Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
J Immunol ; 212(5): 825-833, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38214610

RESUMO

Global vaccination against COVID-19 has been widely successful; however, there is a need for complementary immunotherapies in severe forms of the disease and in immunocompromised patients. Cytotoxic CD8+ T cells have a crucial role in disease control, but their function can be dysregulated in severe forms of the disease. We report here a cell-based approach using a plasmacytoid dendritic cell line (PDC*line) to expand in vitro specific CD8+ responses against COVID-19 Ags. We tested the immunogenicity of eight HLA-A*02:01 restricted peptides derived from diverse SARS-Cov-2 proteins, selected by bioinformatics analyses in unexposed and convalescent donors. Higher ex vivo frequencies of specific T cells against these peptides were found in convalescent donors compared with unexposed donors, suggesting in situ T cell expansion upon viral infection. The peptide-loaded PDC*line induced robust CD8+ responses with total amplification rates that led up to a 198-fold increase in peptide-specific CD8+ T cell frequencies for a single donor. Of note, six of eight selected peptides provided significant amplifications, all of which were conserved between SARS-CoV variants and derived from the membrane, the spike protein, the nucleoprotein, and the ORF1ab. Amplified and cloned antiviral CD8+ T cells secreted IFN-γ upon peptide-specific activation. Furthermore, specific TCR sequences were identified for two highly immunogenic Ags. Hence, PDC*line represents an efficient platform to identify immunogenic viral targets for future immunotherapies.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Epitopos de Linfócito T , Linfócitos T CD8-Positivos , Peptídeos , Células Dendríticas
2.
Immunology ; 171(2): 286-311, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37991344

RESUMO

Dendritic cell (DC) subsets play a crucial role in shaping anti-tumour immunity. Cancer escapes from the control immune system by hijacking DC functions. Yet, bases for such subversion are only partially understood. Tumour cells display aberrant glycan motifs on surface glycoproteins and glycolipids. Such carbohydrate patterns can be sensed by DCs through C-type lectin receptors (CLRs) that are critical to shape and orientate immune responses. We recently demonstrated that melanoma tumour cells harboured an aberrant 'glyco-code,' and that circulating and tumour-infiltrating DCs from melanoma patients displayed major perturbations in their CLR profiles. To decipher whether melanoma, through aberrant glycan patterns, may exploit CLR pathways to mislead DCs and evade immune control, we explored the impact of glycan motifs aberrantly found in melanoma (neoglycoproteins [NeoGP] functionalised with Gal, Man, GalNAc, s-Tn, fucose [Fuc] and GlcNAc residues) on features of human DC subsets (cDC2s, cDC1s and pDCs). We examined the ability of glycans to bind to purified DCs, and assessed their impact on DC basal properties and functional features using flow cytometry, confocal microscopy and multiplex secreted protein analysis. DC subsets differentially bound and internalised NeoGP depending on the nature of the glycan. Strikingly, Fuc directly remodelled the expression of activation markers and immune checkpoints, as well as the cytokine/chemokine secretion profile of DC subsets. NeoGP interfered with Toll like receptor (TLR)-signalling and pre-conditioned DCs to exhibit an altered response to subsequent TLR stimulation, dampening antitumor mediators while triggering pro-tumoral factors. We further demonstrated that DC subsets can bind NeoGP through CLRs, and identified GalNAc/MGL and s-Tn/ C-type lectin-like receptor 2 (CLEC2) as potential candidates. Moreover, DC dysfunction induced by tumour-associated carbohydrate molecules may be reversed by interfering with the glycan/CLR axis. These findings revealed the glycan/CLR axis as a promising checkpoint to exploit in order to reshape potent antitumor immunity while impeding immunosuppressive pathways triggered by aberrant tumour glycosylation patterns. This may rescue DCs from tumour hijacking and improve clinical success in cancer patients.


Assuntos
Lectinas Tipo C , Melanoma , Masculino , Humanos , Células Dendríticas , Glicoproteínas , Receptores Toll-Like/metabolismo , Polissacarídeos/metabolismo
3.
Immunity ; 43(2): 277-88, 2015 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-26231120

RESUMO

Plasmacytoid dendritic cells (pDCs) are primary producers of type I interferon (IFN) in response to viruses. The IFN-producing capacity of pDCs is regulated by specific inhibitory receptors, yet none of the known receptors are conserved in evolution. We report that within the human immune system, receptor protein tyrosine phosphatase sigma (PTPRS) is expressed specifically on pDCs. Surface PTPRS was rapidly downregulated after pDC activation, and only PTPRS(-) pDCs produced IFN-α. Antibody-mediated PTPRS crosslinking inhibited pDC activation, whereas PTPRS knockdown enhanced IFN response in a pDC cell line. Similarly, murine Ptprs and the homologous receptor phosphatase Ptprf were specifically co-expressed in murine pDCs. Haplodeficiency or DC-specific deletion of Ptprs on Ptprf-deficient background were associated with enhanced IFN response of pDCs, leukocyte infiltration in the intestine and mild colitis. Thus, PTPRS represents an evolutionarily conserved pDC-specific inhibitory receptor, and is required to prevent spontaneous IFN production and immune-mediated intestinal inflammation.


Assuntos
Colite/imunologia , Células Dendríticas/imunologia , Intestinos/imunologia , Leucócitos/fisiologia , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/metabolismo , Animais , Diferenciação Celular , Movimento Celular/genética , Células Cultivadas , Colite/genética , Modelos Animais de Doenças , Humanos , Interferon gama/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/genética
4.
Int J Mol Sci ; 24(3)2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36768214

RESUMO

The purpose of immune checkpoint inhibitor (ICI)-based therapies is to help the patient's immune system to combat tumors by restoring the immune response mediated by CD8+ cytotoxic T cells. Despite impressive clinical responses, most patients do not respond to ICIs. Therapeutic vaccines with autologous professional antigen-presenting cells, including dendritic cells, do not show yet significant clinical benefit. To improve these approaches, we have developed a new therapeutic vaccine based on an allogeneic plasmacytoid dendritic cell line (PDC*line), which efficiently activates the CD8+ T-cell response in the context of melanoma. The goal of the study is to demonstrate the potential of this platform to activate circulating tumor-specific CD8+ T cells in patients with lung cancer, specifically non-small-cell lung cancer (NSCLC). PDC*line cells loaded with peptides derived from tumor antigens are used to stimulate the peripheral blood mononuclear cells of NSCLC patients. Very interestingly, we demonstrate an efficient activation of specific T cells for at least two tumor antigens in 69% of patients irrespective of tumor antigen mRNA overexpression and NSCLC subtype. We also show, for the first time, that the antitumor CD8+ T-cell expansion is considerably improved by clinical-grade anti-PD-1 antibodies. Using PDC*line cells as an antigen presentation platform, we show that circulating antitumor CD8+ T cells from lung cancer patients can be activated, and we demonstrate the synergistic effect of anti-PD-1 on this expansion. These results are encouraging for the development of a PDC*line-based vaccine in NSCLC patients, especially in combination with ICIs.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Leucócitos Mononucleares/patologia , Linfócitos T CD8-Positivos , Antígenos de Neoplasias , Células Dendríticas
5.
J Transl Med ; 17(1): 312, 2019 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-31533744

RESUMO

BACKGROUND: Despite major advances in rheumatoid arthritis outcome, not all patients achieve remission, and there is still an unmet need for new therapeutic approaches. This study aimed at evaluating in a pre-clinical murine model the efficacy of extracorporeal photopheresis (ECP) in the treatment of rheumatoid arthritis, and to provide a relevant study model for dissecting ECP mechanism of action in autoimmune diseases. METHODS: DBA/1 mice were immunized by subcutaneous injection of bovine collagen type II, in order to initiate the development of collagen-induced arthritis (CIA). Arthritic mice received 3 ECP treatments every other day, with psoralen + UVA-treated (PUVA) spleen cells obtained from arthritic mice. Arthritis score was measured, and immune cell subsets were monitored. RESULTS: ECP-treated mice recovered from arthritis as evidenced by a decreasing arthritic score over time. Significant decrease in the frequency of Th17 cells in the spleen of treated mice was observed. Interestingly, while PUVA-treated spleen cells from healthy mouse had no effect, PUVA-treated arthritic mouse derived-spleen cells were able to induce control of arthritis development. CONCLUSIONS: Our results demonstrate that ECP can control arthritis in CIA-mice, and clarifies ECP mechanisms of action, showing ECP efficacy and Th17 decrease only when arthritogenic T cells are contained within the treated sample. These data represent a pre-clinical proof of concept supporting the use of ECP in the treatment of RA in Human.


Assuntos
Artrite Reumatoide/radioterapia , Fotoferese , Animais , Artrite Reumatoide/imunologia , Artrite Reumatoide/patologia , Progressão da Doença , Masculino , Camundongos Endogâmicos DBA , Células Th17/imunologia , Resultado do Tratamento
6.
J Clin Apher ; 34(4): 450-460, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30860623

RESUMO

BACKGROUND: Extracorporeal photopheresis (ECP) is an effective therapy for graft vs host disease (GVHD), based on infusion of UVA-irradiated and 8 methoxy-psoralen (PUVA)-treated leukocytes. Reinfusion of these apoptosing cells affects the functionality of pathogenic T cells through poorly understood immunomodulatory mechanisms. Apoptosis is usually a silent, tolerance-associated process, but can also be immunogenic, depending on death-inducers and environmental context. METHODS: To understand ECP mechanisms of action, human alloreactive T cells generated in an in vitro model mimicking GVHD were used, as well as primary cells from GVHD patients. Cells were submitted to PUVA treatment and their phenotype and immunogenicity were analyzed, using cell culture and flow cytometry. RESULTS: In vitro PUVA treatment induced the expression of several damage-associated molecular patterns (DAMPs) by dying T cells (calreticulin, high-mobility group box-1, and to a lesser extent heat shock proteins 70 and 90), especially upon T cell activation, leading to their phagocytosis by macrophages and dendritic cells (DCs). Allogeneic DCs preincubated with PUVA treated T cells induced comparable naive T cell proliferation and polarization as control allogeneic DC. CONCLUSION: Altogether, in our experimental settings, in vitro PUVA-treatment induces a partially immunogenic phenotype allowing phagocytosis of apoptotic cells by macrophages and DC, however not sufficient to induce dendritic cell maturation and T cell activation. These data refine current models of ECP-mediated immune modulation and emphasize the need to further analyze PUVA-treated cell interactions with immune cells.


Assuntos
Calreticulina/metabolismo , Doença Enxerto-Hospedeiro/terapia , Proteína HMGB1/metabolismo , Fotoferese/métodos , Linfócitos T/metabolismo , Apoptose , Células Cultivadas , Células Dendríticas/imunologia , Humanos , Macrófagos/imunologia , Metoxaleno , Fagocitose , Linfócitos T/patologia , Raios Ultravioleta
7.
Blood ; 127(24): 3040-53, 2016 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-27060168

RESUMO

Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a rare and highly aggressive leukemia for which knowledge on disease mechanisms and effective therapies are currently lacking. Only a handful of recurring genetic mutations have been identified and none is specific to BPDCN. In this study, through molecular cloning in an index case that presented a balanced t(3;5)(q21;q31) and molecular cytogenetic analyses in a further 46 cases, we identify monoallelic deletion of NR3C1 (5q31), encoding the glucocorticoid receptor (GCR), in 13 of 47 (28%) BPDCN patients. Targeted deep sequencing in 36 BPDCN cases, including 10 with NR3C1 deletion, did not reveal NR3C1 point mutations or indels. Haploinsufficiency for NR3C1 defined a subset of BPDCN with lowered GCR expression and extremely poor overall survival (P = .0006). Consistent with a role for GCR in tumor suppression, functional analyses coupled with gene expression profiling identified corticoresistance and loss-of-EZH2 function as major downstream consequences of NR3C1 deletion in BPDCN. Subsequently, more detailed analyses of the t(3;5)(q21;q31) revealed fusion of NR3C1 to a long noncoding RNA (lncRNA) gene (lincRNA-3q) that encodes a novel, nuclear, noncoding RNA involved in the regulation of leukemia stem cell programs and G1/S transition, via E2F. Overexpression of lincRNA-3q was a consistent feature of malignant cells and could be abrogated by bromodomain and extraterminal domain (BET) protein inhibition. Taken together, this work points to NR3C1 as a haploinsufficient tumor suppressor in a subset of BPDCN and identifies BET inhibition, acting at least partially via lncRNA blockade, as a novel treatment option in BPDCN.


Assuntos
Células Dendríticas/patologia , Haploinsuficiência , Leucemia/genética , Receptores de Glucocorticoides/genética , Neoplasias Cutâneas/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Células Dendríticas/metabolismo , Regulação Leucêmica da Expressão Gênica , Humanos , Leucemia/patologia , Pessoa de Meia-Idade , Invasividade Neoplásica , RNA Longo não Codificante/genética , Receptores de Glucocorticoides/química , Neoplasias Cutâneas/patologia , Células Tumorais Cultivadas , Adulto Jovem
8.
J Immunol ; 194(10): 4737-49, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25862818

RESUMO

Scavenger receptor class B, member 2 (SCARB2) is essential for endosome biogenesis and reorganization and serves as a receptor for both ß-glucocerebrosidase and enterovirus 71. However, little is known about its function in innate immune cells. In this study, we show that, among human peripheral blood cells, SCARB2 is most highly expressed in plasmacytoid dendritic cells (pDCs), and its expression is further upregulated by CpG oligodeoxynucleotide stimulation. Knockdown of SCARB2 in pDC cell line GEN2.2 dramatically reduces CpG-induced type I IFN production. Detailed studies reveal that SCARB2 localizes in late endosome/lysosome of pDCs, and knockdown of SCARB2 does not affect CpG oligodeoxynucleotide uptake but results in the retention of TLR9 in the endoplasmic reticulum and an impaired nuclear translocation of IFN regulatory factor 7. The IFN-I production by TLR7 ligand stimulation is also impaired by SCARB2 knockdown. However, SCARB2 is not essential for influenza virus or HSV-induced IFN-I production. These findings suggest that SCARB2 regulates TLR9-dependent IFN-I production of pDCs by mediating endosomal translocation of TLR9 and nuclear translocation of IFN regulatory factor 7.


Assuntos
Células Dendríticas/imunologia , Fator Regulador 7 de Interferon/metabolismo , Interferon Tipo I/biossíntese , Proteínas de Membrana Lisossomal/imunologia , Receptores Depuradores/imunologia , Receptor Toll-Like 9/metabolismo , Western Blotting , Células Cultivadas , Células Dendríticas/metabolismo , Endossomos/metabolismo , Citometria de Fluxo , Imunofluorescência , Humanos , Proteínas de Membrana Lisossomal/metabolismo , Transporte Proteico/fisiologia , Reação em Cadeia da Polimerase em Tempo Real , Receptores Depuradores/metabolismo
9.
Proc Natl Acad Sci U S A ; 109(35): 14122-7, 2012 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-22879398

RESUMO

HIV modulates plasmacytoid dendritic cell (pDC) activation via Toll-like receptor 7, inducing type I IFN and inflammatory cytokines. Simultaneously, pDCs up-regulate the expression of indoleamine 2,3 dioxygenase (IDO), which is essential for the induction of regulatory T cells (Tregs), which function to down-modulate immune activation. Here we demonstrate the crucial importance of the noncanonical NF-κB pathway in the establishment of this immunoregulatory phenotype in pDCs. In response to HIV, the noncanonical NF-κB pathway directly induces IDO and involves the recruitment of TNF receptor-associated factor-3 to the Toll-like receptor/MyD88 complex, NF-κB-inducing kinase-dependent IκB kinase-α activation, and p52/RelB nuclear translocation. We also show that pDC-induced Tregs can inhibit conventional DC (cDC) maturation partially through cytotoxic T-lymphocyte antigen (CTLA)-4 engagement. Furthermore, CTLA-4 induces IDO in cDCs in a NF-κB-inducing kinase-dependent way. These CTLA-4-conditioned cDCs can in turn induce Treg differentiation in an IDO-dependent manner. Thus, the noncanonical NF-κB pathway is integral in controlling immunoregulatory phenotypes of both pDCs and cDCs.


Assuntos
Células Dendríticas/imunologia , Células Dendríticas/virologia , Infecções por HIV/imunologia , Subunidade p52 de NF-kappa B/imunologia , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/virologia , Expressão Gênica/imunologia , Técnicas de Silenciamento de Genes , Infecções por HIV/metabolismo , Humanos , Quinase I-kappa B/genética , Quinase I-kappa B/imunologia , Quinase I-kappa B/metabolismo , Imunofenotipagem , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Indolamina-Pirrol 2,3,-Dioxigenase/imunologia , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Fator 88 de Diferenciação Mieloide/imunologia , Fator 88 de Diferenciação Mieloide/metabolismo , Subunidade p52 de NF-kappa B/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/imunologia , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/imunologia , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/virologia , Fator 3 Associado a Receptor de TNF/imunologia , Fator 3 Associado a Receptor de TNF/metabolismo , Quinase Induzida por NF-kappaB
10.
J Immunol ; 189(2): 786-92, 2012 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-22706086

RESUMO

The human plasmacytoid dendritic cell (pDC) receptor BDCA2 forms a complex with the adaptor FcεR1γ to activate an ITAM-signaling cascade. BDCA2 receptor signaling negatively regulates the TLR7/9-mediated type 1 IFN responses in pDCs, which may play a key role in controlling self-DNA/RNA-induced autoimmunity. We report in this article that CD2-associated adaptor protein (CD2AP), which is highly expressed in human pDCs, positively regulates BDCA2/FcεR1γ receptor signaling. By immunoprecipitation and mass spectrometry analyses, we found that CD2AP bound to SHIP1. Knockdown of CD2AP or SHIP1 reduced the BDCA2/FcεR1γ-mediated ITAM signaling and blocked its inhibition of TLR9-mediated type 1 IFN production. Knockdown of CD2AP or SHIP1 also enhanced the ubiquitination and degradation of Syk and FcεR1γ that was mediated by the E3 ubiquitin ligase Cbl. This led us to discover that, upon BDCA2 cross-linking, the CD2AP/SHIP1 complex associated with Cbl and inhibited its E3 ubiquitin ligase activity. In human primary pDCs, cross-linking of the BDCA2/FcεR1γ complex induced the recruitment of the CD2AP/SHIP1/Cbl complex to the plasma membrane of pDCs, where it colocalized with the BDCA2/FcεR1γ complex. Therefore, CD2AP positively regulates BDCA2/FcεR1γ signaling by forming a complex with SHIP1 to inhibit the E3 ubiquitin ligase Cbl.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Proteínas do Citoesqueleto/fisiologia , Células Dendríticas/imunologia , Complexos Multiproteicos/fisiologia , Monoéster Fosfórico Hidrolases/fisiologia , Proteínas Proto-Oncogênicas c-cbl/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-cbl/metabolismo , Transdução de Sinais/imunologia , Regulação para Cima/imunologia , Células Cultivadas , Reagentes de Ligações Cruzadas/metabolismo , Células Dendríticas/enzimologia , Células Dendríticas/metabolismo , Células HEK293 , Humanos , Inositol Polifosfato 5-Fosfatases , Lectinas Tipo C/fisiologia , Glicoproteínas de Membrana/fisiologia , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases , Receptores Imunológicos/fisiologia
11.
PLoS Pathog ; 7(2): e1001284, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21379343

RESUMO

Cell-free HIV-1 virions are poor stimulators of type I interferon (IFN) production. We examined here how HIV-infected cells are recognized by plasmacytoid dendritic cells (pDCs) and by other cells. We show that infected lymphocytes are more potent inducers of IFN than virions. There are target cell-type differences in the recognition of infected lymphocytes. In primary pDCs and pDC-like cells, recognition occurs in large part through TLR7, as demonstrated by the use of inhibitors and by TLR7 silencing. Donor cells expressing replication-defective viruses, carrying mutated reverse transcriptase, integrase or nucleocapsid proteins induced IFN production by target cells as potently as wild-type virus. In contrast, Env-deleted or fusion defective HIV-1 mutants were less efficient, suggesting that in addition to TLR7, cytoplasmic cellular sensors may also mediate sensing of infected cells. Furthermore, in a model of TLR7-negative cells, we demonstrate that the IRF3 pathway, through a process requiring access of incoming viral material to the cytoplasm, allows sensing of HIV-infected lymphocytes. Therefore, detection of HIV-infected lymphocytes occurs through both endosomal and cytoplasmic pathways. Characterization of the mechanisms of innate recognition of HIV-infected cells allows a better understanding of the pathogenic and exacerbated immunologic events associated with HIV infection.


Assuntos
Células Dendríticas/imunologia , Infecções por HIV/imunologia , Infecções por HIV/virologia , Linfócitos/metabolismo , Linfócitos/virologia , Western Blotting , Células Cultivadas , Células Dendríticas/metabolismo , Células Dendríticas/virologia , Glicoproteínas/genética , Glicoproteínas/metabolismo , HIV , Infecções por HIV/metabolismo , Soropositividade para HIV , Células-Tronco Hematopoéticas/metabolismo , Humanos , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/metabolismo , Interferon-alfa/metabolismo , Linfócitos/imunologia , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Receptor 7 Toll-Like/genética , Receptor 7 Toll-Like/metabolismo , Vírion/patogenicidade , Replicação Viral
12.
J Immunol ; 187(1): 538-52, 2011 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-21613614

RESUMO

An abnormal neutrophil subset has been identified in the PBMC fractions from lupus patients. We have proposed that these low-density granulocytes (LDGs) play an important role in lupus pathogenesis by damaging endothelial cells and synthesizing increased levels of proinflammatory cytokines and type I IFNs. To directly establish LDGs as a distinct neutrophil subset, their gene array profiles were compared with those of autologous normal-density neutrophils and control neutrophils. LDGs significantly overexpress mRNA of various immunostimulatory bactericidal proteins and alarmins, relative to lupus and control neutrophils. In contrast, gene profiles of lupus normal-density neutrophils do not differ from those of controls. LDGs have heightened capacity to synthesize neutrophils extracellular traps (NETs), which display increased externalization of bactericidal, immunostimulatory proteins, and autoantigens, including LL-37, IL-17, and dsDNA. Through NETosis, LDGs have increased capacity to kill endothelial cells and to stimulate IFN-α synthesis by plasmacytoid dendritic cells. Affected skin and kidneys from lupus patients are infiltrated by netting neutrophils, which expose LL-37 and dsDNA. Tissue NETosis is associated with increased anti-dsDNA in sera. These results expand the potential pathogenic roles of aberrant lupus neutrophils and suggest that dysregulation of NET formation and its subsequent responses may play a prominent deleterious role.


Assuntos
Adjuvantes Imunológicos/toxicidade , Endotélio Vascular/imunologia , Endotélio Vascular/patologia , Lúpus Eritematoso Sistêmico/imunologia , Lúpus Eritematoso Sistêmico/patologia , Infiltração de Neutrófilos/imunologia , Autoantígenos/imunologia , Autoantígenos/toxicidade , Linhagem Celular , Testes Imunológicos de Citotoxicidade , Humanos , Contagem de Leucócitos , Nefrite Lúpica/imunologia , Nefrite Lúpica/patologia , Neutrófilos/imunologia , Neutrófilos/metabolismo , Neutrófilos/patologia , Análise de Sequência com Séries de Oligonucleotídeos
13.
Proc Natl Acad Sci U S A ; 107(34): 15181-6, 2010 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-20696886

RESUMO

Toll-like receptor 9 (TLR9) senses microbial DNA and triggers type I IFN responses in plasmacytoid dendritic cells (pDCs). Previous studies suggest the presence of myeloid differentiation primary response gene 88 (MyD88)-dependent DNA sensors other than TLR9 in pDCs. Using MS, we investigated C-phosphate-G (CpG)-binding proteins from human pDCs, pDC-cell lines, and interferon regulatory factor 7 (IRF7)-expressing B-cell lines. CpG-A selectively bound the aspartate-glutamate-any amino acid-aspartate/histidine (DExD/H)-box helicase 36 (DHX36), whereas CpG-B selectively bound DExD/H-box helicase 9 (DHX9). Although the aspartate-glutamate-alanine-histidine box motif (DEAH) domain of DHX36 was essential for CpG-A binding, the domain of unknown function 1605 (DUF1605 domain) of DHX9 was required for CpG-B binding. DHX36 is associated with IFN-alpha production and IRF7 nuclear translocation in response to CpG-A, but DHX9 is important for TNF-alpha and IL-6 production and NF-kappaB activation in response to CpG-B. Knocking down DHX9 or DHX36 significantly reduced the cytokine responses of pDCs to a DNA virus but had no effect on the cytokine responses to an RNA virus. We further showed that both DHX9 and DHX36 are localized within the cytosol and are directly bound to the Toll-interleukin receptor domain of MyD88 via their helicase-associated domain 2 and DUF domains. This study demonstrates that DHX9/DHX36 represent the MyD88-dependent DNA sensors in the cytosol of pDCs and suggests a much broader role for DHX helicases in viral sensing.


Assuntos
RNA Helicases DEAD-box/metabolismo , DNA Viral/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/virologia , Proteínas de Neoplasias/metabolismo , Linfócitos B/imunologia , Linfócitos B/metabolismo , Linfócitos B/virologia , Sequência de Bases , Sítios de Ligação , Linhagem Celular , Ilhas de CpG , RNA Helicases DEAD-box/antagonistas & inibidores , RNA Helicases DEAD-box/química , RNA Helicases DEAD-box/genética , Células Dendríticas/metabolismo , Humanos , Imunidade Inata , Fator Regulador 7 de Interferon/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , Subunidade p50 de NF-kappa B/metabolismo , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Filogenia , Estrutura Terciária de Proteína , RNA Interferente Pequeno/genética , Receptores da Transferrina/metabolismo , Transdução de Sinais
14.
Genes Cancer ; 14: 3-11, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36726965

RESUMO

In recent years, immunotherapy has finally found its place in the anti-cancer therapeutic arsenal, even becoming standard of care as first line treatment for metastatic forms. The clinical benefit provided by checkpoint blockers such as anti-PD-1/PD-L1 in many cancers revolutionized the field. However, too many patients remain refractory to these treatments due to weak baseline anti-cancer immunity. There is therefore a need to boost the frequency and function of patients' cytotoxic CD8+ cellular effectors by targeting immunogenic and tumor-restricted antigens, such as neoantigens using an efficient vaccination platform. Dendritic cells (DC) are the most powerful immune cell subset for triggering cellular immune response. However, autologous DC-based vaccines display several limitations, such as the lack of reproducibility and the limited number of cells that can be manufactured. Here we discuss the advantages of a new therapeutic vaccine based on an allogeneic Plasmacytoid DC cell line, which is easy to produce and represents a powerful platform for priming and expanding anti-neoantigen cytotoxic CD8+ T-cells.

15.
Front Immunol ; 14: 1120434, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36891308

RESUMO

Subversion of immunity is a hallmark of cancer development. Dendritic cells (DCs) are strategic immune cells triggering anti-tumor immune responses, but tumor cells exploit their versatility to subvert their functions. Tumor cells harbor unusual glycosylation patterns, which can be sensed through glycan-binding receptors (lectins) expressed by immune cells that are crucial for DCs to shape and orientate antitumor immunity. Yet, the global tumor glyco-code and its impact on immunity has not been explored in melanoma. To decrypt the potential link between aberrant glycosylation patterns and immune evasion in melanoma, we investigated the melanoma tumor glyco-code through the GLYcoPROFILE™ methodology (lectin arrays), and depicted its impact on patients' clinical outcome and DC subsets' functionality. Specific glycan patterns correlated with clinical outcome of melanoma patients, GlcNAc, NeuAc, TF-Ag and Fuc motifs being associated with poor outcome, whereas Man and Glc residues elicited better survival. Strikingly, tumor cells differentially impacting cytokine production by DCs harbored distinct glyco-profiles. GlcNAc exhibited a negative influence on cDC2s, whereas Fuc and Gal displayed inhibitory impacts on cDC1s and pDCs. We further identified potential booster glycans for cDC1s and pDCs. Targeting specific glycans on melanoma tumor cells restored DCs' functionality. The tumor glyco-code was also linked to the nature of the immune infiltrate. This study unveils the impact of melanoma glycan patterns on immunity, and paves the way for innovative therapeutic options. Glycans/lectins interactions arise as promising immune checkpoints to rescue DCs from tumor' hijacking to reshape antitumor immunity and inhibit immunosuppressive circuits triggered by aberrant tumor glycosylation.


Assuntos
Células Dendríticas , Melanoma , Masculino , Humanos , Melanoma/patologia , Lectinas , Glicosilação , Polissacarídeos
16.
Front Immunol ; 14: 1136749, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37081891

RESUMO

Introduction: Immune function in pregnancy is influenced by host-specific and environmental factors. This may impact fetal immune development, but the link between maternal and neonatal immune function is still poorly characterized. Here, we investigate the relationship between maternal and neonatal immune function, and identify factors affecting the association between maternal and child cytokine secretion. Methods: In the French prospective cohort SEPAGES, blood samples were obtained from pregnant women (n=322) at gestational week 20 ± 4 and from their child at birth (n=156). Maternal and cord blood cytokine and chemokine (CK) levels were measured at baseline in all subjects and after T cell or dendritic cell activation with phytohemagglutinin or R848 (in total 29 and 27 measures in maternal and cord blood samples, respectively). Associations between environmental, individual factors and CK level were estimated by linear regression modeling. The maternal-cord blood CK relations were assessed by Pearson correlation and regression models. Results: We observed that pregnant women and neonates displayed specific CK secretion profiles in the innate and adaptive compartments at baseline and upon activation. Activation of T cells in cord blood induced high levels of IL-2, but low levels of IFNγ, IL-13 or IL-10, in comparison to maternal blood samples. Elsewhere, neonatal innate immune responses were characterized by low production of IFNα, while productions of IL-1ß, IL-6, IL-8, IL-10 and TNFα were higher than maternal responses. Strong correlations were observed between most CK after activation in maternal and cord blood samples. Strikingly, a statistical association between global mother and child cytokine profiles was evidenced. Correlations were observed between some individual CK of pregnant women and their children, both at baseline (MCP1, RANTES) and after activation with R848 (IL-6, IL-8 and IL-10). We looked for factors which could influence cytokine secretion in maternal or cord blood, and found that leucocyte counts, maternal age, pre-conception BMI, smoking and season were associated with the levels of several CK in mothers or children. Discussion: Our study reveals in utero immune imprinting influencing immune responses in infants, opening the way to investigate the mechanisms responsible for this imprinting. Whether such influences have long lasting effects on children health warrants further investigation.


Assuntos
Interleucina-10 , Interleucina-8 , Recém-Nascido , Lactente , Humanos , Feminino , Gravidez , Interleucina-6 , Estudos Prospectivos , Citocinas , Imunidade Inata , Relações Mãe-Filho
17.
Cancer Res Commun ; 2(7): 577-589, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-36923280

RESUMO

In neuroblastoma, MYCN amplification is associated with sparse immune infiltrate and poor prognosis. Dendritic cells (DC) are crucial immune sentinels but their involvement in neuroblastoma pathogenesis is poorly understood. We observed that the migration of monocytes, myeloid and plasmacytoid DC induced by MYCN-nonamplified neuroblastoma supernatants was abrogated by the addition of anti-CCL2 antibodies, demonstrating the involvement of the CCR2/CCL2 axis in their recruitment by these tumors. Using public RNA sequencing and microarray datasets, we describe lower level of expression of CCL2 in MYCN-amplified neuroblastoma tumors, and we propose a working model for T-cell recruitment in neuroblastoma tumors in which CCL2 produced by neuroblastoma cells initiates the recruitment of monocytes, myeloid and plasmacytoid DCs. Among these cells, the CD1c+ subset may recruit T cells by means of CCL19/CCL22 secretion. In vitro, supernatants from DCs cocultured with neuroblastoma cell lines and activated contain CCL22 and CCL19, and are chemotactic for both CD4+ and CD8+ T cells. We also looked at immunomodulation induced by neuroblastoma cell lines, and found MYCN-nonamplified neuroblastoma cell lines were able to create a microenvironment where DC activation is enhanced. Overall, our findings highlight a major role for CCL2/CCR2 axis in monocytes, myeloid and plasmacytoid cells recruitment toward MYCN-nonamplified neuroblastoma, allowing further immune cell recruitment, and show that these tumors present a microenvironment that can favor DC responses. Significance: In MYCN-nonamplified neuroblastoma, CCL2 produced by neuroblastoma cells induces the recruitment of antigen-presenting cells (DCs and monocytes/macrophages), allowing infiltration by T cells, in link with CCL19 and CCL22 production, hence favoring immune responses.


Assuntos
Linfócitos T CD8-Positivos , Neuroblastoma , Humanos , Linfócitos T CD8-Positivos/metabolismo , Células Dendríticas/metabolismo , Amplificação de Genes , Imunidade , Proteína Proto-Oncogênica N-Myc/genética , Neuroblastoma/genética , Microambiente Tumoral/genética
18.
Clin Transl Immunology ; 11(5): e1382, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35517992

RESUMO

Objectives: Plasmacytoid DCs (pDCs) play a critical yet enigmatic role in antitumor immunity through their pleiotropic immunomodulatory functions. Despite proof of pDC diversity in several physiological or pathological contexts, pDCs have been studied as a whole population so far in cancer. The assessment of individual pDC subsets is needed to fully grasp their involvement in cancer immunity, especially in melanoma where pDC subsets are largely unknown and remain to be uncovered. Methods: We explored for the first time the features of diverse circulating and tumor-infiltrating pDC subsets in melanoma patients using multi-parametric flow cytometry, and assessed their clinical relevance. Based on CD80, PDL1, CD2, LAG3 and Axl markers, we provided an integrated overview of the frequency, basal activation status and functional features of pDC subsets in melanoma patients together with their relationship to clinical outcome. Results: Strikingly, we demonstrated that P3-pDCs (CD80+PDL1-) accumulated within the tumor of melanoma patients and negatively correlated with clinical outcomes. The basal activation status, diversification towards P1-/P2-/P3-pDCs and functionality of several pDC subsets upon TLR7/TLR9 triggering were perturbed in melanoma patients, and were differentially linked to clinical outcome. Conclusion: Our study shed light for the first time on the phenotypic and functional heterogeneity of pDCs in the blood and tumor of melanoma patients and their potential involvement in shaping clinical outcomes. Such novelty brightens our understanding of pDC complexity, and prompts the further deciphering of pDCs' features to better apprehend and exploit these potent immune players. It highlights the importance of considering pDC diversity when developing pDC-based therapeutic strategies to ensure optimal clinical success.

19.
Front Immunol ; 13: 1040600, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36353633

RESUMO

Subversion of immunity by tumors is a crucial step for their development. Dendritic cells (DCs) are strategic immune cells that orchestrate anti-tumor immune responses but display altered functions in cancer. The bases for such DCs' hijacking are not fully understood. Tumor cells harbor unusual glycosylation patterns of surface glycoproteins and glycolipids. DCs express glycan-binding receptors, named C-type lectin receptors (CLR), allowing them to sense changes in glycan signature of their environment, and subsequently trigger a response. Recognition of tumor glycans by CLRs is crucial for DCs to shape antitumor immunity, and decisive in the orientation of the response. Yet the status of the CLR machinery on DCs in cancer, especially melanoma, remained largely unknown. We explored CLR expression patterns on circulating and tumor-infiltrating cDC1s, cDC2s, and pDCs of melanoma patients, assessed their clinical relevance, and further depicted the correlations between CLR expression profiles and DCs' features. For the first time, we highlighted that the CLR repertoire of circulating and tumor-infiltrating cDC1s, cDC2s, and pDCs was strongly perturbed in melanoma patients, with modulation of DCIR, CLEC-12α and NKp44 on circulating DCs, and perturbation of Dectin-1, CD206, DEC205, DC-SIGN and CLEC-9α on tumor-infiltrating DCs. Furthermore, melanoma tumor cells directly altered CLR expression profiles of healthy DC subsets, and this was associated with specific glycan patterns (Man, Fuc, GlcNAc) that may interact with DCs through CLR molecules. Notably, specific CLR expression profiles on DC subsets correlated with unique DCs' activation status and functionality and were associated with clinical outcome of melanoma patients. Higher proportions of DCIR-, DEC205-, CLEC-12α-expressing cDCs were linked with a better survival, whereas elevated proportions of CD206-, Dectin1-expressing cDCs and NKp44-expressing pDCs were associated with a poor outcome. Thus, melanoma tumor may shape DCs' features by exploiting the plasticity of the CLR machinery. Our study revealed that melanoma manipulates CLR pathways to hijack DC subsets and escape from immune control. It further paved the way to exploit glycan-lectin interactions for the design of innovative therapeutic strategies, which exploit DCs' potentialities while avoiding hijacking by tumor, to properly reshape anti-tumor immunity by manipulating the CLR machinery.


Assuntos
Células Dendríticas , Melanoma , Masculino , Humanos , Lectinas Tipo C/metabolismo , Glicoproteínas de Membrana/metabolismo , Polissacarídeos , Melanoma/metabolismo
20.
J Clin Invest ; 118(10): 3431-9, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18776940

RESUMO

Plasmacytoid DCs (pDCs) have been implicated as crucial cells in antiviral immune responses. On recognizing HIV, they become activated, secreting large amounts of IFN-alpha and inflammatory cytokines, thereby potentiating innate and adaptive antiviral immune responses. Here, we have shown that HIV-stimulated human pDCs can also induce the differentiation of naive CD4+ T cells into Tregs with suppressive function. This differentiation was independent of pDC production of IFN-alpha and primarily dependent on pDC expression of indoleamine 2,3-dioxygenase, which was induced through the TLR/MyD88 pathway, following binding of HIV to CD4 and triggering of TLR7 by HIV genomic RNA. Functionally, the Tregs induced by pDCs were shown to inhibit the maturation of bystander conventional DCs. This study therefore reveals what we believe to be a novel mechanism by which pDC may regulate and potentially limit anti-HIV immune responses.


Assuntos
Células Dendríticas/imunologia , Células Dendríticas/virologia , Infecções por HIV/imunologia , HIV-1/imunologia , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Linfócitos T Reguladores/imunologia , Apresentação de Antígeno , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/metabolismo , Diferenciação Celular , Linhagem Celular Tumoral , Proliferação de Células , Células Cultivadas , Células Dendríticas/enzimologia , Regulação Enzimológica da Expressão Gênica , Infecções por HIV/fisiopatologia , Infecções por HIV/virologia , Humanos , Linfócitos T Reguladores/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA