Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
EMBO J ; 43(14): 2929-2953, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38834853

RESUMO

PARP-catalysed ADP-ribosylation (ADPr) is important in regulating various cellular pathways. Until recently, PARP-dependent mono-ADP-ribosylation has been poorly understood due to the lack of sensitive detection methods. Here, we utilised an improved antibody to detect mono-ADP-ribosylation. We visualised endogenous interferon (IFN)-induced ADP-ribosylation and show that PARP14 is a major enzyme responsible for this modification. Fittingly, this signalling is reversed by the macrodomain from SARS-CoV-2 (Mac1), providing a possible mechanism by which Mac1 counteracts the activity of antiviral PARPs. Our data also elucidate a major role of PARP9 and its binding partner, the E3 ubiquitin ligase DTX3L, in regulating PARP14 activity through protein-protein interactions and by the hydrolytic activity of PARP9 macrodomain 1. Finally, we also present the first visualisation of ADPr-dependent ubiquitylation in the IFN response. These approaches should further advance our understanding of IFN-induced ADPr and ubiquitin signalling processes and could shed light on how different pathogens avoid such defence pathways.


Assuntos
ADP-Ribosilação , Interferons , Poli(ADP-Ribose) Polimerases , Ubiquitina-Proteína Ligases , Humanos , Poli(ADP-Ribose) Polimerases/metabolismo , Poli(ADP-Ribose) Polimerases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Interferons/metabolismo , Ubiquitinação , Células HEK293 , SARS-CoV-2/metabolismo , Transdução de Sinais , COVID-19/virologia , COVID-19/metabolismo , Proteínas de Neoplasias
2.
EMBO Rep ; 25(10): 4172-4189, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39242775

RESUMO

The recent discovery of non-proteinaceous ubiquitylation substrates broadened our understanding of this modification beyond conventional protein targets. However, the existence of additional types of substrates remains elusive. Here, we present evidence that nucleic acids can also be directly ubiquitylated via ester bond formation. DTX3L, a member of the DELTEX family E3 ubiquitin ligases, ubiquitylates DNA and RNA in vitro and that this activity is shared with DTX3, but not with the other DELTEX family members DTX1, DTX2 and DTX4. DTX3L shows preference for the 3'-terminal adenosine over other nucleotides. In addition, we demonstrate that ubiquitylation of nucleic acids is reversible by DUBs such as USP2, JOSD1 and SARS-CoV-2 PLpro. Overall, our study proposes reversible ubiquitylation of nucleic acids in vitro and discusses its potential functional implications.


Assuntos
Ubiquitina-Proteína Ligases , Ubiquitinação , Humanos , COVID-19/virologia , COVID-19/metabolismo , DNA/metabolismo , DNA/química , Ácidos Nucleicos/metabolismo , RNA/metabolismo , RNA/genética , RNA/química , SARS-CoV-2/metabolismo , SARS-CoV-2/genética , Especificidade por Substrato , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/química
3.
Nucleic Acids Res ; 52(2): 801-815, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38000390

RESUMO

Although ubiquitylation had traditionally been considered limited to proteins, the discovery of non-proteinaceous substrates (e.g. lipopolysaccharides and adenosine diphosphate ribose (ADPr)) challenged this perspective. Our recent study showed that DTX2 E3 ligase efficiently ubiquitylates ADPr. Here, we show that the ADPr ubiquitylation activity is also present in another DELTEX family member, DTX3L, analysed both as an isolated catalytic fragment and the full-length PARP9:DTX3L complex, suggesting that it is a general feature of the DELTEX family. Since structural predictions show that DTX3L possesses single-stranded nucleic acids binding ability and given the fact that nucleic acids have recently emerged as substrates for ADP-ribosylation, we asked whether DELTEX E3s might catalyse ubiquitylation of an ADPr moiety linked to nucleic acids. Indeed, we show that DTX3L and DTX2 are capable of ubiquitylating ADP-ribosylated DNA and RNA synthesized by PARPs, including PARP14. Furthermore, we demonstrate that the Ub-ADPr-nucleic acids conjugate can be reversed by two groups of hydrolases, which remove either the whole adduct (e.g. SARS-CoV-2 Mac1 or PARP14 macrodomain 1) or just the Ub (e.g. SARS-CoV-2 PLpro). Overall, this study reveals ADPr ubiquitylation as a general function of the DELTEX family E3s and presents the evidence of reversible ubiquitylation of ADP-ribosylated nucleic acids.


Assuntos
ADP-Ribosilação , Ácidos Nucleicos , Ubiquitina-Proteína Ligases , Adenosina Difosfato Ribose/metabolismo , Ácidos Nucleicos/metabolismo , Ácido Okadáico/análogos & derivados , Proteínas/genética , Ubiquitina-Proteína Ligases/metabolismo , Humanos
4.
Nucleic Acids Res ; 51(15): 8217-8236, 2023 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-37326024

RESUMO

AlphaFold2 and related computational tools have greatly aided studies of structural biology through their ability to accurately predict protein structures. In the present work, we explored AF2 structural models of the 17 canonical members of the human PARP protein family and supplemented this analysis with new experiments and an overview of recent published data. PARP proteins are typically involved in the modification of proteins and nucleic acids through mono or poly(ADP-ribosyl)ation, but this function can be modulated by the presence of various auxiliary protein domains. Our analysis provides a comprehensive view of the structured domains and long intrinsically disordered regions within human PARPs, offering a revised basis for understanding the function of these proteins. Among other functional insights, the study provides a model of PARP1 domain dynamics in the DNA-free and DNA-bound states and enhances the connection between ADP-ribosylation and RNA biology and between ADP-ribosylation and ubiquitin-like modifications by predicting putative RNA-binding domains and E2-related RWD domains in certain PARPs. In line with the bioinformatic analysis, we demonstrate for the first time PARP14's RNA-binding capability and RNA ADP-ribosylation activity in vitro. While our insights align with existing experimental data and are probably accurate, they need further validation through experiments.


Assuntos
Inibidores de Poli(ADP-Ribose) Polimerases , Poli(ADP-Ribose) Polimerases , Humanos , Poli(ADP-Ribose) Polimerases/metabolismo , Domínios Proteicos , ADP-Ribosilação , RNA/metabolismo
6.
Elife ; 132024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39377462

RESUMO

Ubiquitination typically involves covalent linking of ubiquitin (Ub) to a lysine residue on a protein substrate. Recently, new facets of this process have emerged, including Ub modification of non-proteinaceous substrates like ADP-ribose by the DELTEX E3 ligase family. Here, we show that the DELTEX family member DTX3L expands this non-proteinaceous substrate repertoire to include single-stranded DNA and RNA. Although the N-terminal region of DTX3L contains single-stranded nucleic acid binding domains and motifs, the minimal catalytically competent fragment comprises the C-terminal RING and DTC domains (RD). DTX3L-RD catalyses ubiquitination of the 3'-end of single-stranded DNA and RNA, as well as double-stranded DNA with a 3' overhang of two or more nucleotides. This modification is reversibly cleaved by deubiquitinases. NMR and biochemical analyses reveal that the DTC domain binds single-stranded DNA and facilitates the catalysis of Ub transfer from RING-bound E2-conjugated Ub. Our study unveils the direct ubiquitination of nucleic acids by DTX3L, laying the groundwork for understanding its functional implications.


Assuntos
DNA de Cadeia Simples , Ubiquitina-Proteína Ligases , Ubiquitinação , DNA de Cadeia Simples/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/química , RNA/metabolismo , Ubiquitina/metabolismo , Humanos , Ligação Proteica
7.
Sci Adv ; 9(37): eadi2687, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37703374

RESUMO

PARP14 is a mono-ADP-ribosyl transferase involved in the control of immunity, transcription, and DNA replication stress management. However, little is known about the ADP-ribosylation activity of PARP14, including its substrate specificity or how PARP14-dependent ADP-ribosylation is reversed. We show that PARP14 is a dual-function enzyme with both ADP-ribosyl transferase and hydrolase activity acting on both protein and nucleic acid substrates. In particular, we show that the PARP14 macrodomain 1 is an active ADP-ribosyl hydrolase. We also demonstrate hydrolytic activity for the first macrodomain of PARP9. We reveal that expression of a PARP14 mutant with the inactivated macrodomain 1 results in a marked increase in mono(ADP-ribosyl)ation of proteins in human cells, including PARP14 itself and antiviral PARP13, and displays specific cellular phenotypes. Moreover, we demonstrate that the closely related hydrolytically active macrodomain of SARS2 Nsp3, Mac1, efficiently reverses PARP14 ADP-ribosylation in vitro and in cells, supporting the evolution of viral macrodomains to counteract PARP14-mediated antiviral response.


Assuntos
COVID-19 , Transferases , Humanos , Inibidores de Poli(ADP-Ribose) Polimerases , Antivirais , Hidrolases , Poli(ADP-Ribose) Polimerases/genética
8.
Sci Adv ; 6(34)2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32937373

RESUMO

Cross-talk between ubiquitination and ADP-ribosylation regulates spatiotemporal recruitment of key players in many signaling pathways. The DELTEX family ubiquitin ligases (DTX1 to DTX4 and DTX3L) are characterized by a RING domain followed by a C-terminal domain (DTC) of hitherto unknown function. Here, we use two label-free mass spectrometry techniques to investigate the interactome and ubiquitinated substrates of human DTX2 and identify a large proportion of proteins associated with the DNA damage repair pathway. We show that DTX2-catalyzed ubiquitination of these interacting proteins requires PARP1/2-mediated ADP-ribosylation and depends on the DTC domain. Using a combination of structural, biochemical, and cell-based techniques, we show that the DTX2 DTC domain harbors an ADP-ribose-binding pocket and recruits poly-ADP-ribose (PAR)-modified proteins for ubiquitination. This PAR-binding property of DTC domain is conserved across the DELTEX family E3s. These findings uncover a new ADP-ribose-binding domain that facilitates PAR-dependent ubiquitination.


Assuntos
Poli Adenosina Difosfato Ribose , Ubiquitina-Proteína Ligases , Difosfato de Adenosina/metabolismo , Humanos , Poli Adenosina Difosfato Ribose/química , Poli Adenosina Difosfato Ribose/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
9.
Sci Adv ; 6(38)2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32948590

RESUMO

Cellular cross-talk between ubiquitination and other posttranslational modifications contributes to the regulation of numerous processes. One example is ADP-ribosylation of the carboxyl terminus of ubiquitin by the E3 DTX3L/ADP-ribosyltransferase PARP9 heterodimer, but the mechanism remains elusive. Here, we show that independently of PARP9, the conserved carboxyl-terminal RING and DTC (Deltex carboxyl-terminal) domains of DTX3L and other human Deltex proteins (DTX1 to DTX4) catalyze ADP-ribosylation of ubiquitin's Gly76 Structural studies reveal a hitherto unknown function of the DTC domain in binding NAD+ Deltex RING domain recruits E2 thioesterified with ubiquitin and juxtaposes it with NAD+ bound to the DTC domain to facilitate ADP-ribosylation of ubiquitin. This ubiquitin modification prevents its activation but is reversed by the linkage nonspecific deubiquitinases. Our study provides mechanistic insights into ADP-ribosylation of ubiquitin by Deltex E3s and will enable future studies directed at understanding the increasingly complex network of ubiquitin cross-talk.


Assuntos
Ubiquitina-Proteína Ligases , Ubiquitina , ADP-Ribosilação , Humanos , NAD/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
10.
Oncotarget ; 9(3): 3160-3171, 2018 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-29423037

RESUMO

Zika virus, a flavivirus like Dengue and West Nile viruses, poses a significant risk as a pathogen in the category of emerging infectious diseases. Zika infections typically cause nonspecific, mild symptoms, but can also manifest as a neurological disorder like Guillain-Barré syndrome. Infection in pregnant women is linked to microcephaly in newborn infants. The methyltransferase domain of the non-structural protein 5 is responsible for two sequential methylations of the 5'-RNA cap. This is crucial for genome stability, efficient translation, and escape from the host immune response. Here we present the crystal structures of the Zika methyltransferase domain in complex with the methyl-donor SAM and its by-product SAH. The methyltransferase-SAH binary complex presents a new conformation of a "closed" or "obstructed" state that would restrict the binding of new RNA for capping. The combination and comparison of our new structures with recently published Zika methyltransferase structures provide a first glimpse into the structural mechanism of Zika virus mRNA capping.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA