Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Nature ; 511(7510): 452-6, 2014 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-25043014

RESUMO

Thermokarst lakes formed across vast regions of Siberia and Alaska during the last deglaciation and are thought to be a net source of atmospheric methane and carbon dioxide during the Holocene epoch. However, the same thermokarst lakes can also sequester carbon, and it remains uncertain whether carbon uptake by thermokarst lakes can offset their greenhouse gas emissions. Here we use field observations of Siberian permafrost exposures, radiocarbon dating and spatial analyses to quantify Holocene carbon stocks and fluxes in lake sediments overlying thawed Pleistocene-aged permafrost. We find that carbon accumulation in deep thermokarst-lake sediments since the last deglaciation is about 1.6 times larger than the mass of Pleistocene-aged permafrost carbon released as greenhouse gases when the lakes first formed. Although methane and carbon dioxide emissions following thaw lead to immediate radiative warming, carbon uptake in peat-rich sediments occurs over millennial timescales. We assess thermokarst-lake carbon feedbacks to climate with an atmospheric perturbation model and find that thermokarst basins switched from a net radiative warming to a net cooling climate effect about 5,000 years ago. High rates of Holocene carbon accumulation in 20 lake sediments (47 ± 10 grams of carbon per square metre per year; mean ± standard error) were driven by thermokarst erosion and deposition of terrestrial organic matter, by nutrient release from thawing permafrost that stimulated lake productivity and by slow decomposition in cold, anoxic lake bottoms. When lakes eventually drained, permafrost formation rapidly sequestered sediment carbon. Our estimate of about 160 petagrams of Holocene organic carbon in deep lake basins of Siberia and Alaska increases the circumpolar peat carbon pool estimate for permafrost regions by over 50 per cent (ref. 6). The carbon in perennially frozen drained lake sediments may become vulnerable to mineralization as permafrost disappears, potentially negating the climate stabilization provided by thermokarst lakes during the late Holocene.


Assuntos
Sequestro de Carbono , Lagos/química , Alaska , Atmosfera/química , Canadá , Dióxido de Carbono/análise , Clima , Congelamento , Sedimentos Geológicos/química , Efeito Estufa , História Antiga , Metano/análise , Sibéria , Solo/química , Temperatura
2.
Ecol Lett ; 15(6): 520-6, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22472207

RESUMO

Trees with sufficient nutrition are known to allocate carbon preferentially to aboveground plant parts. Our global study of 49 forests revealed an even more fundamental carbon allocation response to nutrient availability: forests with high-nutrient availability use 58 ± 3% (mean ± SE; 17 forests) of their photosynthates for plant biomass production (BP), while forests with low-nutrient availability only convert 42 ± 2% (mean ± SE; 19 forests) of annual photosynthates to biomass. This nutrient effect largely overshadows previously observed differences in carbon allocation patterns among climate zones, forest types and age classes. If forests with low-nutrient availability use 16 ± 4% less of their photosynthates for plant growth, what are these used for? Current knowledge suggests that lower BP per unit photosynthesis in forests with low- versus forests with high-nutrient availability reflects not merely an increase in plant respiration, but likely results from reduced carbon allocation to unaccounted components of net primary production, particularly root symbionts.


Assuntos
Biomassa , Ciclo do Carbono , Árvores/crescimento & desenvolvimento , Processos Autotróficos , Carbono/metabolismo , Respiração Celular , Clima , Agricultura Florestal , Fotossíntese , Raízes de Plantas/microbiologia , Árvores/metabolismo , Árvores/microbiologia
3.
Ecology ; 93(8): 1816-29, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22928411

RESUMO

Effects of anthropogenic nitrogen (N) deposition and the ability of terrestrial ecosystems to store carbon (C) depend in part on the amount of N retained in the system and its partitioning among plant and soil pools. We conducted a meta-analysis of studies at 48 sites across four continents that used enriched 15N isotope tracers in order to synthesize information about total ecosystem N retention (i.e., total ecosystem 15N recovery in plant and soil pools) across natural systems and N partitioning among ecosystem pools. The greatest recoveries of ecosystem 15N tracer occurred in shrublands (mean, 89.5%) and wetlands (84.8%) followed by forests (74.9%) and grasslands (51.8%). In the short term (< 1 week after 15N tracer application), total ecosystem 15N recovery was negatively correlated with fine-root and soil 15N natural abundance, and organic soil C and N concentration but was positively correlated with mean annual temperature and mineral soil C:N. In the longer term (3-18 months after 15N tracer application), total ecosystem 15N retention was negatively correlated with foliar natural-abundance 15N but was positively correlated with mineral soil C and N concentration and C:N, showing that plant and soil natural-abundance 15N and soil C:N are good indicators of total ecosystem N retention. Foliar N concentration was not significantly related to ecosystem 15N tracer recovery, suggesting that plant N status is not a good predictor of total ecosystem N retention. Because the largest ecosystem sinks for 15N tracer were below ground in forests, shrublands, and grasslands, we conclude that growth enhancement and potential for increased C storage in aboveground biomass from atmospheric N deposition is likely to be modest in these ecosystems. Total ecosystem 15N recovery decreased with N fertilization, with an apparent threshold fertilization rate of 46 kg N x ha(-1) x yr(-1) above which most ecosystems showed net losses of applied 15N tracer in response to N fertilizer addition.


Assuntos
Ecossistema , Ciclo do Nitrogênio , Nitrogênio/química , Altitude , Amônia/química , Vazamento de Resíduos Químicos , Nitratos/química , Isótopos de Nitrogênio , Chuva , Temperatura
4.
Nature ; 443(7107): 71-5, 2006 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-16957728

RESUMO

Large uncertainties in the budget of atmospheric methane, an important greenhouse gas, limit the accuracy of climate change projections. Thaw lakes in North Siberia are known to emit methane, but the magnitude of these emissions remains uncertain because most methane is released through ebullition (bubbling), which is spatially and temporally variable. Here we report a new method of measuring ebullition and use it to quantify methane emissions from two thaw lakes in North Siberia. We show that ebullition accounts for 95 per cent of methane emissions from these lakes, and that methane flux from thaw lakes in our study region may be five times higher than previously estimated. Extrapolation of these fluxes indicates that thaw lakes in North Siberia emit 3.8 teragrams of methane per year, which increases present estimates of methane emissions from northern wetlands (< 6-40 teragrams per year; refs 1, 2, 4-6) by between 10 and 63 per cent. We find that thawing permafrost along lake margins accounts for most of the methane released from the lakes, and estimate that an expansion of thaw lakes between 1974 and 2000, which was concurrent with regional warming, increased methane emissions in our study region by 58 per cent. Furthermore, the Pleistocene age (35,260-42,900 years) of methane emitted from hotspots along thawing lake margins indicates that this positive feedback to climate warming has led to the release of old carbon stocks previously stored in permafrost.


Assuntos
Água Doce/química , Efeito Estufa , Camada de Gelo/química , Metano/análise , Atmosfera/química , Carbono/metabolismo , Metano/metabolismo , Sibéria , Temperatura , Fatores de Tempo
5.
Science ; 183(4124): 521-3, 1974 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-17773041

RESUMO

The capacity for phosphate absorption by marsh plants is negatively correlated with the soil temperature of the habitat of origin. Species and races from thermally fluctuating environments achieve greater compensatory changes in the phosphate absorption rate through temperature acclimation than their counterparts from more stable environments.

6.
Science ; 230(4728): 895-9, 1985 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-17739203

RESUMO

The degree of herbivory and the effectiveness of defense varies widely among plant species. Resource availability in the environment is proposed as the major determinant of both the amount and type of plant defense. When resource are limited, plants with inherently slow growth are favored over those with fast growth rates; slow rates in turn favor large investments in antiherbivore defenses. Leaf lifetime, also determined by resource availability, affects the relative advantages of defenses with different turnover rates. Relative limitation of different resources also constrains the types of defenses. The proposals are compared with other theories on the evolution of plant defenses.

7.
Science ; 287(5459): 1770-4, 2000 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-10710299

RESUMO

Scenarios of changes in biodiversity for the year 2100 can now be developed based on scenarios of changes in atmospheric carbon dioxide, climate, vegetation, and land use and the known sensitivity of biodiversity to these changes. This study identified a ranking of the importance of drivers of change, a ranking of the biomes with respect to expected changes, and the major sources of uncertainties. For terrestrial ecosystems, land-use change probably will have the largest effect, followed by climate change, nitrogen deposition, biotic exchange, and elevated carbon dioxide concentration. For freshwater ecosystems, biotic exchange is much more important. Mediterranean climate and grassland ecosystems likely will experience the greatest proportional change in biodiversity because of the substantial influence of all drivers of biodiversity change. Northern temperate ecosystems are estimated to experience the least biodiversity change because major land-use change has already occurred. Plausible changes in biodiversity in other biomes depend on interactions among the causes of biodiversity change. These interactions represent one of the largest uncertainties in projections of future biodiversity change.


Assuntos
Ecossistema , Agricultura , Animais , Atmosfera , Dióxido de Carbono , Clima , Água Doce , Modelos Biológicos , Nitrogênio
8.
Ecol Appl ; 19(4): 1022-43, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19544741

RESUMO

Assessing potential future changes in arctic and boreal plant species productivity, ecosystem composition, and canopy complexity is essential for understanding environmental responses under expected altered climate forcing. We examined potential changes in the dominant plant functional types (PFTs) of the sedge tundra, shrub tundra, and boreal forest ecosystems in ecotonal northern Alaska, USA, for the years 2003-2100. We compared energy feedbacks associated with increases in biomass to energy feedbacks associated with changes in the duration of the snow-free season. We based our simulations on nine input climate scenarios from the Intergovernmental Panel on Climate Change (IPCC) and a new version of the Terrestrial Ecosystem Model (TEM) that incorporates biogeochemistry, vegetation dynamics for multiple PFTs (e.g., trees, shrubs, grasses, sedges, mosses), multiple vegetation pools, and soil thermal regimes. We found mean increases in net primary productivity (NPP) in all PFTs. Most notably, birch (Betula spp.) in the shrub tundra showed increases that were at least three times larger than any other PFT. Increases in NPP were positively related to increases in growing-season length in the sedge tundra, but PFTs in boreal forest and shrub tundra showed a significant response to changes in light availability as well as growing-season length. Significant NPP responses to changes in vegetation uptake of nitrogen by PFT indicated that some PFTs were better competitors for nitrogen than other PFTs. While NPP increased, heterotrophic respiration (RH) also increased, resulting in decreases or no change in net ecosystem carbon uptake. Greater aboveground biomass from increased NPP produced a decrease in summer albedo, greater regional heat absorption (0.34 +/- 0.23 W x m(-2) x 10 yr(-1) [mean +/- SD]), and a positive feedback to climate warming. However, the decrease in albedo due to a shorter snow season (-5.1 +/- 1.6 d/10 yr) resulted in much greater regional heat absorption (3.3 +/- 1.24 W x m(-2) x 10 yr(-1)) than that associated with increases in vegetation. Through quantifying feedbacks associated with changes in vegetation and those associated with changes in the snow season length, we can reach a more integrated understanding of the manner in which climate change may impact interactions between high-latitude ecosystems and the climate system.


Assuntos
Ecossistema , Efeito Estufa , Desenvolvimento Vegetal , Alaska , Regiões Árticas , Carbono/análise , Carbono/metabolismo , Respiração Celular , Nitrogênio/metabolismo , Plantas/metabolismo , Estações do Ano , Neve , Solo/análise , Luz Solar
9.
Glob Chang Biol ; 6(S1): 1-18, 2000 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35026933

RESUMO

Understanding the distribution and function of Arctic and boreal ecosystems under current conditions and their vulnerability to altered forcing is crucial to our assessment of future global environmental change. Such efforts can be facilitated by the development and application of ecological models that simulate realistic patterns of vegetation change at high latitudes. This paper reviews three classes of ecological models that have been implemented to extrapolate vegetation information in space (e.g. across the Arctic and adjacent domains) and over historical and future periods (e.g. under altered climate and other forcings). These are: (i) equilibrium biogeographical models; (ii) frame-based transient ecosystem models, and (iii) dynamic global vegetation models (DGVMs). The equilibrium response of high-latitude vegetation to scenarios of increased surface air temperatures projected by equilibrium biogeographical models is for tundra to be replaced by a northward shift of boreal woodland and forests. A frame-based model (ALFRESCO) indicates the same directional changes, but illustrates how response time depends on rate of temperature increase and concomitant changes in moisture regime and fire disturbance return period. Key disadvantages of the equilibrium models are that they do not simulate time-dependent responses of vegetation and the role of disturbance is omitted or highly generalized. Disadvantages of the frame-based models are that vegetation type is modelled as a set unit as opposed to an association of individually simulated plant functional types and that the role of ecosystem biogeochemistry in succession is not explicitly considered. DGVMs explicitly model disturbance (e.g. fire), operate on plant functional types, and incorporate constraints of nutrient availability on biomass production in the simulation of vegetation dynamics. Under changing climate, DGVMs detail conversion of tundra to tree-dominated boreal landscapes along with time-dependent responses of biomass, net primary production, and soil organic matter turnover--which all increase with warming. Key improvements to DGVMs that are needed to portray behaviour of arctic and boreal ecosystems adequately are the inclusion of anaerobic soil processes for inundated landscapes, permafrost dynamics, and moss-lichen layer biogeochemistry, as well as broader explicit accounting of disturbance regimes (including insect outbreaks and land management). Transient simulation of these landscapes can be further tailored to high-latitude processes and issues by spatially interactive, gridded application of arctic/boreal frame-based models and development of dynamic regional vegetation models (DRVMs) utilizing plant functional type schemes that capture the variety of high-latitude environments.

10.
Glob Chang Biol ; 6(S1): 211-223, 2000 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35026938

RESUMO

Synthesis of results from several Arctic and boreal research programmes provides evidence for the strong role of high-latitude ecosystems in the climate system. Average surface air temperature has increased 0.3 °C per decade during the twentieth century in the western North American Arctic and boreal forest zones. Precipitation has also increased, but changes in soil moisture are uncertain. Disturbance rates have increased in the boreal forest; for example, there has been a doubling of the area burned in North America in the past 20 years. The disturbance regime in tundra may not have changed. Tundra has a 3-6-fold higher winter albedo than boreal forest, but summer albedo and energy partitioning differ more strongly among ecosystems within either tundra or boreal forest than between these two biomes. This indicates a need to improve our understanding of vegetation dynamics within, as well as between, biomes. If regional surface warming were to continue, changes in albedo and energy absorption would likely act as a positive feedback to regional warming due to earlier melting of snow and, over the long term, the northward movement of treeline. Surface drying and a change in dominance from mosses to vascular plants would also enhance sensible heat flux and regional warming in tundra. In the boreal forest of western North America, deciduous forests have twice the albedo of conifer forests in both winter and summer, 50-80% higher evapotranspiration, and therefore only 30-50% of the sensible heat flux of conifers in summer. Therefore, a warming-induced increase in fire frequency that increased the proportion of deciduous forests in the landscape, would act as a negative feedback to regional warming. Changes in thermokarst and the aerial extent of wetlands, lakes, and ponds would alter high-latitude methane flux. There is currently a wide discrepancy among estimates of the size and direction of CO2 flux between high-latitude ecosystems and the atmosphere. These discrepancies relate more strongly to the approach and assumptions for extrapolation than to inconsistencies in the underlying data. Inverse modelling from atmospheric CO2 concentrations suggests that high latitudes are neutral or net sinks for atmospheric CO2 , whereas field measurements suggest that high latitudes are neutral or a net CO2 source. Both approaches rely on assumptions that are difficult to verify. The most parsimonious explanation of the available data is that drying in tundra and disturbance in boreal forest enhance CO2 efflux. Nevertheless, many areas of both tundra and boreal forests remain net sinks due to regional variation in climate and local variation in topographically determined soil moisture. Improved understanding of the role of high-latitude ecosystems in the climate system requires a concerted research effort that focuses on geographical variation in the processes controlling land-atmosphere exchange, species composition, and ecosystem structure. Future studies must be conducted over a long enough time-period to detect and quantify ecosystem feedbacks.

