Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 290(51): 30624-36, 2015 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-26511321

RESUMO

Aggregation of copper-zinc superoxide dismutase (SOD1) is a defining feature of familial ALS caused by inherited mutations in the sod1 gene, and misfolded and aggregated forms of wild-type SOD1 are found in both sporadic and familial ALS cases. Mature SOD1 owes its exceptional stability to a number of post-translational modifications as follows: formation of the intramolecular disulfide bond, binding of copper and zinc, and dimerization. Loss of stability due to the failure to acquire one or more of these modifications is proposed to lead to aggregation in vivo. Previously, we showed that the presence of apo-, disulfide-reduced SOD1, the most immature form of SOD1, results in initiation of fibrillation of more mature forms that have an intact Cys-57-Cys-146 disulfide bond and are partially metallated. In this study, we examine the ability of each of the above post-translational modifications to modulate fibril initiation and seeded growth. Cobalt or zinc binding, despite conferring great structural stability, neither inhibits the initiation propensity of disulfide-reduced SOD1 nor consistently protects disulfide-oxidized SOD1 from being recruited into growing fibrils across wild-type and a number of ALS mutants. In contrast, reduction of the disulfide bond, known to be necessary for fibril initiation, also allows for faster recruitment during seeded amyloid growth. These results identify separate factors that differently influence seeded growth and initiation and indicate a lack of correlation between the overall thermodynamic stability of partially mature SOD1 states and their ability to initiate fibrillation or be recruited by a growing fibril.


Assuntos
Amiloide/química , Esclerose Lateral Amiotrófica/enzimologia , Dissulfetos/química , Multimerização Proteica , Superóxido Dismutase/química , Zinco/química , Amiloide/genética , Amiloide/metabolismo , Esclerose Lateral Amiotrófica/genética , Dissulfetos/metabolismo , Estabilidade Enzimática/genética , Humanos , Mutação , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1 , Zinco/metabolismo
2.
Proc Natl Acad Sci U S A ; 110(27): 10934-9, 2013 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-23781106

RESUMO

Abnormal assemblies formed by misfolded superoxide dismutase-1 (SOD1) proteins are the likely cause of SOD1-linked familial amyotrophic lateral sclerosis (fALS) and may be involved in some cases of sporadic ALS. To analyze the structure of the insoluble SOD1 amyloid fibrils, we first used limited proteolysis followed by mass spectrometric analysis. Digestion of amyloid fibrils formed from full-length N-acetylated WT SOD1 with trypsin, chymotrypsin, or Pronase revealed that the first 63 residues of the N terminus were protected from protease digestion by fibril formation. Furthermore, every tested ALS-mutant SOD1 protein (G37R, L38V, G41D, G93A, G93S, and D101N) showed a similar protected fragment after trypsin digestion. Our second approach to structural characterization used atomic force microscopy to image the SOD1 fibrils and revealed that WT and mutants showed similar twisted morphologies. WT fibrils had a consistent average helical pitch distance of 62.1 nm. The ALS-mutant SOD1 proteins L38V, G93A, and G93S formed fibrils with helical twist patterns very similar to those of WT, whereas small but significant structural deviations were observed for the mutant proteins G37R, G41D, and D101N. Overall, our studies suggest that human WT SOD1 and ALS-mutants tested have a common intrinsic propensity to fibrillate through the N terminus and that single amino acid substitutions can lead to changes in the helical twist pattern.


Assuntos
Esclerose Lateral Amiotrófica/enzimologia , Esclerose Lateral Amiotrófica/genética , Proteínas Mutantes/química , Proteínas Mutantes/genética , Superóxido Dismutase/química , Superóxido Dismutase/genética , Sequência de Aminoácidos , Substituição de Aminoácidos/genética , Amiloide/química , Amiloide/genética , Amiloide/ultraestrutura , Humanos , Microscopia de Força Atômica , Modelos Moleculares , Dados de Sequência Molecular , Proteínas Mutantes/ultraestrutura , Proteólise , Superóxido Dismutase/ultraestrutura , Superóxido Dismutase-1
3.
J Biol Chem ; 286(4): 2795-806, 2011 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-21068388

RESUMO

Mutations in the metalloenzyme copper-zinc superoxide dismutase (SOD1) cause one form of familial amyotrophic lateral sclerosis (ALS), and metals are suspected to play a pivotal role in ALS pathology. To learn more about metals in ALS, we determined the metallation states of human wild-type or mutant (G37R, G93A, and H46R/H48Q) SOD1 proteins from SOD1-ALS transgenic mice spinal cords. SOD1 was gently extracted from spinal cord and separated into insoluble (aggregated) and soluble (supernatant) fractions, and then metallation states were determined by HPLC inductively coupled plasma MS. Insoluble SOD1-rich fractions were not enriched in copper and zinc. However, the soluble mutant and WT SOD1s were highly metallated except for the metal-binding-region mutant H46R/H48Q, which did not bind any copper. Due to the stability conferred by high metallation of G37R and G93A, it is unlikely that these soluble SOD1s are prone to aggregation in vivo, supporting the hypothesis that immature nascent SOD1 is the substrate for aggregation. We also investigated the effect of SOD1 overexpression and disease on metal homeostasis in spinal cord cross-sections of SOD1-ALS mice using synchrotron-based x-ray fluorescence microscopy. In each mouse genotype, except for the H46R/H48Q mouse, we found a redistribution of copper between gray and white matters correlated to areas of high SOD1. Interestingly, a disease-specific increase of zinc was observed in the white matter for all mutant SOD1 mice. Together these data provide a picture of copper and zinc in the cell as well as highlight the importance of these metals in understanding SOD1-ALS pathology.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Encéfalo/metabolismo , Cobre/metabolismo , Medula Espinal/metabolismo , Superóxido Dismutase/metabolismo , Zinco/metabolismo , Substituição de Aminoácidos , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Animais , Encéfalo/patologia , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Mutantes , Camundongos Transgênicos , Mutação de Sentido Incorreto , Medula Espinal/patologia , Superóxido Dismutase/genética , Superóxido Dismutase-1
4.
Proc Natl Acad Sci U S A ; 105(48): 18663-8, 2008 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-19022905

RESUMO

Familial amyotrophic lateral sclerosis (fALS) caused by mutations in copper-zinc superoxide dismutase (SOD1) is characterized by the presence of SOD1-rich inclusions in spinal cords. Similar inclusions observed in fALS transgenic mice have a fibrillar appearance suggestive of amyloid structure. Metal-free apo-SOD1 is a relatively stable protein and has been shown to form amyloid fibers in vitro only when it has been subjected to severely destabilizing conditions, such as low pH or reduction of its disulfide bonds. Here, by contrast, we show that a small amount of disulfide-reduced apo-SOD1 can rapidly initiate fibrillation of this exceptionally stable and highly structured protein under mild, physiologically accessible conditions, thus providing an unusual demonstration of a specific, physiologically relevant form of a protein acting as an initiating agent for the fibrillation of another form of the same protein. We also show that, once initiated, elongation can proceed via recruitment of either apo- or partially metallated disulfide-intact SOD1 and that the presence of copper, but not zinc, ions inhibits fibrillation. Our findings provide a rare glimpse into the specific changes in a protein that can lead to nucleation and into the ability of amyloid nuclei to recruit diverse forms of the same protein into fibrils.


Assuntos
Amiloide/química , Amiloide/metabolismo , Esclerose Lateral Amiotrófica/enzimologia , Conformação Proteica , Dobramento de Proteína , Superóxido Dismutase/metabolismo , Superóxido Dismutase/ultraestrutura , Amiloide/genética , Esclerose Lateral Amiotrófica/genética , Animais , Cobre/metabolismo , Dissulfetos/química , Humanos , Camundongos , Camundongos Transgênicos , Superóxido Dismutase/genética , Superóxido Dismutase-1 , Zinco/metabolismo
5.
J Biol Chem ; 284(49): 34382-9, 2009 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-19805550

RESUMO

The structure and unfolding of metal-free (apo) human wild-type SOD1 and three pathogenic variants of SOD1 (A4V, G93R, and H48Q) that cause familial amyotrophic lateral sclerosis have been studied with amide hydrogen/deuterium exchange and mass spectrometry. The results indicate that a significant proportion of each of these proteins exists in solution in a conformation in which some strands of the beta-barrel (i.e. beta2) are well protected from exchange at physiological temperature (37 degrees C), whereas other strands (i.e. beta3 and beta4) appear to be unprotected from hydrogen/deuterium exchange. Moreover, the thermal unfolding of these proteins does not result in the uniform incorporation of deuterium throughout the polypeptide but involves the local unfolding of different residues at different temperatures. Some regions of the proteins (i.e. the "Greek key" loop, residues 104-116) unfold at a significantly higher temperature than other regions (i.e. beta3 and beta4, residues 21-53). Together, these results show that human wild-type apo-SOD1 and variants have a partially unfolded beta-barrel at physiological temperature and unfold non-cooperatively.


Assuntos
Esclerose Lateral Amiotrófica/genética , Metais/química , Superóxido Dismutase/química , Esclerose Lateral Amiotrófica/metabolismo , Cristalografia por Raios X/métodos , Humanos , Espectrometria de Massas/métodos , Modelos Moleculares , Conformação Molecular , Peptídeos/química , Conformação Proteica , Desnaturação Proteica , Dobramento de Proteína , Estrutura Secundária de Proteína , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1 , Temperatura
6.
Thromb Res ; 190: 112-121, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32339947

RESUMO

INTRODUCTION: High incidence of bleeding events remains a key risk for patients taking anticoagulants, especially those in need of long-term combination therapy with antiplatelet agents. As a consequence, patients may not receive clinically indicated combination antithrombotic therapy. Here, we report on VE-1902, a member of a novel class of precision oral anticoagulants (PROACs) that combines effective anticoagulation with reduced bleeding in preclinical testing. METHODS AND RESULTS: Acting through covalent, reversible active-site modification of thrombin similar to a previously described molecule [1], VE-1902 shows potency and selectivity for thrombin inhibition in human plasma comparable to clinically relevant direct thrombin inhibitors (DTI) such as argatroban and dabigatran (thrombin generation assay ETP EC50 = 1.3 µM compared to 0.36 µM and 0.31 µM for argatroban and dabigatran; >100-fold selectivity against related serine proteases). Unlike the current anticoagulants, VE-1902 does not significantly inhibit thrombin-mediated platelet activation in in vivo models of thrombosis. In the thrombin generation assay, the compound inhibits thrombin formation without significantly delaying the initiation phase of the clotting cascade. These features are possibly responsible for the observed reduced bleeding in tail bleeding and saphenous vein bleeding models. Consistent with this novel pharmacological profile, VE-1902 shows efficacious anticoagulation in several fibrin-driven animal models of thrombosis (arteriovenous shunt, venous stasis thrombosis, and thrombin-induced thromboembolism models), whereas it does not significantly prevent arterial occlusion in the platelet dependent FeCl3 model. CONCLUSIONS: By leaving platelet activation following vascular injury mostly unaffected, VE-1902, and the PROACs more generally, represent a new generation of precision anticoagulants with reduced bleeding risk.


Assuntos
Antitrombinas , Trombose , Animais , Anticoagulantes/farmacologia , Anticoagulantes/uso terapêutico , Hemorragia/induzido quimicamente , Hemorragia/tratamento farmacológico , Humanos , Roedores , Trombina , Trombose/tratamento farmacológico
7.
J Magn Reson ; 179(1): 92-104, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16343958

RESUMO

The temperature dependence, between 10 and 120 K, of electron spin-lattice relaxation at X-band was analyzed for a series of eight pyrrolate-imine complexes and for ten other copper(II) complexes with varying ligands and geometry including copper-containing prion octarepeat domain and S100 type proteins. The geometry of the CuN4 coordination sphere for pyrrolate-imine complexes with R=H, methyl, n-butyl, diphenylmethyl, benzyl, 2-adamantyl, 1-adamantyl, and tert-butyl has been shown to range from planar to pseudo-tetrahedral. The fit to the recovery curves was better for a distribution of values of T1 than for a single time constant. Distributions of relaxation times may be characteristic of Cu(II) in glassy solution. Long-pulse saturation recovery and inversion recovery measurements were performed. The temperature dependence of spin-lattice relaxation rates was analyzed in terms of contributions from the direct process, the Raman process, and local modes. It was necessary to include more than one process to fit the experimental data. There was a small contribution from the direct process at low temperature. The Raman process was the dominant contribution to relaxation between about 20 and 60 K. Debye temperatures were between 80 and 120 K. For samples with similar Debye temperatures the coefficient of the Raman process tended to increase as gz increased, as expected if modulation of spin-orbit coupling is a major factor in relaxation rates. Above about 60 K local modes with energies in the range of 260-360 K (180-250 cm-1) dominated the relaxation. For molecules with similar geometry, relaxation rates were faster for more flexible molecules than for more rigid ones. Relaxation rates for the copper protein samples were similar to rates for small molecules with comparable coordination spheres. At each temperature studied the range of relaxation rates was less than an order of magnitude. The spread was smaller between 20 and 60 K where the Raman process dominates, than at higher temperatures where local modes dominate the relaxation. Spin echo dephasing time constants, Tm, were calculated from two-pulse spin echo decays. Near 10 K Tm was dominated by proton spins in the surroundings. As temperature was increased motion and spin-lattice relaxation made increasing contributions to Tm. Near 100 K spin-lattice relaxation dominated Tm.


Assuntos
Cobre/química , Espectroscopia de Ressonância de Spin Eletrônica/métodos
8.
Curr Top Med Chem ; 12(22): 2560-72, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23339308

RESUMO

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the death of motor neurons. About 10% of ALS cases are inherited (familial), and a large subset of them are caused by mutations in the gene encoding the copper-zinc superoxide dismutase (SOD1). The detection of SOD1-positive inclusions in familial ALS patients suggests the role of SOD1 aggregation underlying the pathology of familial ALS. Although SOD1 mutant proteins are different in structure, stability and activity, they all exhibit a higher aggregation propensity than wild-type SOD1. We here review the recent studies on the role of metallation states and disulfide status in the unfolding, misfolding, and aggregation of SOD1. Investigations of the mechanism of SOD1 aggregation enhance our understanding of onset and progression of ALS and have implications for therapeutic approaches for treating ALS.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Dissulfetos/metabolismo , Superóxido Dismutase/metabolismo , Esclerose Lateral Amiotrófica/genética , Animais , Humanos , Mutação , Dobramento de Proteína , Processamento de Proteína Pós-Traducional , Superóxido Dismutase/química , Superóxido Dismutase/genética , Superóxido Dismutase-1
9.
Am J Neurodegener Dis ; 1(1): 60-74, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22787561

RESUMO

Although the cause of neuronal degeneration in amyotrophic lateral sclerosis (ALS) remains hypothetical, there is evidence of spinal cord infiltration by macrophages and T cells. In post-mortem ALS spinal cords, 19.8 ± 4.8 % motor neurons, including caspase-negative and caspase-positive neurons, were ingested by IL-6- and TNF-α-positive macrophages. In ALS macrophages, in vitro aggregated superoxide dismutase-1 (SOD-1) stimulated in ALS macrophages expression of inflammatory cytokines, including IL-1ß, IL-6, and TNF-α, through activation of cyclooxy-genase-2 (COX-2) and caspase-1. The lipid mediator resolvin D1 (RvD1) inhibited IL-6 and TNF-α production in ALS macrophages with 1,100 times greater potency than its parent molecule docosahexaenoic acid. ALS peripheral blood mononuclear cells (PBMCs) showed increased transcription of inflammatory cytokines and chemokines at baseline and after stimulation by aggregated wild-type SOD-1, and these cytokines were down regulated by RvD1. Thus the neurons are impacted by macrophages expressing inflammatory cytokines. RvD1 strongly inhibits in ALS macrophages and PBMCs cytokine transcription and production. Resolvins offer a new approach to suppression of inflammatory activation in ALS.

10.
Am J Neurodegener Dis ; 1(3): 305-15, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23383400

RESUMO

Patients with amyotrophic lateral sclerosis (ALS) have evidence of chronic inflammation demonstrated by infiltration of the gray matter by inflammatory macrophages, IL17A-positive T cells, and mast cells. Increased serum levels of IL6 and IL17A have been detected in sporadic ALS (sALS) patients when compared to healthy controls. Herein we investigate, in peripheral blood mononuclear cells (PBMCs), the baseline transcription of genes associated with inflammation in sALS and control subjects and the impact of the IL6 receptor (IL6R) antibody (tocilizumab) on the transcription and/or secretion of inflammation factors (e.g. cytokines) stimulated by the apo-G37R superoxide dismutase (SOD1) mutant. At baseline, PBMCs of four sALS patients (Group 1) showed significantly increased expression of TLR2 and CD14; ALOX5, PTGS2 and MMP1; IL1α, IL1ß, IL6, IL36G, IL8 and TNF; CCL3, CCL20, CXCL2, CXCL3 and CXCL5. In four other sALS patients (Group 2), most of the genes just mentioned were expressed at near control levels and a significant decrease in the expression of PPARG, PPARA, RARG, HDAC4 and KAT2B; IL6R, IL6ST and ADAM17; TNFRSF11A; MGAT2 and MGAT3; PLCG1; CXCL3 were detected. Apo-G37R SOD1 up regulated the transcription of cytokines (e.g. IL1α/ß, IL6, IL8, IL36G), chemokines (e.g. CCL20; CXCL3, CXCL5), and enzymes (e.g. PTGS2 and MMP1). In vitro, tocilizumab down regulated the transcription of many inflammatory cytokines, chemokines, enzymes, and receptors, which were up regulated by pathogenic forms of SOD1. Tocilizumab also reduced the secretion of the pro-inflammatory cytokines IL1ß, IL6, TNFα, GM-CSF, IFNγ, and IL17A by Group 1 PBMCs. Finally, sALS patients had significantly higher concentrations of IL6, sIL6R and C-reactive protein in the cerebrospinal fluid when compared to AD patients. This pilot study demonstrates that in vitro tocilizumab suppresses many factors that drive inflammation in sALS patients, with possible increased efficacy in Group 1 ALS patients.

11.
Antioxid Redox Signal ; 11(7): 1603-14, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19271992

RESUMO

Amyotrophic lateral sclerosis (ALS) is a progressive, fatal neurodegenerative disease characterized by the selective death of motor neurons. While the most common form of ALS is sporadic and has no known cause, a small subset of cases is familial because of underlying genetic mutations. The best-studies example of familial ALS is that caused by mutations in the protein copper-zinc superoxide dismutase. The formation of SOD1-rich inclusions in the spinal cord is an early and prominent feature of SOD1-linked familial ALS in human patients and animal models of this disease. These inclusions have been shown to consist of SOD1-rich fibrils, suggesting that the conversion of soluble SOD1 into amyloid fibrils may play an important role in the etiology of familial ALS. SOD1 is also present in inclusions found in spinal cords of sporadic ALS patients, allowing speculations to arise regarding a possible involvement of SOD1 in the sporadic form of this disease. We here review the recent research on the significance, causes, and mechanisms of SOD1 fibril formation from a biophysical perspective.


Assuntos
Esclerose Lateral Amiotrófica/enzimologia , Superóxido Dismutase/metabolismo , Esclerose Lateral Amiotrófica/genética , Animais , Humanos , Camundongos , Camundongos Transgênicos , Mutação , Dobramento de Proteína , Estrutura Secundária de Proteína , Superóxido Dismutase/química , Superóxido Dismutase/genética
12.
J Biol Chem ; 282(47): 34204-12, 2007 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-17893150

RESUMO

Oligopeptide repeats appear in many proteins that undergo conformational conversions to form amyloid, including the mammalian prion protein PrP and the yeast prion protein Sup35. Whereas the repeats in PrP have been studied more exhaustively, interpretation of these studies is confounded by the fact that many details of the PrP prion conformational conversion are not well understood. On the other hand, there is now a relatively good understanding of the factors that guide the conformational conversion of the Sup35 prion protein. To provide a general model for studying the role of oligopeptide repeats in prion conformational conversion and amyloid formation, we have substituted various numbers of the PrP octarepeats for the endogenous Sup35 repeats. The resulting chimeric proteins can adopt the [PSI+] prion state in yeast, and the stability of the prion state depends on the number of repeats. In vitro, these chimeric proteins form amyloid fibers, with more repeats leading to shorter lag phases and faster assembly rates. Both pH and the presence of metal ions modulate assembly kinetics of the chimeric proteins, and the extent of modulation is highly sensitive to the number of PrP repeats. This work offers new insight into the properties of the PrP octarepeats in amyloid assembly and prion formation. It also reveals new features of the yeast prion protein, and provides a level of control over yeast prion assembly that will be useful for future structural studies and for creating amyloid-based biomaterials.


Assuntos
Amiloide/biossíntese , Oligopeptídeos/biossíntese , Príons/biossíntese , Proteínas Recombinantes de Fusão/biossíntese , Proteínas de Saccharomyces cerevisiae/biossíntese , Saccharomyces cerevisiae/metabolismo , Amiloide/genética , Animais , Humanos , Concentração de Íons de Hidrogênio , Cinética , Metais/metabolismo , Conformação Molecular , Oligopeptídeos/genética , Fatores de Terminação de Peptídeos , Príons/genética , Proteínas Recombinantes de Fusão/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
13.
Biochemistry ; 45(43): 13083-92, 2006 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-17059225

RESUMO

The prion protein (PrP) binds Cu(2+) in its N-terminal octarepeat domain, composed of four or more tandem PHGGGWGQ segments. Previous work from our laboratory demonstrates that copper interacts with the octarepeat domain through three distinct coordination modes at pH 7.4, depending upon the precise ratio of Cu(2+) to protein. Here, we apply both electron paramagnetic resonance (EPR) and fluorescence quenching to determine the copper affinity for each of these modes. At low copper occupancy, which favors multiple His coordination, the octarepeat domain binds Cu(2+) with a dissociation constant of 0.10 (+/-0.08) nM. In contrast, high copper occupancy, involving coordination through deprotonated amide nitrogens, exhibits a weaker affinity characterized by dissociation constants in the range of 7.0-12.0 microM. Decomposition of the EPR spectra reveals the proportions of all coordination species throughout the copper concentration range and identifies significant populations of intermediates, consistent with negative cooperativity. At most copper concentrations, the Hill coefficient is less than 1.0 and approximately 0.7 at half copper occupancy. These findings demonstrate that the octarepeat domain is responsive to a remarkably wide copper concentration range covering approximately 5 orders of magnitude. Consideration of these findings, along with the demonstrated ability of the protein to quench copper redox activity at high occupancy, suggests that PrP may function to protect cells by scavenging excess copper.


Assuntos
Cobre/metabolismo , Príons/metabolismo , Sequências Repetitivas de Aminoácidos , Algoritmos , Sequência de Aminoácidos , Sítios de Ligação , Ligação Competitiva , Dicroísmo Circular/métodos , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Histidina/química , Histidina/metabolismo , Cinética , Modelos Químicos , Dados de Sequência Molecular , Príons/química , Ligação Proteica , Espectrometria de Fluorescência/métodos
14.
J Am Chem Soc ; 127(36): 12647-56, 2005 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-16144413

RESUMO

The prion protein (PrP) binds Cu2+ in its N-terminal octarepeat domain. This unusual domain is comprised of four or more tandem repeats of the fundamental sequence PHGGGWGQ. Previous work from our laboratories demonstrates that at full copper occupancy, each HGGGW segment binds a single Cu2+. However, several recent studies suggest that low copper occupancy favors different coordination modes, possibly involving imidazoles from histidines in adjacent octapeptide segments. This is investigated here using a combination of X-band EPR, S-band EPR, and ESEEM, along with a library of modified peptides designed to favor different coordination interactions. At pH 7.4, three distinct coordination modes are identified. Each mode is fully characterized to reveal a series of copper-dependent octarepeat domain structures. Multiple His coordination is clearly identified at low copper stoichiometry. In addition, EPR detected copper-copper interactions at full occupancy suggest that the octarepeat domain partially collapses, perhaps stabilizing this specific binding mode and facilitating cooperative copper uptake. This work provides the first complete characterization of all dominant copper coordination modes at pH 7.4.


Assuntos
Cobre/química , Compostos Organometálicos/química , Fragmentos de Peptídeos/química , Príons/química , Sequências Repetitivas de Aminoácidos/fisiologia , Concentração de Íons de Hidrogênio , Príons/síntese química , Príons/isolamento & purificação , Conformação Proteica , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA