroblast subclones were rare variants inherited from the parental fibroblasts. Only a small number of variants remained undetectable in the parental fibroblasts, which were thus likely to be de novo. Importantly, the clonal iPSCs and fibroblast subclones contained comparable numbers of de novo variants. Collectively, our data suggest that iPSC reprogramming is not mutagenic.


Assuntos
Reprogramação Celular/genética , Variações do Número de Cópias de DNA , Fibroblastos/fisiologia , Células-Tronco Pluripotentes Induzidas/fisiologia , Polimorfismo de Nucleotídeo Único , Diferenciação Celular , Linhagem Celular , Separação Celular , Células Cultivadas , Citometria de Fluxo , Frequência do Gene , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Mutação , Sequenciamento do Exoma
11.
Hum Mutat ; 39(2): 237-254, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29098742

RESUMO

Fanconi anemia (FA) is a rare recessive DNA repair deficiency resulting from mutations in one of at least 22 genes. Two-thirds of FA families harbor mutations in FANCA. To genotype patients in the International Fanconi Anemia Registry (IFAR) we employed multiple methodologies, screening 216 families for FANCA mutations. We describe identification of 57 large deletions and 261 sequence variants, in 159 families. All but seven families harbored distinct combinations of two mutations demonstrating high heterogeneity. Pathogenicity of the 18 novel missense variants was analyzed functionally by determining the ability of the mutant cDNA to improve the survival of a FANCA-null cell line when treated with MMC. Overexpressed pathogenic missense variants were found to reside in the cytoplasm, and nonpathogenic in the nucleus. RNA analysis demonstrated that two variants (c.522G > C and c.1565A > G), predicted to encode missense variants, which were determined to be nonpathogenic by a functional assay, caused skipping of exons 5 and 16, respectively, and are most likely pathogenic. We report 48 novel FANCA sequence variants. Defining both variants in a large patient cohort is a major step toward cataloging all FANCA variants, and permitting studies of genotype-phenotype correlations.


Assuntos
Proteína do Grupo de Complementação A da Anemia de Fanconi/genética , Anemia de Fanconi/genética , Mutação de Sentido Incorreto/genética , Linhagem Celular , Anemia de Fanconi/patologia , Imunofluorescência , Humanos
12.
Hum Mutat ; 39(1): 69-79, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29044765

RESUMO

Primary coenzyme Q10 (CoQ10 ; MIM# 607426) deficiencies are an emerging group of inherited mitochondrial disorders with heterogonous clinical phenotypes. Over a dozen genes are involved in the biosynthesis of CoQ10 , and mutations in several of these are associated with human disease. However, mutations in COQ5 (MIM# 616359), catalyzing the only C-methylation in the CoQ10 synthetic pathway, have not been implicated in human disease. Here, we report three female siblings of Iraqi-Jewish descent, who had varying degrees of cerebellar ataxia, encephalopathy, generalized tonic-clonic seizures, and cognitive disability. Whole-exome and subsequent whole-genome sequencing identified biallelic duplications in the COQ5 gene, leading to reduced levels of CoQ10 in peripheral white blood cells of all affected individuals and reduced CoQ10 levels in the only muscle tissue available from one affected proband. CoQ10 supplementation led to clinical improvement and increased the concentrations of CoQ10 in blood. This is the first report of primary CoQ10 deficiency caused by loss of function of COQ5, with delineation of the clinical, laboratory, histological, and molecular features, and insights regarding targeted treatment with CoQ10 supplementation.


Assuntos
Vias Biossintéticas/genética , Ataxia Cerebelar/diagnóstico , Ataxia Cerebelar/genética , Metiltransferases/deficiência , Encefalomiopatias Mitocondriais/diagnóstico , Encefalomiopatias Mitocondriais/genética , Proteínas Mitocondriais/deficiência , Ubiquinona/análogos & derivados , Biópsia , Ataxia Cerebelar/dietoterapia , Ataxia Cerebelar/metabolismo , Variações do Número de Cópias de DNA , Suplementos Nutricionais , Transporte de Elétrons , Feminino , Fibroblastos/metabolismo , Estudos de Associação Genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Leucócitos/metabolismo , Metiltransferases/genética , Encefalomiopatias Mitocondriais/dietoterapia , Encefalomiopatias Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Músculos/patologia , Consumo de Oxigênio , Linhagem , Polimorfismo de Nucleotídeo Único , Irmãos , Ubiquinona/biossíntese
13.
J Med Genet ; 54(6): 417-425, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28280134

RESUMO

BACKGROUND: Diamond-Blackfan anaemia (DBA) is an inherited bone marrow failure syndrome (IBMFS) characterised by erythroid hypoplasia. It is associated with congenital anomalies and a high risk of developing specific cancers. DBA is caused predominantly by autosomal dominant pathogenic variants in at least 15 genes affecting ribosomal biogenesis and function. Two X-linked recessive genes have been identified. OBJECTIVES: We aim to identify the genetic aetiology of DBA. METHODS: Of 87 families with DBA enrolled in an institutional review board-approved cohort study (ClinicalTrials.gov Identifier:NCT00027274), 61 had genetic testing information available. Thirty-five families did not have a known genetic cause and thus underwent comprehensive genomic evaluation with whole exome sequencing, deletion and CNV analyses to identify their disease-associated pathogenic variant. Controls for functional studies were healthy mutation-negative individuals enrolled in the same study. RESULTS: Our analyses uncovered heterozygous pathogenic variants in two previously undescribed genes in two families. One family had a non-synonymous variant (p.K77N) in RPL35; the second family had a non-synonymous variant (p. L51S) in RPL18. Both of these variants result in pre-rRNA processing defects. We identified heterozygous pathogenic variants in previously known DBA genes in 16 of 35 families. Seventeen families who underwent genetic analyses are yet to have a genetic cause of disease identified. CONCLUSIONS: Overall, heterozygous pathogenic variants in ribosomal genes were identified in 44 of the 61 families (72%). De novo pathogenic variants were observed in 57% of patients with DBA. Ongoing studies of DBA genomics will be important to understand this complex disorder.


Assuntos
Anemia de Diamond-Blackfan/genética , Mutação/genética , Ribossomos/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Genômica/métodos , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Linhagem , Proteínas Ribossômicas/genética , Adulto Jovem
14.
Cancer ; 123(20): 3943-3954, 2017 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-28678401

RESUMO

BACKGROUND: Patients with Fanconi anemia (FA) have an increased risk for head and neck squamous cell carcinoma (HNSCC). The authors sought to determine the prevalence of undiagnosed FA and FA carriers among patients with HNSCC as well as an age cutoff for FA genetic screening. METHODS: Germline DNA samples from 417 patients with HNSCC aged <50 years were screened for sequence variants by targeted next-generation sequencing of the entire length of 16 FA genes. RESULTS: The sequence revealed 194 FA gene variants in 185 patients (44%). The variant spectrum was comprised of 183 nonsynonymous point mutations, 9 indels, 1 large deletion, and 1 synonymous variant that was predicted to effect splicing. One hundred eight patients (26%) had at least 1 rare variant that was predicted to be damaging, and 57 (14%) had at least 1 rare variant that was predicted to be damaging and had been previously reported. Fifteen patients carried 2 rare variants or an X-linked variant in an FA gene. Overall, an age cutoff for FA screening was not identified among young patients with HNSCC, because there were no significant differences in mutation rates when patients were stratified by age, tumor site, ethnicity, smoking status, or human papillomavirus status. However, an increased burden, or mutation load, of FA gene variants was observed in carriers of the genes FA complementation group D2 (FANCD2), FANCE, and FANCL in the HNSCC patient cohort relative to the 1000 Genomes population. CONCLUSIONS: FA germline functional variants offer a novel area of study in HNSCC tumorigenesis. FANCE and FANCL, which are components of the core complex, are known to be responsible for the recruitment and ubiquitination, respectively, of FANCD2, a critical step in the FA DNA repair pathway. In the current cohort, the increased mutation load of FANCD2, FANCE, and FANCL variants among younger patients with HNSCC indicates the importance of the FA pathway in HNSCC. Cancer 2017;123:3943-54. © 2017 American Cancer Society.


Assuntos
Carcinoma de Células Escamosas/genética , Anemia de Fanconi/genética , Neoplasias de Cabeça e Pescoço/genética , Adulto , Idade de Início , Proteína BRCA2/genética , Análise Mutacional de DNA , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/genética , Proteína do Grupo de Complementação E da Anemia de Fanconi/genética , Proteína do Grupo de Complementação L da Anemia de Fanconi/genética , Proteínas de Grupos de Complementação da Anemia de Fanconi/genética , Feminino , Mutação em Linhagem Germinativa , Heterozigoto , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Recombinases/genética , Análise de Sequência de DNA , Carcinoma de Células Escamosas de Cabeça e Pescoço
15.
J Clin Immunol ; 37(5): 445-451, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28503715

RESUMO

PURPOSE: Deficiency of interleukin-1 receptor antagonist (DIRA) is a rare life-threatening autoinflammatory disease caused by autosomal recessive mutations in IL1RN. DIRA presents clinically with early onset generalized pustulosis, multifocal osteomyelitis, and elevation of acute phase reactants. We evaluated and treated an antibiotic-unresponsive patient with presumed DIRA with recombinant IL-1Ra (anakinra). The patient developed anaphylaxis to anakinra and was subsequently desensitized. METHODS: Genetic analysis of IL1RN was undertaken and treatment with anakinra was initiated. RESULTS: A 5-month-old Indian girl born to healthy non-consanguineous parents presented at the third week of life with irritability, sterile multifocal osteomyelitis including ribs and clavicles, a mild pustular rash, and elevated acute phase reactants. SNP array of the patient's genomic DNA revealed a previously unrecognized homozygous deletion of approximately 22.5 Kb. PCR and Sanger sequencing of the borders of the deleted area allowed identification of the breakpoints of the deletion, thus confirming a homozygous 22,216 bp deletion that spans the first four exons of IL1RN. Due to a clinical suspicion of DIRA, anakinra was initiated which resulted in an anaphylactic reaction that triggered desensitization with subsequent marked and sustained clinical and laboratory improvement. CONCLUSION: We report a novel DIRA-causing homozygous deletion affecting IL1RN in an Indian patient. The mutation likely is a founder mutation; the design of breakpoint-specific primers will enable genetic screening in Indian patients suspected of DIRA. The patient developed anaphylaxis to anakinra, was desensitized, and is in clinical remission on continued treatment.


Assuntos
Doenças Hereditárias Autoinflamatórias/diagnóstico , Doenças Hereditárias Autoinflamatórias/genética , Proteína Antagonista do Receptor de Interleucina 1/genética , Deleção de Sequência , Alelos , Biomarcadores , Hibridização Genômica Comparativa , Feminino , Estudos de Associação Genética , Predisposição Genética para Doença , Doenças Hereditárias Autoinflamatórias/terapia , Homozigoto , Humanos , Índia , Lactente , Polimorfismo de Nucleotídeo Único , Radiografia
16.
BMC Cancer ; 17(1): 127, 2017 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-28193203

RESUMO

BACKGROUND: Neurofibromatosis type 2 (NF2) is a rare autosomal dominant nervous system tumor predisposition disorder caused by constitutive inactivation of one of the two copies of NF2. Meningiomas affect about one half of NF2 patients, and are associated with a higher disease burden. Currently, the somatic mutation landscape in NF2-associated meningiomas remains largely unexamined. CASE PRESENTATION: Here, we present an in-depth genomic study of benign and atypical meningiomas, both from a single NF2 patient. While the grade I tumor was asymptomatic, the grade II tumor exhibited an unusually high growth rate: expanding to 335 times its initial volume within one year. The genomes of both tumors were examined by whole-exome sequencing (WES) complemented with spectral karyotyping (SKY) and SNP-array copy-number analyses. To better understand the clonal composition of the atypical meningioma, the tumor was divided in four sections and each section was investigated independently. Both tumors had second copy inactivation of NF2, confirming the central role of the gene in meningioma formation. The genome of the benign tumor closely resembled that of a normal diploid cell and had only one other deleterious mutation (EPHB3). In contrast, the chromosomal architecture of the grade II tumor was highly re-arranged, yet uniform among all analyzed fragments, implying that this large and fast growing tumor was composed of relatively few clones. Besides multiple gains and losses, the grade II meningioma harbored numerous chromosomal translocations. WES analysis of the atypical tumor identified deleterious mutations in two genes: ADAMTSL3 and CAPN5 in all fragments, indicating that the mutations were present in the cell undergoing fast clonal expansion CONCLUSIONS: This is the first WES study of NF2-associated meningiomas. Besides second NF2 copy inactivation, we found low somatic burden in both tumors and high level of genomic instability in the atypical meningioma. Genomic instability resulting in altered gene dosage and compromised structural integrity of multiple genes may be the primary reason of the high growth rate for the grade II tumor. Further study of ADAMTSL3 and CAPN5 may lead to elucidation of their molecular implications in meningioma pathogenesis.