12.
Oecologia ; 78(1): 27-34, 1989 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28311898

RESUMO

The evergreen tussock-forming Eriophorum vaginatum revealed consistently earlier (c. 1 moth) phenology and greater biomass per tiller than the summergreen rhizomatous E. scheuchzeri in all four components measured (vegetative and reproductive shoots and stems) under the same climatic regime in central Alaska over one growing season. Greatest allocation to vegetative shoot growth occurred in mid-summer in both species. The tussock growth form of E. vaginatum raised shoot meristems 25-30 cm above the soil surface, where temperatures were warmer, permitting shoot growth to begin earlier in spring and continue longer in autumn than in E. scheuchzeri. Consequently, E. vaginatum was able to allocate reserves to reproductive tillers primarily in autumn and early spring, times when minimal reserves were required for vegetative growth. By contrast, the rhizomatous E. scheuchzeri had a more constrained growing season, and allocation to reproduction coincided with allocation to vegetative growth. For this reason, reserves were drawn down more fully in mid-summer in E. scheuchzeri than in E. vaginatum. The more conservative use of nutrient stores in E. vaginatum may relate to its great longevity, reduced allocation to reproduction (including low seedling recruitment), and relatively stable habitats. The mid-seasonal pulse of allocation to reproduction in E. scheuchzeri appears viable only in relatively fertile disturbed sites, where the soil nutrient supply is sufficient to support simultaneous allocation to vegetative growth and reproduction.

13.
Oecologia ; 79(4): 551-557, 1989 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28313491

RESUMO

Two shortgrass species (Sporobolus ioclados and Eustachys paspaloides) and two midgrass species (E. paspaloides and Pennisetum mezianum) from the Serengeti grasslands of Tanzania were grown under conditions of extreme phosphorus (P) deficiency. Production of each of these species is maintained or enhanced by defoliation under adequate nutrient supply (McNaughton et al. 1983). However, under the P-deficient conditions of our experiment, defoliation caused a reduction in biomass of all plant parts of each species. Green leaf biomass was reduced most strongly by defoliation, and crowns were least affected. Yield of biomass and nutrients to grazers (green leaves+clipped material) was enhanced by weekly defoliation in the shortgrass grazing-adapted species, whereas yield to producers (live biomass and nutrients retained by the plant) and yield to decomposers (litter) were strongly reduced by defoliation in all species. Phosphate absorption capacity (V max) measured on excised roots was enhanced by defoliation in the grazing-adapted Sporobolus, but, due to low affinity (high K m) of roots of defoliated plants for phosphate, absorption rate was not greatly altered at low solution concentrations. Phosphate absorption capacity was reduced or unaffected by defoliation in other species. We conclude that under conditions of P deficiency, plants are unable to acquire the nutrients necessary to replenish large nutrient losses to grazers. In low-nutrient environments, compensatory growth (stimulation of production by grazing) is not a viable strategy. Therefore, in these environments plants respond evolutionarily to herbivores by developing chemical or morphological defenses.

14.
Oecologia ; 77(4): 506-514, 1988 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28311270

RESUMO

In a survey of 28 plant species of 6 major growth forms from Alaskan tundra, we found no consistent difference among growth forms in the chemical nature of stored reserves except for lichens and mosses (which stored C primarily as polysaccharides) and shrubs (which tended to store C more as sugars than as polysaccharides). Forbs and graminoids showed particularly great diversity in the chemical nature of stored reserves. In contrast, C, N, and P chemistry of leaves was strikingly similar among all species and growth forms. Concentrations of stored reserves of C, N, and P were highest and showed greatest seasonal fluctuations in forbs and graminoids but were relatively constant in evergreen shrubs. From this information, we draw three general conclusions: (1) the photosynthetic function of leaves strongly constrains leaf chemistry so that similar chemical composition is found in all species and growth forms: (2) the chemical nature of storage reserves is highly variable, both within and among growth forms; (3) the concentration and seasonal pattern of storage reserves are closely linked to growth-form and reflect growth-form differences in woodiness, phenology, and relative dependence upon concurrent uptake vs. storage in support of growth.

15.
Oecologia ; 90(1): 120-126, 1992 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28312279

RESUMO

Barley plants (Hordeum vulgare cv. stepto) were grown in a greenhouse under two nutrient and water levels and four treatments intended to alter sourcesink relationships, in a factorial experiment designed to study factors governing efficiency of nutrient resorption from senescing leaves. Plant growth was enhanced in high-nutrient treatments, leading to higher concentrations of nitrogen (N) and phosphorus (P) in leaves and ears. Water stress reduced growth, but plants in waterstressed treatments had equal or higher nutrient concentrations than watered plants. Nutrient resorption efficiency was higher at low than at high nutrient availability, and was higher in watered than in water-stressed plants. Treatments in which sink strength was increased had enhanced resorption efficiency, as well as those in which the source activity was reduced. Our data show that the amount of nutrient resorbed and the efficiency of the resorption process depend on plant nutrient and water status, and that the presence of an active sink strongly enhances nutrient resorption.

16.
Oecologia ; 100(4): 406-412, 1994 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28306929

RESUMO

Natural abundances of nitrogen isotopes, δ15N, indicate that, in the same habitat, Alaskan Picea glauca and P. mariana use a different soil nitrogen compartment from the evergreen shrub Vaccinium vitis-idaea or the deciduous grass Calamagrostis canadensis. The very low δ15N values (-7.7 ‰) suggest that (1) Picea mainly uses inorganic nitrogen (probably mainly ammonium) or organic N in fresh litter, (2) Vaccinium (-4.3 ‰) with its ericoid mycorrhizae uses more stable organic matter, and (3) Calamagrostis (+0.9 ‰) exploits deeper soil horizons with higher δ15N values of soil N. We conclude that species limited by the same nutrient may coexist by drawing on different pools of soil N in a nutrient-deficient environment. The differences among life-forms decrease with increasing N availability. The different levels of δ15N are associated with different nitrogen concentrations in leaves, Picea having a lower N concentration (0.62 mmol g-1) than Vaccinium (0.98 mmol g-1) or Calamagrostis (1.33 mmol g-1). An extended vector analysis by Timmer and Armstrong (1987) suggests that N is the most limiting element for Picea in this habitat, causing needle yellowing at N concentrations below 0.5 mmol g-1 or N contents below 2 mmol needle-1. Increasing N supply had an exponential effect on twig and needle growth. Phosphorus, potassium and magnesium are at marginal supply, but no interaction between ammonium supply and needle Mg concentration could be detected. Calcium is in adequate supply on both calcareous and acidic soils. The results are compared with European conditions of excessive N supply from anthropogenic N depositions.

17.
Oecologia ; 74(2): 310-315, 1987 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28312006

RESUMO

Mosses account for 75% of the annual phosphorus accumulation in aboveground parts of an Alaskan black spruce forest, although they comprise only 17% of the phosphorus pool in aboveground vegetation. Sphagnum subsecundum and feathermosses (Hylocomium splendens and Pleurozium schreberi) have a higher capacity to absorb phosphate than do the fine roots of black spruce (Picea mariana) that are situated beneath the moss layer. In three of the four moss species studied, phosphate absorption capacity increases with increasing age of green tissue and decreases with increasing age of brown tissue. In the two feathermosses, which acquire moisture primarily from the air, and in Sphagnum, phosphate absorption is more rapid in green than in brown tissue. In contrast, the endohydric moss Polytrichum commune, which transports water through stem tissue from soil, absorbs phosphate most rapidly from stems in mineral soil. Two treatments designed to reduce activity of mycorrhizae (cutting of roots extending beneath the moss carpet or application to the moss surface of a fungicide that kills mycorrhizal hyphae) tended to increase phosphate retention by mosses and reduce phosphate transfer out of the experimental plots. This suggests that mycorrhizae are an important avenue of phosphorus movement out of the moss carpet and a means by which the black spruce competes with the overlying mosses for nutrients.

18.
Oecologia ; 79(1): 96-105, 1989 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28312818

RESUMO

Under favorable nutrition, accessions of the weedy barleygrass (Hordeum leporinum and H. glaucum) had a higher relative growth rate (RGR) than did accessions of cultivated barley (H. vulgare) or its wild progenitor (H. spontaneum). RGR was not positively correlated with the presumed level of soil fertility at the collection site of an accession either within or among species. RGR was reduced more strongly by low-P supply in the progenitor than in the crop or weed, indicating that selection of cultivars to grow in fertile soils had not reduced their potential to grow effectively under low-P conditions. Seed and embryo masses were more important than RGR in determining plant size. Relative differences among assessions in plant size declined with time, because (1) accessions with small seeds had a higher RGR, and (2) RGR of large-seeded accessions declined with time. Absolute growth rate correlated positively with leaf area and negatively with photosynthetic rate per unit leaf area. Under favorable nutrition, maximum photosynthetic rate correlated negatively with leaf length and therefore was higher in the weeds than in the crop or progenitor accessions. P absorption potential did not differ consistently among species but generally increased in response to P stress. Cultivars produced a few tall tillers, whereas weeds and progenitors produced many small tillers. The cultivar had a larger proportion of reproductive tillers, allocated a larger proportion of biomass to grain, and produced larger grains than did the weedy accession. By contrast, the weed began maturing seeds sooner, produced more reproductive tillers, and produced more grains per car and per plant than did the cultivar. The study suggests two major conclusions: (1) A low RGR is not an adaptation to low P supply in annual Hordeum species. (2) Seed size is the major determinant of early plant size between accessions in these Hordeum species under favorable nutrition. However, large seed size indirectly results in a low RGR because of the inverse relationship between plant size and RGR and results in a low photosynthetic rate because of the inverse relationship between leaf size and photosynthesis.

19.
Oecologia ; 72(4): 510-514, 1987 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28312511

RESUMO

Plant carbon/nutrient balance has been implicated as an important factor in plant defensive chemistry and palatability to herbivores. We tested this hypothesis by fertilizing juvenile growth form Alaska paper birch and green alder with N, P and N-plus-P in a balanced 2x2 factorial experiment. Additionally, we shaded unfertilized plants of both species. Fertilization with N and N-plus-P increased growth of Alaska paper birch, reduced the concentration of papyriferic acid in internodes and increased the palatability of birch twigs to snowshoe hares. Shading decreased birch growth, decreased the concentration of papyriferic acid in internodes and increased twig palatability. These results indicate that the defensive chemistry and palatability of winter-dormant juvenile Alaska paper birch are sensitive to soil fertility and shade. Conversely the defensive chemistry and palatability of green alder twigs to snowshoe hares were not significantly affected by soil fertility or shade. The greater sensitivity of Alaska paper birch defensive chemistry and palatability to snowshoe hares in comparison to green alder is in agreement with the hypothesis that early successional woody plants that are adapted to high resource availability are more plastic in their chemical responses to the physical environment than are species from less favorable environments.

20.
Oecologia ; 88(3): 401-406, 1991 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28313803

RESUMO

The carbon/nutrient balance hypothesis fails to correctly predict effects of fertilization and shading on concentrations of defensive metabolites in Alaskan balsam poplar (Populus balsamifera). Of six metabolites analyzed, only one responded in the predicted fashion to fertilization and one to shading. These results and those of other similar studies suggest that while the carbon/nutrient balance hypothesis may correctly predict the effects of fertilization and shading on the concentrations of metabolic "end products", it fails for many metabolites because of the dynamics associated with their production and turnover. In metabolites that turn over, static concentration is a poor predictor of defensive investment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA