RESUMO
We fabricate top-gate transistors on the three-layer molybdenum disulfide (MoS2) with three, two, and one layers in the source and drain regions using atomic layer etching (ALE). In the presence of ALE, the device at zero gate voltage can exhibit high and low levels of drain current under the forward and reverse gate bias, respectively. The hysteresis loop on the transfer curve of transistor indicates that two distinct charge states exist in the device within a range of gate bias. A long retention time of the charge is observed. Unlike conventional semiconductor memories with transistors and capacitors, the two-dimensional (2D) material itself plays two parts in the current conduction and charge storage. The persistent charge storage and memory operation of the multilayer MoS2transistors with thicknesses of a few atomic layer will further expand the device application of 2D materials with reduced linewidths.
RESUMO
Bottom-gate transistors with mono-layer MoS2channels and polycrystalline antimonene source/drain contact electrodes deposited at 75 °C are fabricated. Significant performance enhancement of field-effect mobility 11.80 cm2V-1·s-1and >106ON/OFF ratio are observed for the device. Increasing photocurrents are also observed for the MoS2transistor under light irradiation, which is attributed to the reduced carrier recombination at the metal/2D material interfaces. The results have demonstrated that besides the matching of work function values with the 2D material channel, the crystallinity of the contact electrodes is the other important parameter for the Ohmic contact formation of 2D material devices.
RESUMO
With additional precursor soaking, a thin Al2O3 dielectric layer can be grown on mono-layer MoS2 by using atomic layer deposition (ALD). Similar optical characteristics are observed before and after ALD growth for the mono-layer MoS2, which indicates that minor damage to the thin 2D material film is introduced during the growth procedure. With the thin separation layer, luminescence enhancement and dual-color emission are observed by transferring MoS2 and WS2 mono-layer 2D materials to 5 nm Al2O3/mono-layer MoS2 samples, respectively. The results demonstrate that with careful treatment of the interfaces of 2D crystals with other materials, different stacked structures can be established.
RESUMO
Zinc-tin-oxide thin-film transistors were prepared by radio frequency magnetron co-sputtering, while an identical zinc-tin-oxide thin film was deposited simultaneously on a clear glass substrate to facilitate measurements of the optical properties. When we adjusted the deposition power of ZnO and SnO2, the bandgap of the amorphous thin film was dominated by the deposition power of SnO2. Since the thin-film transistor has obvious absorption in the ultraviolet region owing to the wide bandgap, the drain current increases with the generation of electron-hole pairs. As part of these investigations, a zinc-tin-oxide thin-film transistor has been fabricated that appears to be very promising for ultraviolet applications.
RESUMO
The ZnO nanostructure environmental sensors were prepared via the three-dimensional through silicon via (3D-TSV) technique. For 3D-TSV, the diameter and length of the Si via were about 200 and 400 µm, respectively. For nitrogen oxide (NO), the measured responses were around ~12, ~16, and ~20% when the concentrations of the injected NO gas were 20, 40 and 60 ppm, respectively. For humidity and temperature sensing, the measured nanowire current increased logarithmically with increasing chamber temperature. The response to relative humidity increased with increasing temperature.
RESUMO
In this study, zinc indium tin oxide thin-film transistors (ZITO TFTs) were fabricated by the radio frequency (RF) sputtering deposition method. Adding indium cations to ZnO by co-sputtering allows the development of ZITO TFTs with improved performance. Material characterization revealed that ZITO TFTs have a threshold voltage of 0.9 V, a subthreshold swing of 0.294 V/decade, a field-effect mobility of 5.32 cm2/Vs, and an on-off ratio of 4.7 × 105. Furthermore, an investigation of the photosensitivity of the fabricated devices was conducted by an illumination test. The responsivity of ZITO TFTs was 26 mA/W, with 330-nm illumination and a gate bias of -1 V. The UV-to-visible rejection ratio for ZITO TFTs was 2706. ZITO TFTs were observed to have greater UV light sensitivity than that of ZnO TFTs. We believe that these results suggest a significant step toward achieving high photosensitivity. In addition, the ZITO semiconductor system could be a promising candidate for use in high performance transparent TFTs, as well as further sensing applications.
RESUMO
We demonstrate indium gallium nitride/gallium nitride/aluminum nitride (AlN/GaN/InGaN) multi-quantum-well (MQW) ultraviolet (UV) light-emitting diodes (LEDs) to improve light output power. Similar to conventional UV LEDs with AlGaN/InGaN MQWs, UV LEDs with AlN/GaN/InGaN MQWs have forward voltages (V(f)'s) ranging from 3.21 V to 3.29 V at 350 mA. Each emission peak wavelength of AlN/GaN/InGaN MQW UV LEDs presents 350 mA output power greater than that of the corresponding emission peak wavelength of AlGaN/InGaN MQW UV LEDs. The light output power at 350mA of AlN/GaN/InGaN MQWs UV LEDs with 375 nm emission wavelength can reach around 26.7% light output power enhancement in magnitude compared to the AlGaN/InGaN MQWs UV LEDs with same emission wavelength. But 350mA light output power of AlN/GaN/InGaN MQWs UV LEDs with emission wavelength of 395nm could only have light output power enhancement of 2.43% in magnitude compared with the same emission wavelength AlGaN/InGaN MQWs UV LEDs. Moreover, AlN/GaN/InGaN MQWs present better InGaN thickness uniformity, well/barrier interface quality and less large size pits than AlGaN/InGaN MQWs, causing AlN/GaN/InGaN MQW UV LEDs to have less reverse leakage currents at -20 V. Furthermore, AlN/GaN/InGaN MQW UV LEDs have the 2-kV human body mode (HBM) electrostatic discharge (ESD) pass yield of 85%, which is 15% more than the 2-kV HBM ESD pass yield of AlGaN/InGaN MQW UV LEDs of 70%.
RESUMO
A ZnO-nanowire photodetector was prepared using three-dimensional through silicon via (TSV) technology. The diameter and depth of the Si via were about 80 µm and 170 µm, respectively. Cu uniformly filled in each TSV, whose average resistance was about 0.9 mΩ. For the three-dimensional ZnO-nanowire photodetector, the photocurrent increased rapidly with a time constant of about 1 s when ultraviolet excitation was applied. The on-off current ratio was about 104.
RESUMO
In the past decades, the doping of ZnO one-dimensional nanostructures has attracted a great deal of attention due to the variety of possible morphologies, large surface-to-volume ratios, simple and low cost processing, and excellent physical properties for fabricating high-performance electronic, magnetic, and optoelectronic devices. This article mainly concentrates on recent advances regarding the doping of ZnO one-dimensional nanostructures, including a brief overview of the vapor phase transport method and hydrothermal method, as well as the fabrication process for photodetectors. The dopant elements include B, Al, Ga, In, N, P, As, Sb, Ag, Cu, Ti, Na, K, Li, La, C, F, Cl, H, Mg, Mn, S, and Sn. The various dopants which act as acceptors or donors to realize either p-type or n-type are discussed. Doping to alter optical properties is also considered. Lastly, the perspectives and future research outlook of doped ZnO nanostructures are summarized.
Assuntos
Nanoestruturas , Óxido de Zinco/química , Microscopia Eletrônica de VarreduraRESUMO
The operating voltage, light output power, and efficiency droops of GaN-based light emitting diodes (LEDs) were improved by introducing Mg-doped AlGaN/InGaN superlattice (SL) electron blocking layer (EBL). The thicker InGaN layers of AlGaN/InGaN SL EBL could have a larger effective electron potential height and lower effective hole potential height than that of AlGaN EBL. This thicker InGaN layer could prevent electron leakage into the p-region of LEDs and improve hole injection efficiency to achieve a higher light output power and less efficiency droops with the injection current. The low lateral resistivity of Mg-doped AlGaN/InGaN SL would have superior current spreading at high current injection.
RESUMO
We have demonstrated a gallium nitride (GaN)-based green light-emitting diode (LED) with graphene/indium tin oxide (ITO) transparent contact. The ohmic characteristic of the p-GaN and graphene/ITO contact could be preformed by annealing at 500 °C for 5 min. The specific contact resistance of p-GaN/graphene/ITO (3.72E-3 Ω·cm²) is one order less than that of p-GaN/ITO. In addition, the 20-mA forward voltage of LEDs with graphene/ITO transparent (3.05 V) is 0.09 V lower than that of ITO LEDs (3.14 V). Besides, We have got an output power enhancement of 11% on LEDs with graphene/ITO transparent contact.
RESUMO
Compared with conventionally grown thin InGaN wells, thick InGaN wells with digitally grown InN/GaN exhibit superior optical properties. The activation energy (48 meV) of thick InGaN wells (generated by digital InN/GaN growth from temperature-dependent integrated photoluminescence intensity) is larger than the activation energy (25 meV) of conventionally grown thin InGaN wells. Moreover, thick InGaN wells with digitally grown InN/GaN exhibit a smaller σ value (the degree of localization effects) of 19 meV than that of conventionally grown thin InGaN wells (23 meV). Compared with green light-emitting diodes (LEDs) with conventional thin InGaN wells, the improvement in 20-A/cm² output power for LEDs containing thick InGaN wells with digitally grown InN/GaN is approximately 23%.
RESUMO
In this study, we theoretically investigate the near-infrared (NIR) photonic band structure (PBS) in a one-dimensional semiconductor metamaterial (MM) photonic crystal (PC). The considered PC is (AB)N, where N is the stack number, A is a dielectric, and B is a semiconductor MM composed of Al-doped ZnO and ZnO. It is found that the photonic band gaps (PBGs) can be tunable by the variations in filling factor, and thicknesses of A and B. It is of particular interest to see that the PBG will vanish when the thicknesses of A and B satisfy a certain condition. The results provide fundamental information on a NIR PBS that could be of technical use in photonic applications using such a semiconductor MM. The band gap vanishing makes it possible to design a wider band pass filter at NIR based on the use of such a PC.
RESUMO
This work investigates the production of hydrogen (H2) and formic acid (HCOOH) through a photoelectrochemical (PEC) approach. Nickel oxide nanofilms prepared by sputtering capped on n-GaN photoelectrodes were employed to achieve simultaneous water photoelectrolysis and CO2 reduction. The study delves into the role of the nickel oxide layer, examining its potential as a catalyst and/or a protective layer. Furthermore, the influence of nickel oxide layer thickness on the performance of the photoelectrodes is explored. In essence, appropriate nickel oxide thickness is beneficial in increasing the photocurrent of the PEC reaction. The observed improvements in photocurrents and, hence, the production rates can be attributed to the functionality of the nickel oxide nanofilm: mitigating the negative influence of surface defects on n-GaN and facilitating the separation of photogenerated electron-hole pairs at the electrolyte/n-GaN interface. Specifically, PEC cells utilizing the 4 nm-thick nickel oxide nanofilms deposited on n-gallium nitride (n-GaN) electrodes demonstrate a significant enhancement in hydrogen and formic acid production rates. These rates were at least 45% higher compared to PECs using bare n-GaN electrodes.
RESUMO
With the growing concern over the adverse effects of environmental pollution on human health, the combination of environmentally friendly and nontoxic biomaterials with metal oxide semiconductor materials for electronic devices has emerged as a prominent trend in current research. In this study, we utilized 150 mg apple biotemplates to assist in the hydrothermal synthesis of ZnO nanospheres. It successfully achieved high sensitivity for detecting 35 and 350 ppb NO2 at room temperature, with responses of 13.74 and 132.44%, respectively. Simultaneously, the 5-cycle repeatability and multiple-gas selectivity exhibited significant improvements. The ZnO nanospheres demonstrated enhanced sensing performance compared to pure ZnO nanorods, which is attributed to the following mechanisms: reason I, the modified surface morphology increasing the surface-to-volume ratio; reason II, an increase in oxygen vacancies, leading to reduced crystallinity and a higher electron concentration; reason III, incorporation of carbon elements on the nanostructure surface to increase active sites. The novel gas sensor assisted by the apple pectin biotemplate offers a promising solution for NO2 gas detection, featuring low operating temperatures, low concentrations, and high response sensitivity.
RESUMO
The high-density single crystalline Ga-doped ZnO nanorods were grown on a glass substrate using the hydrothermal method. The average length and diameter of the nanorods were approximately 2.36 microm and 90 nm, respectively. The Ga-doped ZnO nanorods had hexagonal wurtzite structure and a sharp morphology. The morphology and structure of nanorods were characterized by field-emission scanning electron microscopy (FESEM), high-resolution transmission electron microscope (HRTEM), X-ray diffraction (XRD) and photoluminescence (PL) spectroscopy, when the growth temperature of the nanorods was 90 degrees C, which ensured high crystalline quality.
RESUMO
Two-dimensional (2D) ZnO nanowalls were prepared on a glass substrate by a low-temperature thermal evaporation method, in which the fabrication process did not use a metal catalyst or the pre-deposition of a ZnO seed layer on the substrate. The nanowalls were characterized for their surface morphology, and the structural and optical properties were investigated using scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM), and photoluminescence (PL). The fabricated ZnO nanowalls have many advantages, such as low growth temperature and good crystal quality, while being fast, low cost, and easy to fabricate. Methane sensor measurements of the ZnO nanowalls show a high sensitivity to methane gas, and rapid response and recovery times. These unique characteristics are attributed to the high surface-to-volume ratio of the ZnO nanowalls. Thus, the ZnO nanowall methane sensor is a potential gas sensor candidate owing to its good performance.
Assuntos
Gases/isolamento & purificação , Metano/isolamento & purificação , Óxido de Zinco/química , Catálise , Microscopia Eletrônica de Transmissão , Nanofios/químicaRESUMO
This paper proposes a dual-band transparent antenna using frame-structured metal mesh conductive film (MMCF). The frame-structured metal mesh conductive film is based on the conductive-coated thin film and forms a narrow strip surrounding the edge of the antenna. The frame-structured metal mesh conductive film can resist considerable current leakage on the edge of the conductive strip to improve the antenna's efficiency by 51% at 2.1 GHz and 53% at 3.6 GHz. As a result, the transparent dual-band antenna has an operating bandwidth of 1.9-2.4 GHz and 3.2-4.1 GHz with a high transparency of 80%, which make it valuable to the applications of biomedical electronic components, wearable devices, and automobile vehicles.
RESUMO
Different oxygen partial-pressure MgGa2O4-resistive RAMs (RRAMs) are fabricated to investigate the resistive switching behaviors. The X-ray photoelectron spectroscopy results, set voltage, reset voltage, cycling endurance, and retention time are drawn for comparison. With the increasing oxygen ratio gas flow, the resistive switching characteristics of MgGa2O4 RRAM are drastically elevated by changing the fabrication conditions of the RS layer. Moreover, we portray a filament model to explain the most likely mechanism associated with the generation and rupture of conductive filaments composed of oxygen vacancies. The formation of the interfacial layer (AlO x ) and the participation of the Joule heating effect are included to explain the highly distributed high-resistance state (HRS). The high randomness among switching cycles for memory application should be prevented, but it is suitable for the physical unclonable function. The relationship between HRS and the next time set voltage shows a strong correlation, and the conduction mechanisms of the low-resistance state (LRS) and HRS correspond to ohmic conduction and space charge-limited conduction, respectively. Meanwhile, the RRAM undergoes 10,000 s retention tests, and the two resistance states can be distinguished without obvious alternation or degradation. A favorable cycling endurance and retention time achieved by optimizing the fabrication parameters of Al/MgGa2O4/Pt RRAM have the potential for nonvolatile memristors and information security applications.
RESUMO
We demonstrate in-plane gate transistors based on the molybdenum disulfide (MoS2)/graphene hetero-structure. The graphene works as channels while MoS2 functions as passivation layers. The weak hysteresis of the device suggests that the MoS2 layer can effectively passivate the graphene channel. The characteristics of devices with and without removal of MoS2 between electrodes and graphene are also compared. The device with direct electrode/graphene contact shows a reduced contact resistance, increased drain current, and enhanced field-effect mobility. The higher field-effect mobility than that obtained through Hall measurement indicates that more carriers are present in the channel, rendering it more conductive.