Assuntos
Neoplasias dos Nervos Cranianos/genética , Genes da Neurofibromatose 2 , Genômica/métodos , Neoplasias Meníngeas/genética , Meningioma/genética , Mutação/genética , Adulto , Neoplasias dos Nervos Cranianos/patologia , Neoplasias dos Nervos Cranianos/cirurgia , Feminino , Genótipo , Humanos , Neoplasias Meníngeas/patologia , Neoplasias Meníngeas/cirurgia , Meningioma/patologia , Meningioma/cirurgia , Gradação de Tumores , Prognóstico
17.
PLoS Genet ; 10(11): e1004809, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25411967

RESUMO

Although prostate cancer typically runs an indolent course, a subset of men develop aggressive, fatal forms of this disease. We hypothesize that germline variation modulates susceptibility to aggressive prostate cancer. The goal of this work is to identify susceptibility genes using the C57BL/6-Tg(TRAMP)8247Ng/J (TRAMP) mouse model of neuroendocrine prostate cancer. Quantitative trait locus (QTL) mapping was performed in transgene-positive (TRAMPxNOD/ShiLtJ) F2 intercross males (n = 228), which facilitated identification of 11 loci associated with aggressive disease development. Microarray data derived from 126 (TRAMPxNOD/ShiLtJ) F2 primary tumors were used to prioritize candidate genes within QTLs, with candidate genes deemed as being high priority when possessing both high levels of expression-trait correlation and a proximal expression QTL. This process enabled the identification of 35 aggressive prostate tumorigenesis candidate genes. The role of these genes in aggressive forms of human prostate cancer was investigated using two concurrent approaches. First, logistic regression analysis in two human prostate gene expression datasets revealed that expression levels of five genes (CXCL14, ITGAX, LPCAT2, RNASEH2A, and ZNF322) were positively correlated with aggressive prostate cancer and two genes (CCL19 and HIST1H1A) were protective for aggressive prostate cancer. Higher than average levels of expression of the five genes that were positively correlated with aggressive disease were consistently associated with patient outcome in both human prostate cancer tumor gene expression datasets. Second, three of these five genes (CXCL14, ITGAX, and LPCAT2) harbored polymorphisms associated with aggressive disease development in a human GWAS cohort consisting of 1,172 prostate cancer patients. This study is the first example of using a systems genetics approach to successfully identify novel susceptibility genes for aggressive prostate cancer. Such approaches will facilitate the identification of novel germline factors driving aggressive disease susceptibility and allow for new insights into these deadly forms of prostate cancer.


Assuntos
1-Acilglicerofosfocolina O-Aciltransferase/genética , Antígeno CD11c/genética , Quimiocinas CXC/genética , Neoplasias da Próstata/genética , Animais , Transformação Celular Neoplásica/genética , Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Masculino , Camundongos , Neoplasias da Próstata/patologia , Locos de Características Quantitativas/genética , Ribonuclease H/genética
18.
Hum Mutat ; 37(5): 465-8, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26841305

RESUMO

Fanconi anemia (FA) is a rare inherited disorder caused by pathogenic variants in one of 19 FANC genes. FA patients display congenital abnormalities, and develop bone marrow failure, and cancer susceptibility. We identified homozygous mutations in four FA patients and, in each case, only one parent carried the obligate mutant allele. FANCA and FANCP/SLX4 genes, both located on chromosome 16, were the affected recessive FA genes in three and one family respectively. Genotyping with short tandem repeat markers and SNP arrays revealed uniparental disomy (UPD) of the entire mutation-carrying chromosome 16 in all four patients. One FANCA patient had paternal UPD, whereas FA in the other three patients resulted from maternal UPD. These are the first reported cases of UPD as a cause of FA. UPD indicates a reduced risk of having another child with FA in the family and has implications in prenatal diagnosis.


Assuntos
Cromossomos Humanos Par 16/genética , Proteína do Grupo de Complementação A da Anemia de Fanconi/genética , Anemia de Fanconi/genética , Recombinases/genética , Dissomia Uniparental/genética , Adulto , Pré-Escolar , Feminino , Genes Recessivos , Homozigoto , Humanos , Masculino , Mutação , Linhagem , Polimorfismo de Nucleotídeo Único , Adulto Jovem
19.
Gastroenterology ; 149(1): 67-78, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25865046

RESUMO

BACKGROUND & AIMS: Small intestinal carcinoids are rare and difficult to diagnose and patients often present with advanced incurable disease. Although the disease occurs sporadically, there have been reports of family clusters. Hereditary small intestinal carcinoid has not been recognized and genetic factors have not been identified. We performed a genetic analysis of families with small intestinal carcinoids to establish a hereditary basis and find genes that might cause this cancer. METHODS: We performed a prospective study of 33 families with at least 2 cases of small intestinal carcinoids. Affected members were characterized clinically and asymptomatic relatives were screened and underwent exploratory laparotomy for suspected tumors. Disease-associated mutations were sought using linkage analysis, whole-exome sequencing, and copy number analyses of germline and tumor DNA collected from members of a single large family. We assessed expression of mutant protein, protein activity, and regulation of apoptosis and senescence in lymphoblasts derived from the cases. RESULTS: Familial and sporadic carcinoids are clinically indistinguishable except for the multiple synchronous primary tumors observed in most familial cases. Nearly 34% of asymptomatic relatives older than age 50 were found to have occult tumors; the tumors were cleared surgically from 87% of these individuals (20 of 23). Linkage analysis and whole-exome sequencing identified a germline 4-bp deletion in the gene inositol polyphosphate multikinase (IPMK), which truncates the protein. This mutation was detected in all 11 individuals with small intestinal carcinoids and in 17 of 35 family members whose carcinoid status was unknown. Mutant IPMK had reduced kinase activity and nuclear localization, compared with the full-length protein. This reduced activation of p53 and increased cell survival. CONCLUSIONS: We found that small intestinal carcinoids can occur as an inherited autosomal-dominant disease. The familial form is characterized by multiple synchronous primary tumors, which might account for 22%-35% of cases previously considered sporadic. Relatives of patients with familial carcinoids should be screened to detect curable early stage disease. IPMK haploinsufficiency promotes carcinoid tumorigenesis.


Assuntos
Tumor Carcinoide/genética , Mutação em Linhagem Germinativa , Neoplasias Intestinais/genética , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Tumor Carcinoide/diagnóstico , Tumor Carcinoide/patologia , Família , Feminino , Humanos , Neoplasias Intestinais/diagnóstico , Neoplasias Intestinais/patologia , Laparotomia , Masculino , Pessoa de Meia-Idade , Linhagem , Estudos Prospectivos , Adulto Jovem
20.
Am J Med Genet A ; 170A(2): 386-391, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26590883

RESUMO

Fanconi anemia (FA) is an inherited bone marrow failure syndrome caused by mutations in DNA repair genes; some of these patients may have features of the VACTERL association. Autosomal recessive mutations in FANCI are a rare cause of FA. We identified FANCI mutations by next generation sequencing in three patients in our FA cohort among several whose mutated gene was unknown. Four of the six mutations are novel and all mutations are likely deleterious to protein function. There are now 16 reported cases of FA due to FANCI of whom 7 have at least 3 features of the VACTERL association (44%). This suggests that the VACTERL association in patients with FA may be seen in patients with FANCI mutations more often than previously recognized.


Assuntos
Canal Anal/anormalidades , Esôfago/anormalidades , Proteínas de Grupos de Complementação da Anemia de Fanconi/genética , Anemia de Fanconi/genética , Cardiopatias Congênitas/genética , Rim/anormalidades , Deformidades Congênitas dos Membros/genética , Mutação/genética , Coluna Vertebral/anormalidades , Traqueia/anormalidades , Canal Anal/patologia , Criança , Pré-Escolar , Esôfago/patologia , Anemia de Fanconi/complicações , Anemia de Fanconi/patologia , Feminino , Cardiopatias Congênitas/induzido quimicamente , Cardiopatias Congênitas/patologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Rim/patologia , Deformidades Congênitas dos Membros/induzido quimicamente , Deformidades Congênitas dos Membros/patologia , Estudos Longitudinais , Masculino , Prognóstico , Coluna Vertebral/patologia , Traqueia/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA