RESUMO
The failure of the immune system to provide protection against tumour cells is an important immunological problem. It is now evident that inadequate function of the host immune system is one of the main mechanisms by which tumours escape from immune control, as well as an important factor that limits the success of cancer immunotherapy. In recent years, it has become increasingly clear that defects in dendritic cells have a crucial role in non-responsiveness to tumours. This article focuses on the functional consequences and recently described mechanisms of the dendritic-cell defects in cancer.
Assuntos
Células Dendríticas/imunologia , Meio Ambiente , Tolerância Imunológica/fisiologia , Neoplasias/patologia , Evasão Tumoral/imunologia , Animais , Humanos , Fatores Imunológicos/imunologia , Fatores Imunológicos/fisiologia , Modelos BiológicosRESUMO
Tumor escape is linked to multiple mechanisms, notably the liberation, by tumor cells, of soluble factors that inhibit the function of dendritic cells (DC). We have shown that melanoma gangliosides impair DC differentiation and induce their apoptosis. The present study was aimed to give insight into the mechanisms involved. DC apoptosis was independent of the catabolism of gangliosides since lactosylceramide did not induce cell death. Apoptosis induced by GM3 and GD3 gangliosides was not blocked by inhibitors of de novo ceramide biosynthesis, whereas the acid sphingomyelinase inhibitor desipramine only prevented apoptosis induced by GM3. Furthermore, our results suggest that DC apoptosis was triggered via caspase activation, and it was ROS dependent with GD3 ganglioside, suggesting that GM3 and GD3 induced apoptosis through different mechanisms.