Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Arch Microbiol ; 197(1): 79-89, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25362506

RESUMO

Nitrosomonas europaea and Nitrobacter winogradskyi were grown singly and in co-culture in chemostats to probe for physiological differences between the two growth conditions. Co-culture growth medium containing 60 mM NH4 (+) resulted in a cell density (0.20-0.29 OD600) greater than the sum of the densities in single chemostat cultures, i.e., 0.09-0.14 OD600 for N. europaea with 60 mM NH4 (+)and 0.04-0.06 OD600 for N. winogradskyi with 60 mM NO2 (-). The NO2 (-)- and NH4 (+)-dependent O2 uptake rates, qRT-PCR, and microscopic observations indicated that in co-culture, N. europaea contributed ~0.20 OD600 (~80 %) and N. winogradskyi ~0.05 OD600 (~20 %). In co-culture, the transcriptomes showed that the mRNA levels of 773 genes in N. europaea (30.2 % of the genes) and of 372 genes in N. winogradskyi (11.8 % of the genes) changed significantly. Total cell growth and the analysis of the transcriptome revealed that in co-culture, N. europaea benefits more than N. winogradskyi.


Assuntos
Interações Microbianas , Nitrobacter/crescimento & desenvolvimento , Nitrobacter/metabolismo , Nitrosomonas europaea/crescimento & desenvolvimento , Nitrosomonas europaea/metabolismo , Amônia/metabolismo , Carga Bacteriana , Dióxido de Carbono/metabolismo , Técnicas de Cocultura , Meios de Cultura , Metabolismo Energético , Expressão Gênica , Genes Bacterianos , Movimento , Nitritos/metabolismo , Nitrobacter/genética , Nitrosomonas europaea/genética , Consumo de Oxigênio , Transcrição Gênica , Transcriptoma
2.
Mol Plant Microbe Interact ; 18(4): 275-82, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15828679

RESUMO

Pathovars of Pseudomonas syringae interact with their plant hosts via the action of Hrp outer protein (Hop) effector proteins, injected into plant cells by the type III secretion system (TTSS). Recent availability of complete genome sequences for a number of P. syringae pathovars has led to a significant increase in the rate of effector discovery. However, lack of a systematic nomenclature has resulted in multiple names being assigned to the same Hop, unrelated Hops designated by the same alphabetic character, and failure of name choices to reflect consistent standards of experimental confirmation or phylogenetic relatedness. Therefore, specific experimental and bioinformatic criteria are proposed for proteins to be designated as Hops. A generic Hop name structure, HopXY#pv strain, also is proposed, wherein family membership is indicated by the alphabetic characters, subgroup membership numerically, and source pathovar and strain in subscript. Guidelines are provided for phylogenetic characterization and name selection for Hops that are novel, related to previously characterized Hops, chimeras, pseudogenes, truncations, or nonexpressed alleles. Phylogenetic analyses of previously characterized Hops are described, the results of which have been used to guide their integration into the proposed nomenclature.


Assuntos
Proteínas de Bactérias/genética , Pseudomonas syringae/genética , Terminologia como Assunto , Proteínas de Bactérias/classificação , Guias como Assunto , Funções Verossimilhança , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA