Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Front Mol Neurosci ; 15: 947192, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35875661

RESUMO

The incidence of depression among adolescents has been rapidly increasing in recent years. Environmental and genetic factors have been identified as important risk factors for adolescent depression. However, the mechanisms underlying the development of adolescent depression that are triggered by these risk factors are not well understood. Clinical and preclinical studies have focused more on adult depression, and differences in depressive symptoms between adolescents and adults make it difficult to adequately diagnose and treat adolescent depression. Brain-derived neurotrophic factor (BDNF) is known to play a critical role in the pathophysiology of many psychiatric disorders, including depression. However, there are still few studies on adolescent depression. Therefore, in this review paper, the causes and treatment of adolescent depression and the function of BDNF are investigated.

2.
Exp Neurobiol ; 31(2): 116-130, 2022 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-35674000

RESUMO

Absence seizures are caused by abnormal synchronized oscillations in the thalamocortical (TC) circuit, which result in widespread spike-and-wave discharges (SWDs) on electroencephalography (EEG) as well as impairment of consciousness. Thalamic reticular nucleus (TRN) and TC neurons are known to interact dynamically to generate TC circuitry oscillations during SWDs. Clinical studies have suggested the association of Plcß1 with early-onset epilepsy, including absence seizures. However, the brain regions and circuit mechanisms related to the generation of absence seizures with Plcß1 deficiency are unknown. In this study, we found that loss of Plcß1 in mice caused spontaneous complex-type seizures, including convulsive and absence seizures. Importantly, TRN-specific deletion of Plcß1 led to the development of only spontaneous SWDs, and no other types of seizures were observed. Ex vivo slice patch recording demonstrated that the number of spikes, an intrinsic TRN neuronal property, was significantly reduced in both tonic and burst firing modes in the absence of Plcß1 . We conclude that the loss of Plcß1 in the TRN leads to decreased excitability and impairs normal inhibitory neuronal function, thereby disrupting feedforward inhibition of the TC circuitry, which is sufficient to cause hypersynchrony of the TC system and eventually leads to spontaneous absence seizures. Our study not only provides a novel mechanism for the induction of SWDs in Plcß1 -deficient patients but also offers guidance for the development of diagnostic and therapeutic tools for absence epilepsy.

3.
Cell Prolif ; 54(9): e13103, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34323338

RESUMO

OBJECTIVES: The derivation of neural crest stem cells (NCSCs) from human pluripotent stem cells (hPSCs) has been commonly induced by WNT activation in combination with dual-SMAD inhibition. In this study, by fine-tuning BMP signalling in the conventional dual-SMAD inhibition, we sought to generate large numbers of NCSCs without WNT activation. MATERIALS AND METHODS: In the absence of WNT activation, we modulated the level of BMP signalling in the dual-SMAD inhibition system to identify conditions that efficiently drove the differentiation of hPSCs into NCSCs. We isolated two NCSC populations separately and characterized them in terms of global gene expression profiles and differentiation ability. RESULTS: Our modified dual-SMAD inhibition containing a lower dose of BMP inhibitor than that of the conventional dual-SMAD inhibition drove hPSCs into mainly NCSCs, which consisted of HNK+ p75high and HNK+ p75low cell populations. We showed that the p75high population formed spherical cell clumps, while the p75low cell population generated a 2D monolayer. We detected substantial differences in gene expression profiles between the two cell groups and showed that both p75high and p75low cells differentiated into mesenchymal stem cells (MSCs), while only p75high cells had the ability to become peripheral neurons. CONCLUSIONS: This study will provide a framework for the generation and isolation of NCSC populations for effective cell therapy for peripheral neuropathies and MSC-based cell therapy.


Assuntos
Diferenciação Celular/fisiologia , Crista Neural/citologia , Células-Tronco Pluripotentes/citologia , Técnicas de Cultura de Células/métodos , Células Cultivadas , Humanos , Células-Tronco Neurais/citologia , Doenças do Sistema Nervoso Periférico/patologia , Transdução de Sinais/fisiologia
4.
Stem Cell Rev Rep ; 6(3): 425-37, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20521176

RESUMO

Human embryonic stem cell (hESC)-based assay systems and genetically modified hESCs are very useful tools for screening drugs that regulate stemness and differentiation and for studying the molecular mechanisms involved in hESC fate determination. For these types of studies, feeder cell-dependent cultures of hESCs are often problematic because the physiology of the feeder cells is perturbed by the drug treatments or genetic modifications, which potentially obscures research outcomes. In this study, we evaluated three commonly used feeder-free culture conditions to determine whether they supported the undifferentiated growth of hESCs and to determine whether the hESCs grown in these conditions displayed gene expression patterns that were similar to the expression patterns of feeder cell-dependent hESCs. Our results demonstrate that hESCs grown in the three feeder-free conditions expressed undifferentiation marker genes as strongly as hESCs that were grown in the feeder-dependent cultures. Furthermore, genome-wide gene expression profiles indicated that the gene expression patterns of hESCs that were grown under feeder-free or feeder-dependent culture conditions were highly similar. These results indicate that the feeder-free culture conditions support the undifferentiated growth of hESCs as effectively as the feeder-dependent culture conditions. Therefore, feeder-free culture conditions are potentially suitable for drug screening and for the genetic manipulation of hESCs in basic research.


Assuntos
Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Regulação da Expressão Gênica , Biomarcadores/metabolismo , Técnicas de Cultura de Células/métodos , Diferenciação Celular/genética , Proliferação de Células , Células Cultivadas , Técnicas de Cocultura/métodos , Células-Tronco Embrionárias/fisiologia , Perfilação da Expressão Gênica , Genoma Humano , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA