Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Mol Microbiol ; 120(6): 845-873, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37818865

RESUMO

Thermostable direct haemolysin (TDH) is the key virulence factor secreted by the human gastroenteric bacterial pathogen Vibrio parahaemolyticus. TDH is a membrane-damaging pore-forming toxin. It evokes potent cytotoxicity, the mechanism of which still remains under-explored. Here, we have elucidated the mechanistic details of cell death response elicited by TDH. Employing Caco-2 intestinal epithelial cells and THP-1 monocytic cells, we show that TDH induces some of the hallmark features of apoptosis-like programmed cell death. TDH triggers caspase-3 and 7 activations in the THP-1 cells, while caspase-7 activation is observed in the Caco-2 cells. Interestingly, TDH appears to induce caspase-independent cell death. Higher XIAP level and lower Smac/Diablo level upon TDH intoxication provide plausible explanation for the functional inability of caspases in the THP-1 cells, in particular. Further exploration reveals that mitochondria play a central role in the TDH-induced cell death. TDH triggers mitochondrial damage, resulting in the release of AIF and endonuclease G, responsible for the execution of caspase-independent cell death. Among the other critical mediators of cell death, ROS is found to play an important role in the THP-1 cells, while PARP-1 appears to play a critical role in the Caco-2 cells. Altogether, our work provides critical new insights into the mechanism of cell death induction by TDH, showing a common central theme of non-classical programmed cell death. Our study also unravels the interplay of crucial molecules in the underlying signalling processes. Our findings add valuable insights into the role of TDH in the context of the host-pathogen interaction processes.


Assuntos
Vibrio parahaemolyticus , Humanos , Células CACO-2 , Apoptose , Caspases
2.
J Biol Chem ; 298(10): 102441, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36055404

RESUMO

Vibrio cholerae cytolysin (VCC) is a potent membrane-damaging ß-barrel pore-forming toxin. Upon binding to the target membranes, VCC monomers first assemble into oligomeric prepore intermediates and subsequently transform into transmembrane ß-barrel pores. VCC harbors a designated pore-forming motif, which, during oligomeric pore formation, inserts into the membrane and generates a transmembrane ß-barrel scaffold. It remains an enigma how the molecular architecture of the pore-forming motif regulates the VCC pore-formation mechanism. Here, we show that a specific pore-forming motif residue, E289, plays crucial regulatory roles in the pore-formation mechanism of VCC. We find that the mutation of E289A drastically compromises pore-forming activity, without affecting the structural integrity and membrane-binding potential of the toxin monomers. Although our single-particle cryo-EM analysis reveals WT-like oligomeric ß-barrel pore formation by E289A-VCC in the membrane, we demonstrate that the mutant shows severely delayed kinetics in terms of pore-forming ability that can be rescued with elevated temperature conditions. We find that the pore-formation efficacy of E289A-VCC appears to be more profoundly dependent on temperature than that of the WT toxin. Our results suggest that the E289A mutation traps membrane-bound toxin molecules in the prepore-like intermediate state that is hindered from converting into the functional ß-barrel pores by a large energy barrier, thus highlighting the importance of this residue for the pore-formation mechanism of VCC.


Assuntos
Proteínas de Bactérias , Citotoxinas , Proteínas Citotóxicas Formadoras de Poros , Vibrio cholerae , Fatores de Virulência , Membrana Celular/metabolismo , Citotoxinas/química , Citotoxinas/genética , Vibrio cholerae/patogenicidade , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Fatores de Virulência/química , Fatores de Virulência/genética , Proteínas Citotóxicas Formadoras de Poros/química , Proteínas Citotóxicas Formadoras de Poros/genética , Motivos de Aminoácidos , Mutação , Ácido Glutâmico/química , Ácido Glutâmico/genética
3.
Proteins ; 91(2): 137-146, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36000388

RESUMO

Thermostable direct hemolysin (TDH) is a ~19 kDa, hemolytic pore-forming toxin from the gram-negative marine bacterium Vibrio parahaemolyticus, one of the causative agents of seafood-borne acute gastroenteritis and septicemia. Previous studies have established that TDH exists as a tetrameric assembly in physiological state; however, there is limited knowledge regarding the molecular arrangement of its disordered N-terminal region (NTR)-the absence of which has been shown to compromise TDH's hemolytic and cytotoxic abilities. In our current study, we have employed single-particle cryo-electron microscopy to resolve the solution-state structures of wild-type TDH and a TDH construct with deletion of the NTR (NTD), in order to investigate structural aspects of NTR on the overall tetrameric architecture. We observed that both TDH and NTD electron density maps, resolved at global resolutions of 4.5 and 4.2 Å, respectively, showed good correlation in their respective oligomeric architecture. Additionally, we were able to locate extra densities near the pore opening of TDH which might correspond to the disordered NTR. Surprisingly, under cryogenic conditions, we were also able to observe novel supramolecular assemblies of TDH tetramers, which we were able to resolve to 4.3 Å. We further investigated the tetrameric and inter-tetrameric interaction interfaces to elaborate upon the key residues involved in both TDH tetramers and TDH super assemblies. Our current structural study will aid in understanding the mechanistic aspects of this pore-forming toxin and the role of its disordered NTR in membrane interaction.


Assuntos
Toxinas Bacterianas , Vibrio parahaemolyticus , Vibrio parahaemolyticus/química , Microscopia Crioeletrônica , Proteínas Hemolisinas/química , Proteínas Hemolisinas/toxicidade , Toxinas Bacterianas/química
4.
FASEB J ; 36(10): e22557, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36125006

RESUMO

Vibrio cholerae cytolysin (VCC) is a ß-barrel pore-forming toxin (ß-PFT). It exhibits potent hemolytic activity against erythrocytes that appears to be a direct outcome of its pore-forming functionality. However, VCC-mediated cell-killing mechanism is more complicated in the case of nucleated mammalian cells. It induces apoptosis in the target nucleated cells, mechanistic details of which are still unclear. Furthermore, it has never been explored whether the ability of VCC to trigger programmed cell death is stringently dependent on its pore-forming activity. Here, we show that VCC can evoke hallmark features of the caspase-dependent apoptotic cell death even in the absence of the pore-forming ability. Our study demonstrates that VCC mutants with abortive pore-forming hemolytic activity can trigger apoptotic cell death responses and cytotoxicity, similar to those elicited by the wild-type toxin. VCC as well as its pore formation-deficient mutants display prominent propensity to translocate to the target cell mitochondria and cause mitochondrial membrane damage. Therefore, our results for the first time reveal that VCC, despite being an archetypical ß-PFT, can kill target nucleated cells independent of its pore-forming functionality. These findings are intriguing for a ß-PFT, whose destination is generally expected to remain limited on the target cell membranes, and whose mode of action is commonly attributed to the membrane-damaging pore-forming ability. Taken together, our study provides critical new insights regarding distinct implications of the two important virulence functionalities of VCC for the V. cholerae pathogenesis process: hemolytic activity for iron acquisition and cytotoxicity for tissue damage by the bacteria.


Assuntos
Toxinas Biológicas , Vibrio cholerae , Animais , Caspases/metabolismo , Morte Celular , Citotoxinas/metabolismo , Ferro/metabolismo , Mamíferos/metabolismo , Toxinas Biológicas/metabolismo , Vibrio cholerae/metabolismo
5.
Mol Microbiol ; 115(4): 508-525, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33089544

RESUMO

ß-barrel pore-forming toxins perforate cell membranes by forming oligomeric ß-barrel pores. The most crucial step is the membrane-insertion of the pore-forming motifs that create the transmembrane ß-barrel scaffold. Molecular mechanism that regulates structural reorganization of these pore-forming motifs during ß-barrel pore-formation still remains elusive. Using Vibrio cholerae cytolysin as an archetypical example of the ß-barrel pore-forming toxin, we show that a key tyrosine residue (Y321) in the hinge region of the pore-forming motif plays crucial role in this process. Mutation of Y321 abrogates oligomerization of the membrane-bound toxin protomers, and blocks subsequent steps of pore-formation. Our study suggests that the presence of Y321 in the hinge region of the pore-forming motif is crucial for the toxin molecule to sense membrane-binding, and to trigger essential structural rearrangements required for the subsequent oligomerization and pore-formation process. Such a regulatory mechanism of pore-formation by V. cholerae cytolysin has not been documented earlier in the structurally related ß-barrel pore-forming toxins.


Assuntos
Motivos de Aminoácidos , Perforina/química , Perforina/fisiologia , Tirosina/química , Vibrio cholerae/química , Vibrio cholerae/fisiologia , Proteínas de Bactérias/química , Proteínas de Bactérias/fisiologia , Linhagem Celular , Membrana Celular/metabolismo , Células Cultivadas , Citotoxinas/química , Citotoxinas/fisiologia , Humanos , Microscopia Eletrônica de Transmissão , Simulação de Dinâmica Molecular , Mutação , Perforina/ultraestrutura , Conformação Proteica , Multimerização Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Vibrio cholerae/ultraestrutura
6.
J Membr Biol ; 255(2-3): 161-173, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35305136

RESUMO

Pore-forming protein toxins (PFTs) represent a diverse class of membrane-damaging proteins that are produced by a wide variety of organisms. PFT-mediated membrane perforation is largely governed by the chemical composition and the physical properties of the plasma membranes. The interaction between the PFTs with the target membranes is critical for the initiation of the pore-formation process, and can lead to discrete membrane reorganization events that further aids in the process of pore-formation. Punching holes on the plasma membranes by the PFTs interferes with the cellular homeostasis by disrupting the ion-balance inside the cells that in turn can turn on multiple signalling cascades required to restore membrane integrity and cellular homeostasis. In this review, we discuss the physicochemical attributes of the plasma membranes associated with the pore-formation processes by the PFTs, and the subsequent membrane remodelling events that may start off the membrane-repair mechanisms.


Assuntos
Toxinas Biológicas , Membrana Celular/metabolismo , Membranas , Proteínas Citotóxicas Formadoras de Poros/química , Toxinas Biológicas/metabolismo
7.
Soft Matter ; 18(28): 5293-5301, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35790122

RESUMO

Pore-forming toxins (PFTs) produced by pathogenic bacteria serve as prominent virulence factors with potent cell-killing activity. Most of the ß-barrel PFTs form transmembrane oligomeric pores in the membrane lipid bilayer in the presence of cholesterol. The pore-formation mechanisms of the PFTs highlight well-orchestrated regulated events in the membrane environment, which involve dramatic changes in the protein structure and organization. Also, concerted crosstalk between protein and membrane lipid components appears to play crucial roles in the process. Membrane-damaging lesions formed by the pore assembly of the PFTs would also be expected to impose drastic alterations in the membrane organization, details of which remain obscure in most of the cases. Prior reports have established that aqueous interfaces of liquid crystals (LCs) offer promise as responsive interfaces for biomolecular events (at physiologically relevant concentrations), which can be visualized as optical signals. Inspired by this, herein, we sought to understand the lipid membrane interactions of a ß-barrel PFT i.e., Vibrio cholerae cytolysin (VCC), using LC-aqueous interfaces. Our results show the formation of dendritic patterns upon the addition of VCC to the lipid embedded with cholesterol over the LC film. In contrast, we did not observe any LC reorientation upon the addition of VCC to the lipid-laden LC-aqueous interface in the absence of cholesterol. An array of techniques such as polarizing optical microscopy (POM), atomic force microscopy (AFM), and fluorescence measurements were utilized to decipher the LC response to the lipid interactions of VCC occurring at these interfaces. Altogether, the results obtained from our study provide a novel platform to explore the mechanistic aspects of the protein-membrane interactions, in the process of membrane pore-formation by the membrane-damaging PFTs.


Assuntos
Cristais Líquidos , Vibrio cholerae , Membrana Celular/química , Colesterol , Citotoxinas/química , Citotoxinas/metabolismo , Citotoxinas/farmacologia , Bicamadas Lipídicas/química , Vibrio cholerae/química , Vibrio cholerae/metabolismo , Água/metabolismo
8.
Biochem Soc Trans ; 49(1): 455-465, 2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33492383

RESUMO

The integrity of the plasma membranes is extremely crucial for the survival and proper functioning of the cells. Organisms from all kingdoms of life employ specialized pore-forming proteins and toxins (PFPs and PFTs) that perforate cell membranes, and cause detrimental effects. PFPs/PFTs exert their damaging actions by forming oligomeric pores in the membrane lipid bilayer. PFPs/PFTs play important roles in diverse biological processes. Many pathogenic bacteria secrete PFTs for executing their virulence mechanisms. The immune system of the higher vertebrates employs PFPs to kill pathogen-infected cells and transformed cancer cells. The most obvious consequence of membrane pore-formation by the PFPs/PFTs is the killing of the target cells due to the disruption of the permeability barrier function of the plasma membranes. PFPs/PFTs can also activate diverse cellular processes that include activation of the stress-response pathways, induction of programmed cell death, and inflammation. Upon attack by the PFTs, host cells may also activate pathways to repair the injured membranes, restore cellular homeostasis, and trigger inflammatory immune responses. In this article, we present an overview of the diverse cellular responses that are triggered by the PFPs/PFTs, and their implications in the process of pathogen infection and immunity.


Assuntos
Imunidade , Infecções/patologia , Proteínas Citotóxicas Formadoras de Poros/farmacologia , Toxinas Biológicas/farmacologia , Animais , Membrana Celular/efeitos dos fármacos , Humanos , Imunidade/efeitos dos fármacos , Imunidade/fisiologia , Infecções/imunologia , Bicamadas Lipídicas/metabolismo , Virulência/fisiologia
9.
Biochemistry ; 59(2): 163-170, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31608629

RESUMO

A wide variety of bacterial pathogens secrete a unique class of proteins that attack target cell membranes and form transmembrane oligomeric pores with distinct ß-barrel structural scaffolds. Owing to their specific mode of action and characteristic structural assembly, these proteins are termed as ß-barrel pore-forming toxins (ß-PFTs). The most obvious consequence of such pore-forming activity of bacterial ß-PFTs is the permeabilization of cell membranes, which eventually leads to cell death. Bacterial ß-PFTs have been studied extensively for nearly past four decades, and their mechanisms of actions have revealed some of the most enigmatic aspects of the protein structure-function paradigm. In most of the cases, ß-PFTs are released by the bacteria as water-soluble monomeric precursors, which upon encountering target cell membranes assemble into membrane-inserted oligomeric pores. Structural descriptions are now documented for the water-soluble precursor forms, as well as for the membrane-anchored oligomeric pores of many ß-PFTs. These studies have revealed that ß-PFTs undergo a series of well-orchestrated structural rearrangements during membrane pore formation. Nevertheless, mechanisms that trigger and regulate distinct steps of the pore-formation processes still remain obscure. Here, we discuss our current understanding regarding structure-function mechanisms in the ß-PFT family, with particular emphasis on some of the unsolved issues associated with the ß-barrel pore-formation mechanism.


Assuntos
Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/metabolismo , Membrana Celular/efeitos dos fármacos , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Bactérias/química , Proteínas de Bactérias/química , Toxinas Bacterianas/química , Proteínas Citotóxicas Formadoras de Poros/química , Estrutura Terciária de Proteína
10.
Biochemistry ; 59(4): 605-614, 2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-31808340

RESUMO

Thermostable direct hemolysin (TDH) of Vibrio parahemolyticus is a membrane-damaging pore-forming toxin with potent cytolytic/cytotoxic activity. TDH exists as a tetramer consisting of protomers with a core ß-sandwich domain, flanked by an 11-amino acid long N-terminal region (NTR). This NTR could not be modeled in the previously determined crystal structure of TDH. Moreover, the functional implication of NTR for the membrane-damaging action of TDH remains unknown. In the present study, we have explored the implications of NTR for the structure-function mechanism of TDH. Our data show that the presence of NTR modulates the physicochemical property of TDH in terms of augmenting the amyloidogenic propensity of the protein. Deletion of NTR compromises the binding of TDH toward target cell membranes and drastically affects the membrane-damaging cytolytic/cytotoxic activity of the toxin. Mutations of aromatic/hydrophobic residues within NTR also confer compromised cell-killing activity. Moreover, covalent trapping of NTR, via an engineered disulfide bond, against the core ß-sandwich domain also abrogates the cytolytic/cytotoxic activity of TDH. This observation suggests that an unrestrained configuration of NTR is crucial for the membrane-damaging action of TDH. On the basis of our study, we propose a model explaining the role of NTR in the membrane-damaging function of TDH.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/ultraestrutura , Proteínas Hemolisinas/metabolismo , Proteínas Hemolisinas/ultraestrutura , Proteínas de Bactérias/química , Toxinas Bacterianas/metabolismo , Fenômenos Bioquímicos/genética , Transporte Biológico/genética , Proteínas Hemolisinas/química , Proteínas Hemolisinas/fisiologia , Hemólise , Humanos , Mutação/genética , Subunidades Proteicas/metabolismo , Vibrio parahaemolyticus/química , Vibrio parahaemolyticus/genética , Vibrio parahaemolyticus/metabolismo
11.
J Membr Biol ; 253(5): 469-478, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32955633

RESUMO

Pore-forming proteins/toxins (PFPs/PFTs) are the distinct class of membrane-damaging proteins. They act by forming oligomeric pores in the plasma membranes. PFTs and PFPs from diverse organisms share a common mechanism of action, in which the designated pore-forming motifs of the membrane-bound protein molecules insert into the membrane lipid bilayer to create the water-filled pores. One common characteristic of these pore-forming motifs is that they are amphipathic in nature. In general, the hydrophobic sidechains of the pore-forming motifs face toward the hydrophobic core of the membranes, while the hydrophilic residues create the lining of the water-filled pore lumen. Interestingly, pore-forming motifs of the distinct subclass of PFPs/PFTs share very little sequence similarity with each other. Therefore, the common guiding principle that governs the sequence-to-structure paradigm in the mechanism of action of these PFPs/PFTs still remains an enigma. In this article, we discuss this notion using the examples of diverse groups of membrane-damaging PFPs/PFTs.


Assuntos
Sequência de Aminoácidos , Variação Genética , Proteínas Citotóxicas Formadoras de Poros/química , Proteínas Citotóxicas Formadoras de Poros/genética , Toxinas Biológicas/química , Toxinas Biológicas/genética , Animais , Membrana Celular/química , Membrana Celular/metabolismo , Humanos , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Relação Estrutura-Atividade , Toxinas Biológicas/metabolismo
12.
Biochem J ; 475(19): 3039-3055, 2018 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-30206140

RESUMO

Vibrio cholerae cytolysin (VCC) is a ß-barrel pore-forming toxin with potent membrane-damaging cell-killing activity. Previous studies employing the model membranes of lipid vesicles (liposomes) have shown that pore formation by VCC requires the presence of cholesterol in the liposome membranes. However, the exact role of cholesterol in the mode of action of VCC still remains unclear. Most importantly, implication of cholesterol, if any, in regulating the pore-formation mechanism of VCC in the biomembranes of eukaryotic cells remains unexplored. Here, we show that the presence of cholesterol promotes the interaction of VCC with the membrane lipid bilayer, when non-lipid-dependent interactions are absent. However, in the case of biomembranes of human erythrocytes, where accessory interactions are available, cholesterol appears to play a less critical role in the binding step. Nevertheless, in the absence of an optimal level of membrane cholesterol in the human erythrocytes, membrane-bound fraction of the toxin remains trapped in the form of abortive oligomeric assembly, devoid of functional pore-forming activity. Our study also shows that VCC exhibits a prominent propensity to associate with the cholesterol-rich membrane micro-domains of human erythrocytes. Interestingly, mutation of the cholesterol-binding ability of VCC does not block association with the cholesterol-rich membrane micro-domains on human erythrocytes. Based on these results, we propose that the specific cholesterol-binding ability of VCC does not appear to dictate its association with the cholesterol-rich micro-domains on human erythrocytes. Rather, targeting of VCC toward the membrane micro-domains of human erythrocytes possibly acts to facilitate the cholesterol-dependent pore-formation mechanism of the toxin.


Assuntos
Proteínas de Bactérias/metabolismo , Membrana Celular/metabolismo , Colesterol/fisiologia , Perforina/metabolismo , Vibrio cholerae , Proteínas de Bactérias/isolamento & purificação , Eritrócitos/metabolismo , Humanos , Perforina/isolamento & purificação , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Ressonância de Plasmônio de Superfície/métodos
13.
IUBMB Life ; 70(4): 260-266, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29469977

RESUMO

Vibrio cholerae cytolysin (VCC) is a membrane-damaging protein toxin with potent cytolytic/cytotoxic activity against wide range of eukaryotic cells. VCC is a ß-barrel pore-forming toxin (ß-PFT), and it inflicts damage to the target cell membranes by forming transmembrane heptameric ß-barrel pores. To exert pore-forming activity, VCC must bind to the cell membranes in an efficient manner. Efficient interaction with the cell membranes is an essential pre-requisite to trigger subsequent structural/conformational and organizational changes in the toxin molecules leading toward formation of the transmembrane oligomeric ß-barrel pores. Based on the large numbers of studies investigating the mode of action of VCC, it is now evident that VCC is capable of using multiple distinct mechanisms to recognize and bind to the membrane components and cell surface molecules. In this review article, we present an overview of our current understanding regarding the membrane interaction mechanisms of VCC, and their functional implications for the pore-forming activity of the toxin. © 2018 IUBMB Life, 70(4):260-266, 2018.


Assuntos
Proteínas de Bactérias/metabolismo , Membrana Celular/metabolismo , Citotoxinas/metabolismo , Bicamadas Lipídicas/metabolismo , Perforina/metabolismo , Vibrio cholerae/metabolismo , Proteínas de Bactérias/química , Membrana Celular/química , Citotoxinas/química , Bicamadas Lipídicas/química , Perforina/química , Conformação Proteica
14.
Biochem J ; 474(2): 317-331, 2017 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-27784764

RESUMO

Pore-forming toxins (PFTs) are typically produced as water-soluble monomers, which upon interacting with target cells assemble into transmembrane oligomeric pores. Vibrio parahaemolyticus thermostable direct hemolysin (TDH) is an atypical PFT that exists as a tetramer in solution, prior to membrane binding. The TDH structure highlights a core ß-sandwich domain similar to those found in the eukaryotic actinoporin family of PFTs. However, the TDH structure harbors an extended C-terminal region (CTR) that is not documented in the actinoporins. This CTR remains tethered to the ß-sandwich domain through an intra-molecular disulphide bond. Part of the CTR is positioned at the inter-protomer interface in the TDH tetramer. Here we show that the truncation, as well as mutation, of the CTR compromise tetrameric assembly, and the membrane-damaging activity of TDH. Our study also reveals that intra-protomer disulphide bond formation during the folding/assembly process of TDH restrains the CTR to mediate its participation in the formation of inter-protomer contact, thus facilitating TDH oligomerization. However, once tetramerization is achieved, disruption of the disulphide bond does not affect oligomeric assembly. Our study provides critical insights regarding the regulation of the oligomerization mechanism of TDH, which has not been previously documented in the PFT family.


Assuntos
Proteínas de Bactérias/química , Dissulfetos/química , Proteínas Hemolisinas/química , Subunidades Proteicas/química , Vibrio parahaemolyticus/química , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/farmacologia , Toxinas Bacterianas/química , Toxinas Bacterianas/genética , Toxinas Bacterianas/farmacologia , Sítios de Ligação , Clonagem Molecular , Eritrócitos/citologia , Eritrócitos/efeitos dos fármacos , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/farmacologia , Hemólise/efeitos dos fármacos , Humanos , Cinética , Simulação de Dinâmica Molecular , Mutação , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Dobramento de Proteína , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Subunidades Proteicas/genética , Subunidades Proteicas/farmacologia , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacologia , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Vibrio parahaemolyticus/patogenicidade
15.
Adv Exp Med Biol ; 1112: 281-291, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30637704

RESUMO

Pore-forming toxins (PFTs) are a distinct class of membrane-damaging protein toxins documented in a wide array of life forms ranging from bacteria to humans. PFTs are known to act as potent virulence factors of the bacterial pathogens. Bacterial PFTs are, in general, secreted as water-soluble molecules, which upon encountering target host cells assemble into transmembrane oligomeric pores, thus leading to membrane permeabilization and cell death. Interaction of the PFTs with the target host cells can also lead to plethora of cellular responses having critical implications for the bacterial pathogenesis processes, host-pathogen interactions, and host immunity. In this review, we present an overview of our current understanding of the structural aspects of the membrane pore-formation processes employed by the bacterial PFTs. We also discuss the functional implications of the PFT mode of actions, in terms of eliciting diverse cellular responses.


Assuntos
Toxinas Bacterianas/química , Membrana Celular/química , Fatores de Virulência/química , Bactérias/patogenicidade , Humanos
16.
Mol Microbiol ; 97(6): 1051-62, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26059432

RESUMO

Vibrio cholerae cytolysin (VCC) permeabilizes target cell membranes by forming transmembrane oligomeric ß-barrel pores. VCC has been shown to associate with the target membranes via amphipathicity-driven spontaneous partitioning into the membrane environment. More specific interaction(s) of VCC with the membrane components have also been documented. In particular, specific binding of VCC with the membrane lipid components is believed to play a crucial role in determining the efficacy of the pore-formation process. However, the structural basis and the functional implications of the VCC interaction with the membrane lipids remain unclear. Here we show that the distinct loop sequences within the membrane-proximal region of VCC play critical roles to determine the functional interactions of the toxin with the membrane lipids. Alterations of the loop sequences via structure-guided mutagenesis allow amphipathicity-driven partitioning of VCC to the membrane lipid bilayer. Alterations of the loop sequences, however, block specific interactions of VCC with the membrane lipids and abort the oligomerization, membrane insertion, pore-formation and cytotoxic activity of the toxin. Present study identifies the structural signatures in VCC implicated for its functional interactions with the membrane lipid components, a process that presumably acts to drive the subsequent steps of the oligomeric ß-barrel pore-formation and cytotoxic responses.


Assuntos
Membrana Celular/metabolismo , Perforina/metabolismo , Vibrio cholerae/metabolismo , Eritrócitos/citologia , Eritrócitos/metabolismo , Células HT29 , Humanos , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Lipossomos/química , Lipossomos/metabolismo , Perforina/química , Perforina/genética , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Multimerização Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Vibrio cholerae/química , Vibrio cholerae/patogenicidade
17.
Biochem Biophys Res Commun ; 474(3): 421-427, 2016 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-27150630

RESUMO

Vibrio cholerae cytolysin (VCC) is a membrane-damaging beta-barrel pore-forming toxin (beta-PFT). VCC causes permeabilization of the target membranes by forming transmembrane oligomeric beta-barrel pores. Oligomerization is a key step in the mode of action of any beta-PFT, including that of VCC. Earlier studies have identified some of the key residues in VCC that are directly involved in the generation of the inter-protomer contacts, thus playing critical roles in the oligomerization of the membrane-bound toxin. Analysis of the VCC oligomeric pore structure reveals a potential hydrogen-bond network that appears to connect the sidechain of an asparagine residue (Asn582; located within an inter-domain linker sequence) from one protomer to the backbone CO- and NH-groups of the neighbouring protomer, indirectly through water molecules at most of the inter-protomer interfaces. In the present study, we show that the mutation of Asn582Ala affects the oligomerization and the pore-forming activity of VCC in the membrane lipid bilayer of the synthetic lipid vesicles, while the replacement of Asn582Gln results into the restoration of the oligomeric pore-forming ability of the toxin. Using a number of truncated variants of VCC, having deletion in the C-terminal region of the toxin starting from the Asn582 residue or beyond, we also show that the presence of Asn582 is critically required for the oligomerization of the truncated form of the protein.


Assuntos
Bicamadas Lipídicas/química , Modelos Moleculares , Perforina/química , Proteínas Citotóxicas Formadoras de Poros/química , Vibrio cholerae/química , Água/química , Sítios de Ligação , Simulação por Computador , Dimerização , Ligação de Hidrogênio , Modelos Químicos , Porosidade , Ligação Proteica , Conformação Proteica , Domínios Proteicos , Relação Estrutura-Atividade
18.
Biochem J ; 466(1): 147-61, 2015 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25431887

RESUMO

Vibrio cholerae cytolysin (VCC) kills target eukaryotic cells by forming transmembrane oligomeric ß-barrel pores. Once irreversibly converted into the transmembrane oligomeric form, VCC acquires an unusual structural stability and loses its cytotoxic property. It is therefore possible that, on exertion of its cytotoxic activity, the oligomeric form of VCC retained in the disintegrated membrane fractions of the lysed cells would survive within the host cellular milieu for a long period, without causing any further cytotoxicity. Under such circumstances, VCC oligomers may potentially be recognized by the host immune cells. Based on such a hypothesis, in the present study we explored the interaction of the transmembrane oligomeric form of VCC with the monocytes and macrophages of the innate immune system. Our study shows that the VCC oligomers assembled in the liposome membranes elicit potent proinflammatory responses in monocytes and macrophages, via stimulation of the toll-like receptor (TLR)2/TLR6-dependent signalling cascades that involve myeloid differentiation factor 88 (MyD88)/interleukin-1-receptor-associated kinase (IRAK)1/tumour-necrosis-factor-receptor-associated factor (TRAF)6. VCC oligomer-mediated proinflammatory responses critically depend on the activation of the transcription factor nuclear factor-κB. Proinflammatory responses induced by the VCC oligomers also require activation of the mitogen-activated protein kinase (MAPK) family member c-Jun N-terminal kinase, which presumably acts via stimulation of the transcription factor activator protein-1. Notably, the role of the MAPK p38 could not be documented in the process.


Assuntos
Macrófagos/imunologia , Monócitos/imunologia , Perforina/imunologia , Receptor 2 Toll-Like/imunologia , Receptor 6 Toll-Like/imunologia , Vibrio cholerae/química , Animais , Toxinas Bacterianas/química , Toxinas Bacterianas/genética , Toxinas Bacterianas/imunologia , Linhagem Celular , Membrana Celular/química , Membrana Celular/microbiologia , Sobrevivência Celular , Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno , Humanos , Inflamação/genética , Inflamação/imunologia , Inflamação/patologia , Quinases Associadas a Receptores de Interleucina-1/genética , Quinases Associadas a Receptores de Interleucina-1/imunologia , Proteínas Quinases JNK Ativadas por Mitógeno/genética , Proteínas Quinases JNK Ativadas por Mitógeno/imunologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Camundongos , Monócitos/metabolismo , Monócitos/microbiologia , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/imunologia , NF-kappa B/genética , NF-kappa B/imunologia , Perforina/química , Perforina/genética , Cultura Primária de Células , Transdução de Sinais , Fator 6 Associado a Receptor de TNF/genética , Fator 6 Associado a Receptor de TNF/imunologia , Receptor 2 Toll-Like/genética , Receptor 6 Toll-Like/genética , Fator de Transcrição AP-1/genética , Fator de Transcrição AP-1/imunologia , Vibrio cholerae/genética , Vibrio cholerae/imunologia
19.
Biochemistry ; 54(23): 3649-59, 2015 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-26015064

RESUMO

Helicobacter pylori is a potent human gastric pathogen. It is known to be associated with several gastroenteric disorders, including gastritis, peptic ulcer, and gastric cancer. The H. pylori genome encodes a gene product TlyA that has been shown to display potent membrane damaging properties and cytotoxic activity. On the basis of such properties, TlyA is considered as a potential virulence factor of H. pylori. In this study, we show that the H. pylori TlyA protein has a strong propensity to convert into the amyloid-like aggregated assemblies, upon exposure to elevated temperatures. Even at the physiological temperature of 37 °C, TlyA shows a strong amyloidogenic property. TlyA aggregates that are generated upon exposure at temperatures of ≥37 °C show prominent binding to dyes like thioflavin T and Nile Red. Transmission electron microscopy also demonstrates the presence of typical amyloid-like fibrils in the TlyA aggregates generated at 37 °C. Conversion of TlyA into the amyloid-like aggregates is found to be associated with major alterations in the secondary and tertiary structural organization of the protein. Finally, our study shows that the preformed amyloid-like aggregates of TlyA are capable of exhibiting potent cytotoxic activities against human gastric adenocarcinoma cells. Altogether, such a propensity of H. pylori TlyA to convert into the amyloid-like aggregated assemblies with cytotoxic activity suggests potential implications for the virulence functionality of the protein.


Assuntos
Amiloide/química , Proteínas de Bactérias/química , Mucosa Gástrica/patologia , Proteínas Hemolisinas/química , Modelos Moleculares , Fatores de Virulência/química , Amiloide/genética , Amiloide/metabolismo , Amiloide/ultraestrutura , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/ultraestrutura , Linhagem Celular Tumoral , Sobrevivência Celular , Dicroísmo Circular , Biologia Computacional , Sistemas Inteligentes , Corantes Fluorescentes , Mucosa Gástrica/metabolismo , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/metabolismo , Proteínas Hemolisinas/ultraestrutura , Temperatura Alta , Humanos , Microscopia Eletrônica de Transmissão , Agregação Patológica de Proteínas/metabolismo , Agregação Patológica de Proteínas/patologia , Conformação Proteica , Estabilidade Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/ultraestrutura , Espectrometria de Fluorescência , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
20.
J Biol Chem ; 289(24): 16978-87, 2014 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-24794872

RESUMO

Vibrio cholerae cytolysin (VCC) is a potent membrane-damaging cytolytic toxin that belongs to the family of ß barrel pore-forming protein toxins. VCC induces lysis of its target eukaryotic cells by forming transmembrane oligomeric ß barrel pores. The mechanism of membrane pore formation by VCC follows the overall scheme of the archetypical ß barrel pore-forming protein toxin mode of action, in which the water-soluble monomeric form of the toxin first binds to the target cell membrane, then assembles into a prepore oligomeric intermediate, and finally converts into the functional transmembrane oligomeric ß barrel pore. However, there exists a vast knowledge gap in our understanding regarding the intricate details of the membrane pore formation process employed by VCC. In particular, the membrane oligomerization and membrane insertion steps of the process have only been described to a limited extent. In this study, we determined the key residues in VCC that are critical to trigger membrane oligomerization of the toxin. Alteration of such key residues traps the toxin in its membrane-bound monomeric state and abrogates subsequent oligomerization, membrane insertion, and functional transmembrane pore-formation events. The results obtained from our study also suggest that the membrane insertion of VCC depends critically on the oligomerization process and that it cannot be initiated in the membrane-bound monomeric form of the toxin. In sum, our study, for the first time, dissects membrane binding from the subsequent oligomerization and membrane insertion steps and, thus, defines the exact sequence of events in the membrane pore formation process by VCC.


Assuntos
Membrana Celular/efeitos dos fármacos , Toxina da Cólera/química , Citotoxinas/química , Vibrio cholerae/química , Sequência de Aminoácidos , Toxina da Cólera/genética , Toxina da Cólera/farmacologia , Citotoxinas/genética , Citotoxinas/farmacologia , Eritrócitos/efeitos dos fármacos , Humanos , Dados de Sequência Molecular , Mutação Puntual , Multimerização Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA