RESUMO
Lanthanide metal clusters excel in combining molecular and material chemistry properties. Here, we report an efficient cooperative sensitization UC phenomenon of a Eu3+/Yb3+ nonanuclear lanthanide cluster in CD3OD. The synthesis and characterization of the heteronuclear cluster in the solid state and solution are described together with the UC phenomenon showing Eu3+ luminescence in the visible region upon 980 nm NIR excitation of Yb3+ at concentrations as low as 100 nM. Alongside being the Eu/Yb cluster to display UC (with a quantum yield value of 4.88 × 10-8 upon 1.13 W cm-2 excitation at 980 nm), the cluster exhibits downshifted light emission of Yb3+ in the NIR region upon 578 nm visible excitation of Eu3+, which is ascribed to sensitization pathways for Yb through the 5D0 energy levels of Eu3+. Additionally, a faint emission is also observed at ca. 500 nm upon 980 nm excitation, originating from the cooperative luminescence of Yb3+. The [Eu8Yb(BA)16(OH)10]Cl cluster (BA = benzoylacetonate) is also a field-induced single-molecular magnet (SMM) under 4K with a modest Ueff/kB of 8.48 K, thereby joining the coveted list of Yb-SMMs and emerging as a prototype system for next-generation devices, combining luminescence with single-molecular magnetism in a molecular cluster.
RESUMO
A new detection method based on the photoluminescence properties of dye-sensitized lanthanide nanoparticles (Ln NPs) was developed for enzyme-linked immunosorbent assays (ELISAs). In this method, the horseradish peroxidase (HRP) enzyme catalyzes the oxidation of phenol derivatives in the presence of hydrogen peroxide, providing dimers that are able to interact with the Ln NP surface and to efficiently photosensitize the Ln ions. Due to the very long emission lifetime of Ln, the time-gated detection of Ln NP luminescence allows the elimination of background noise due to the biological environment. After a comparison of the enzyme-catalyzed oxidation of various phenol derivatives, methyl 4-hydroxyphenyl acetate (MHPA) was selected as the most promising substrate, as the highest Ln emission intensity was observed following its HRP-catalyzed oxidation. After a meticulous optimization of the conditions of both the enzymatic reaction and the Ln sensitization (buffer, pH, concentration of the reactants, NP type, etc.), this new detection method was successfully implemented in a commercial insulin ELISA kit as a proof-of-concept, with an increased sensitivity compared to the commercial detection method.
Assuntos
Elementos da Série dos Lantanídeos , Nanopartículas Metálicas , Luminescência , Elementos da Série dos Lantanídeos/química , Peroxidase do Rábano Silvestre/química , Ensaio de Imunoadsorção Enzimática , Fenóis , Peróxido de Hidrogênio/análiseRESUMO
A series of Tb-doped LaF3 nanoparticles (NPs) was prepared by systematically varying the Tb doping rate from 0 to 100%. The elemental composition was confirmed by inductively coupled plasma atomic emission spectroscopy (ICP-AES) analysis, and the size, morphology, and crystal structure were determined in the solid state by transmission electron microscopy and X-ray diffractometry, while the size and ζ-potential of the NPs in solution were studied by dynamic light scattering, Taylor dispersion analysis, and laser Doppler electrophoresis. While the crystal structure appears to be hexagonal for a doping rate of up to 70%, an admixture of hexagonal and orthorhombic phases is observed for 80 and 90% Tb contents with a pure orthorhombic phase being obtained for TbF3. The spectroscopic properties of the NPs were studied for bare NPs and in the presence of dipicolinic acid as a surface-capping antenna ligand in solution. The coverage of the NPs by the ligand resulted in an increase in the luminescence lifetime of the emitting Tb centers, as a consequence of a better protection toward luminescence quenching from water molecules, as well as a large improvement in the brightness of the NPs. Taking into account the various parameters, a doping rate of 40% Tb was shown to be the best compromise for the development of such NPs for bioanalytical applications.
RESUMO
Mn2+ complexes of 2,4-pyridyl-disubstituted bispidine ligands have emerged as more biocompatible alternatives to Gd3+ -based MRI probes. They display relaxivities comparable to that of commercial contrast agents and high kinetic inertness, unprecedented for Mn2+ complexes. The chemical structure, in particular the substituents on the two macrocyclic nitrogens N3 and N7, are decisive for the conformation of the Mn2+ complexes, and this will in turn determine their thermodynamic, kinetic and relaxation properties. We describe the synthesis of four ligands with acetate substituents in positions N3, N7 or both. We evidence that the bispidine conformation is dependent on N3 substitution, with direct impact on the thermodynamic stability, kinetic inertness, hydration state and relaxivity of the Mn2+ complexes. These results unambiguously show that (i) solely a chair-chair conformation allows for favorable inertness and relaxivity, and (ii) in this family such chair-chair conformation is accessible only for ligands without N3-appended carboxylates.
RESUMO
Synthetic methodologies were developed to achieve the preparation of ligands L1 and L2 consisting of tacn- and pyclen-based chelators decorated with pyridinylphosphonic pendant arms combined with ethylpicolinamide or acetate coordinating functions, respectively. Phosphonate functions have been selected for their high affinity toward Ln3+ ions compared to their carboxylated counterparts and for their steric hindrance that favors the formation of less-hydrated complexes. Thanks to regiospecific N-functionalization of the macrocyclic backbones, the two ligands were isolated with good yields and implicated in a comprehensive photophysical study for the complexation of Eu3+, Tb3+, and Yb3+. The coordination behavior of L1 and L2 with these cations has been first investigated by means of a combination of UV-vis absorption spectroscopy, steady-state and time-resolved luminescence spectroscopy, and 1H and 31P NMR titration experiments. Structural characterization in solution was assessed by NMR spectroscopy, corroborated by theoretical calculations. Spectroscopic characterization of the Ln3+ complexes of L1 and L2 was done in water and D2O and showed the effective sensitization of the lanthanide metal-centered emission spectra, each exhibiting typical lanthanide emission bands. The results obtained for the phosphonated ligands were compared with those reported previously for the corresponding carboxylated analogues.
RESUMO
We present a detailed analysis of the 1H NMR chemical shifts and transverse relaxation rates of three small Dy(III) complexes having different symmetries (C3, D2 or C2). The complexes show sizeable emission in the visible region due to 4F9/2 â 6HJ transitions (J = 15/2 to 11/2). Additionally, NIR emission is observed at ca. 850 (4F9/2 â 6H7/2), 930 (4F9/2 â 6H5/2), 1010 (4F9/2 â 6F9/2), and 1175 nm (4F9/2 â 6F7/2). Emission quantum yields of 1-2% were determined in aqueous solutions. The emission lifetimes indicate that no water molecules are present in the inner coordination sphere of Dy(III), which in the case of [Dy(CB-TE2PA)]+ was confirmed through the X-ray crystal structure. The 1H NMR paramagnetic shifts induced by Dy(III) were found to be dominated by the pseudocontact mechanism, though, for some protons, contact shifts are not negligible. The analysis of the pseudocontact shifts provided the magnetic susceptibility tensors of the three complexes, which were also investigated using CASSCF calculations. The transverse 1H relaxation data follow a good linear correlation with 1/r6, where r is the distance between the Dy(III) ion and the observed proton. This indicates that magnetic anisotropy is not significantly affecting the relaxation of 1H nuclei in the family of complexes investigated here.
RESUMO
We have prepared a hetero-tetrametallic assembly consisting of three ytterbium ions coordinated to a central [Ru(bpm)3]2+ (bpm = 2,2'-bipyrimidine) motif. Irradiation into the absorption band of the peripheral ytterbium ions at 980 nm engenders emission of the 3MLCT state of the central [Ru(bpm)3]2+ core at 636 nm, which represents the first example of f â d molecular upconversion (UC). Time-resolved measurements reveal a slow rise of the UC emission, which was modeled with a mathematical treatment of the observed kinetics according to a cooperative photosensitization mechanism using a virtual Yb centered doubly excited state followed by energy transfer to the Ru centered 1MLCT state.
Assuntos
Itérbio , Transferência de Energia , ÍonsRESUMO
Bispidine (3,7-diazabicyclo[3.3.1]nonane) provides a rigid and preorganized scaffold that is particularly interesting for the stable and inert complexation of metal ions, especially for their application in medical imaging. In this study, we present the synthesis of two bispidine ligands with N-methanephosphonate (H4L1) and N-methanecarboxylate (H3L2) substituents as well as the physico-chemical properties of the corresponding Mn2+ and Zn2+ complexes. The two complexes [Mn(L1)]2- and [Mn(L2)]- have relatively moderate thermodynamic stability constants according to potentiometric titration data. However, they both display an exceptional kinetic inertness, as assessed by transmetallation experiments in the presence of 50 equiv excess of Zn2+, showing only â¼40 and 20% of dissociation for [Mn(L1)]2- and [Mn(L2)]-, respectively, after 150 days at pH 6 and 37 °C. Proton relaxivities amount to r1 = 4.31 mM-1 s-1 ([Mn(L1)]2-) and 3.64 mM-1 s-1 ([Mn(L2)]-) at 20 MHz, 25 °C, and are remarkable for Mn2+ complexes with one inner-sphere water molecule (q = 1); they are comparable to that of the commercial contrast agent [Gd(DOTA)(H2O)]-. The presence of one inner-sphere water molecule and an associative water exchange mechanism was confirmed by temperature-dependent transverse 17O relaxation rate measurements, which yielded kex298 = 0.12 × 107 and 5.5 × 107 s-1 for the water exchange rate of the phosphonate and the carboxylate complex, respectively. In addition, radiolabeling experiments with 52Mn were also performed with H2(L1)2- showing excellent radiolabeling properties and quantitative complexation at pH 7 in 15 min at room temperature as well as excellent stability of the complex in various biological media over 24 h.
Assuntos
Organofosfonatos , Compostos Bicíclicos Heterocíclicos com Pontes , Diagnóstico por Imagem , Ligantes , ÁguaRESUMO
Upconversion materials have led to various breakthrough applications in solar energy conversion, imaging, and biomedicine. One key impediment is the facilitation of such processes at the molecular scale in solution where quenching effects are much more pronounced. In this work, molecular solution-state cooperative luminescence (CL) upconversion arising from a Yb excited state is explored and the mechanistic origin behind cooperative sensitisation (CS) upconversion in Yb/Tb systems is investigated. Counterintuitively, the best UC performances were obtained for Yb/Tb ratios close to parity, resulting in the brightest molecular upconversion complexes with a quantum yield of 2.8×10-6 at a low laser power density of 2.86â W cm-2 .
RESUMO
The coordination properties of the ligand 2,2'-bipyrimidine-4,4'-dicarboxylic acid (H2bpd) with lanthanide(III) ions (Ln = Eu, Tb, or Lu) were investigated. The syntheses of the H2bpd ligand and its salts, [K2(bpd)(H2O)2] (1) and [(AlkNH)Lu(bpd)2] (Alk = Et, Hex, or en), are described. In the presence of LnCl3 salts (Ln = Lu, Eu, or Tb), the formation of [Ln(bpd)2]- and [Ln(bpd)(H2O)x]+ species was assessed by 1H nuclear magnetic resonance (NMR), spectrophotometry, and spectrofluorometric titrations in aqueous solution. The solid state structure of 1, [K(H2O)2][Lu(bpd)2] (2), and [(Et3NH)Lu(bpd)2] (3) could be determined by X-ray diffraction, showing the ligand to act as a tetradentate unit with formation of three five-membered chelate rings around the central Ln(III). With the aim of building polynuclear assemblies, the coordination between [Lu(bdp)2]- and [Lu(tta)3(H2O)] units (tta = thenoyltrifluoroacetylacetonate) was also investigated. In methanol, 1H NMR titration experiments revealed the formation of complex mixtures from which two new species could be identified, [Lu2(bpd)(tta)4] (4) and H[Lu(bpd)(tta)2] (5), as confirmed by their solid state structure analysis. Using highly lipophilic cations in chloroform, the octametallic complex [enH]4[Lu8(bpd)4(tta)18] (6) could be isolated and its X-ray structure determined.
RESUMO
The development of actinide decorporation agents with high complexation affinity, high tissue specificity, and low biological toxicity is of vital importance for the sustained and healthy development of nuclear energy. After accidental actinide intake, sequestration by chelation therapy to reduce acute damage is considered as the most effective method. In this work, a series of bis- and tetra-phosphonated pyridine ligands have been designed, synthesized, and characterized for uranyl (UO22+) decorporation. Owing to the absorption of the ligand and the luminescence of the uranyl ion, UV-vis spectroscopy and time-resolved laser-induced fluorescence spectroscopy (TRLFS) were used to probe in situ complexation and structure variation of the complexes formed by the ligands with uranyl. Density functional theory (DFT) calculations and X-ray absorption fine structure (XAFS) spectroscopy on uranyl-ligand complexes revealed the coordination geometry around the uranyl center at pH 3 and 7.4. High affinity constants (log K â¼17) toward the uranyl ion were determined by displacement titration. A preliminary in vitro chelation study proves that bis-phosphonated pyridine ligands can remove uranium from calmodulin (CaM) at a low dose and in the short term, which supports further uranyl decorporation applications of these ligands.
RESUMO
Herein we present the preparation of two novel cyclam-based macrocycles (te1pyp and cb-te1pyp), bearing phosphonate-appended pyridine side arms for the coordination of copper(II) ions in the context of 64Cu PET imaging. The two ligands have been prepared through conventional protection-alkylation sequences on cyclam, and their coordination properties have been thoroughly investigated. The corresponding copper complexes have been fully characterized in the solid state (X-ray diffraction analysis) and in solution (EPR and UV-vis spectroscopies). Potentiometric studies combined with spectrometry have also allowed us to determine their thermodynamic stability constants, confirming their high affinity for copper(II) cations. The kinetic inertness of the complexes has been verified by acid-assisted dissociation experiments, enabling their use in 64Cu-PET imaging in mice for the first time. Indeed, the two ligands could be quantitatively radiolabeled under mild conditions, and the resulting 64Cu complexes have demonstrated excellent stability in serum. PET imaging demonstrated a set of features emerging from the combination of picolinates and phosphonate units: high stability in vivo, fast clearance from the body via renal elimination, and most interestingly, very low fixation in the liver. This is in contrast with what was observed for monopicolinate cyclam (te1pa), which had a non-negligible accumulation in the liver, owing probably to its different charge and lipophilicity. These results thus pave the way for the use of such phosphonated pyridine chelators for in vivo 64Cu-PET imaging.
Assuntos
Quelantes/química , Radioisótopos de Cobre/química , Compostos Heterocíclicos/química , Ácidos Fosforosos/química , Tomografia por Emissão de Pósitrons/métodos , Piridinas/química , Animais , Cristalografia por Raios X/métodos , Espectroscopia de Ressonância de Spin Eletrônica , Cinética , Ligantes , Camundongos , Camundongos Endogâmicos BALB CRESUMO
In this study a bispidine ligand has been applied to the complexation of gallium(III) and radiolabelled with gallium-68 for the first time. Despite its 5-coordinate nature, the resulting complex is stable in serum for over two hours, demonstrating a ligand system well matched to the imaging window of gallium-68 positron emission tomography (PET). To show the versatility of the bispidine ligand and its potential use in PET, the bifunctional chelator was conjugated to a porphyrin, producing a PET/PDT-theranostic, which showed the same level of stability to serum as the non-conjugated gallium-68 complex. The PET/PDT complex killed >90 % of HT-29 cells upon light irradiation at 50â µm. This study shows bispidines have the versatility to be used as a ligand system for gallium-68 in PET.
Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes/química , Quelantes/química , Gálio/química , Porfirinas/química , Compostos Bicíclicos Heterocíclicos com Pontes/análise , Radioisótopos de Gálio , Humanos , Ligantes , Tomografia por Emissão de Pósitrons/métodos , Nanomedicina Teranóstica/métodosRESUMO
Lanthanide-doped nanoparticles (LnNPs) have become an important class of fluorophores for advanced biosensing and bioimaging. LnNPs that are photosensitized by surface-attached antenna ligands can possess exceptional brightness. However, their functional bioconjugation remains an important challenge for their translation into bioanalytical applications. To solve this problem, we designed a ligand that can be simultaneously applied as efficient light harvesting antenna for Tb surface ions and strong linker of biomolecules to the LnNPs surfaces. To demonstrate generic applicability of the photosensitized TbNP-bioconjugates, we applied them in two prototypical applications for biosensing and bioimaging. First, in-solution biorecognition was shown by time-resolved Förster resonance energy transfer (FRET) between streptavidin-functionalized TbNPs to biotinylated dyes (ATTO 610). Second, in situ detection of ligand-receptor binding on cells was accomplished with TbNP-antibody (Matuzumab) conjugates that could specifically bind to transmembrane epidermal growth factor receptors (EGFR). High specificity and sensitivity were demonstrated by time-gated imaging of EGFR on both strongly (A431) and weakly (HeLa and Cos7) EGFR-expressing cell lines, whereas non-expressing cell lines (NIH3T3) and EGFR-passivated A431 cells did not show any signals. Despite the relatively large size of TbNP-antibody conjugates, they could be internalized by A431 cells upon binding to extracellular EGFR, which showed their potential as bright and stable luminescence markers for intracellular signaling.
Assuntos
Técnicas Biossensoriais , Nanopartículas , Animais , Família de Proteínas EGF , Receptores ErbB/metabolismo , Transferência Ressonante de Energia de Fluorescência , Camundongos , Células NIH 3T3 , TérbioRESUMO
The heptadentate ligand L was shown to form an extremely stable Gd complex at neutral pH with a pGd value of 18.4 at pHâ 7.4. The X-ray crystal structures of the complexes formed with Gd and Tb displayed two very different coordination behaviors being, respectively, octa- and nonacoordinated. The relaxometric properties of the Gd complex were studied by field-dependent relaxivity measurements at various temperatures and by 17 Oâ NMR spectroscopy. The pH-dependence of the longitudinal relaxivity profile indicated large changes around neutral pH leading to a very large value of 10.1â mm-1 â s-1 (60â MHz, 298â K) at pHâ 4.7. The changes were attributed to an increase of the hydration number from one water molecule in basic conditions to two at acidic pH. A similar trend was observed for the luminescence of the Eu complex, confirming the change in hydration state. DOSY experiments were performed on the Lu analogue, pointing to the absence of dimers in solution in the considered pH range. A breathing mode of the complex was postulated, which was further supported by 1 H and 31 Pâ NMR spectroscopy of the Yb complex at varying pH and was finally modeled by DFT calculations.
RESUMO
Ligands L1 and L2, respectively based on a cyclam and a cross-bridged cyclam scaffold functionalized at N1 and N8 by 6-phosphonic-2-methylene pyridyl groups, are described. While complexation of lanthanide (Ln) cations with L2 was not possible, a family of complexes has been prepared with L1, of the general formulae [LnL1H2]Cl (Ln3+ = Lu, Tb, Yb) or [LnL1H] (Ln3+ = Eu). The solution, structural, potentiometric, and photophysical data for these novel ligands and their complexes have been investigated, including a solid-state study by X-ray diffraction (L1, L2, and [EuL1H]), 1H NMR complexation investigations (Lu3+), as well as UV-vis absorption and luminescence spectroscopy in water and D2O (pH ≈ 7). L1 forms 1:1 metal-ligand stoichiometric octadentate complexes in solution. Importantly, the pyridyl phosphonate functions are capable of simultaneous chelation to the metal center and of interaction with a second metal center. 1H NMR (Lu3+) and spectrophotometric titrations of the isolated [TbL1]- complex by EuCl3 salts demonstrated the formation of high-order (hetero)polymetallic species in aqueous solution (H2O, pH = 7). Global analysis of the luminescence titration experiment points to the formation of 4:1, 3:1, and 3:2 [TbL1]/Eu heteropolynuclear assemblies, exhibiting a strong preference to forming [TbL1]3Eu2 at increased europium concentrations, with energy transfer occurring between the kinetically inert terbium complex and added europium cations.
RESUMO
The search for more biocompatible alternatives to Gd3+ -based MRI agents, and the interest in 52 Mn for PET imaging call for ligands that form inert Mn2+ chelates. Given the labile nature of Mn2+ , high inertness is challenging to achieve. The strongly preorganized structure of the 2,4-pyridyl-disubstituted bispidol ligand L1 endows its Mn2+ complex with exceptional kinetic inertness. Indeed, MnL1 did not show any dissociation for 140â days in the presence of 50â equiv. of Zn2+ (37 °C, pHâ 6), while recently reported potential MRI agents MnPyC3A and MnPC2A-EA have dissociation half-lives of 0.285â h and 54.4â h under similar conditions. In addition, the relaxivity of MnL1 (4.28â mm-1 s-1 at 25 °C, 20â MHz) is remarkable for a monohydrated, small Mn2+ chelate. Inâ vivo MRI experiments in mice and determination of the tissue Mn content evidence rapid renal clearance of MnL1 . Additionally, L1 could be radiolabeled with 52 Mn and the complex revealed good stability in biological media.
RESUMO
Piling up excited states to reach upconversion (UC) is severely restricted by vibrational quenching mechanisms, especially when one looks at discrete molecular entities in solution. By carefully controlling the supramolecular assembly processes resulting from the strong electrostatic interactions between negatively charged Yb complexes and Tb3+ cations in aqueous solutions, we engineered the formation of heteropolynuclear complexes of [(YbL)2Tb x] compositions ( x = 1 and 2). These edifices display a phenomenon of cooperative photosensitization UC with green emission of the Tb cations upon NIR excitation at 980 nm in the Yb absorption band. The photophysical properties of the complexes were carefully investigated by steady-state and time-resolved luminescence experiments in D2O, allowing one to quantify the impact of the composition and pD of the solution on the emission intensity as well as clarifying the exact cooperative photosensitization upconversion mechanism. Using optimized conditions, the energy transfer UC process could be observed for the first time in nondeuterated water with discrete molecular compounds.
RESUMO
In the presence of fluoride anions, [LnL(H2 O)]+ complexes, based on the coordination of a lanthanide (Ln) cation into the cavity of a C2v symmetrical cyclen-based ligand (L), self-assemble in water to form [(LnL)2 F]+ dimers. The crystal structures of the Yb hydrated monomer and of the fluorinated dimer are reported and analyzed to unravel the impact of the cumulative effect of weak hydrogen bonding and aromatic stacking interactions in the supramolecular assembly. The assembly is stable over a broad range of pHâ 3-8. A combination of equimolar amounts of Eu and Tb complexes led to a quasistatistical mixture of homo- and heterodimers, as observed by using electrospray mass spectrometry. In the heterodimers, selective excitation into the 7 F6 â5 D4 absorption band of the Tb center at λ=488â nm allowed the observation of a Tb-to-Eu downshifting energy transfer, not observed in the absence of fluoride ions. Analysis of the excited-state lifetimes of the dimers within the frame of the Förster theory of energy transfer showed the transfer to have an efficiency of 34 %, with a corresponding Förster radius of 4.1â Å; thereby, unraveling the short Ln-Ln distance as a crucial parameter of the energy-transfer process. By using equimolar mixtures of the Tb and Eu complexes, the energy-transfer phenomenon was used for a ratiometric sensing of fluoride anions in water with a detection limit of 17.7â nm.
RESUMO
A series of polynuclear assemblies based on ligand L (1,4,7-tris[hydrogen (6-methylpyridin-2-yl)phosphonate]-1,4,7-triazacyclononane) has been developed. The coordination properties of ligand L with LnIII (Ln = La, Eu, Tb, Yb, Lu) have been studied in water (pH = 7.0) and in D2O (pD = 7.0) by UV-absorption spectrometry, spectrofluorimetry, 1H and 31P NMR, DOSY, ESI-mass spectrometry, and X-ray diffraction. This nonadentate ligand forms highly stable mononuclear complexes in water and provides a very efficient shielding of the Ln cations, as emphasized by the very good luminescence properties of the Yb complex in D2O, especially regarding its lifetime (τD2O = 10.2 µs) and quantum yield (ÏD2O = 0.42%). In the presence of excess LnIII cation, polynuclar complexes of [(LnL)2Ln x] stoichiometry (x = 1 and x = 2) are observed in solution. In the solid state, a dinuclear complex of La could be isolated and structurally characterized by X-ray diffraction, unraveling the presence of strong hydrogen bonding interactions between a La(H2O)93+ cation and the [LaL]3- complex.