Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Int J Mol Sci ; 25(6)2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38542138

RESUMO

Photodynamic therapy (PDT) is a selective tumor treatment that consists of a photosensitive compound-a photosensitizer (PS), oxygen, and visible light. Although each component has no cytotoxic properties, their simultaneous use initiates photodynamic reactions (PDRs) and sequentially generates reactive oxygen species (ROS) and/or free radicals as cytotoxic mediators, leading to PDT-induced cell death. Nevertheless, tumor cells develop various cytoprotective mechanisms against PDT, particularly the adaptive mechanism of antioxidant status. This review integrates an in-depth analysis of the cytoprotective mechanism of detoxifying ROS enzymes that interfere with PDT-induced cell death, including superoxide dismutase (SOD), catalase, glutathione redox cycle, and heme oxygenase-1 (HO-1). Furthermore, this review includes the use of antioxidant enzymes inhibitors as a strategy in order to diminish the antioxidant activities of tumor cells and to improve the effectiveness of PDT. Conclusively, PDT is an effective tumor treatment of which its effectiveness can be improved when combined with a specific antioxidant inhibitor.


Assuntos
Neoplasias , Fotoquimioterapia , Humanos , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Antioxidantes/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Resultado do Tratamento , Linhagem Celular Tumoral
2.
Hum Mol Genet ; 25(22): 5006-5016, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-28171546

RESUMO

A causal link between overexpression of aryl hydrocarbon receptor (AHR) and its target cytochrome P450 1A1 (CYP1A1) and metastatic outgrowth of various cancer entities has been established. Nevertheless, the mechanism how AHR/CYP1A1 support metastasis formation is still little understood. In vitro we discovered a potential mechanism facilitating tumour dissemination based on the production of 12(S)-hydroxyeicosatetraenoic acid (12(S)-HETE). Utilising a three-dimensional lymph endothelial cell (LEC) monolayer & MDA-MB231 breast cancer cell spheroid co-culture model in combination with knock-down approach allowed elucidation of the molecular/biochemical basis of AHR/CYP1A1-induced tumour breaching through the LEC barrier. Enzyme immunoassay evidenced the potential of recombinant CYP1A1 to synthesise 12(S)-HETE in vitro and qPCR and Western blotting measured gene and protein expression in specific experimental settings. In detail, AHR induced CYP1A1 expression and 12(S)-HETE secretion in tumour spheroids, which caused LEC junction retraction thereby forming large discontinuities allowing transmigration of the tumour. This was enforced by the activating AHR ligand 6-formylindolo (3,3-b)carbazole (FICZ), or inhibited by the AHR antagonist 3,3'-diindolylmethane (DIM) as well as by siRNA against AHR and CYP1A1. AHR and NF-κB were negatively cross talking and therefore, the inhibition of AHR (but not CYP1A1) induced RELA, RELB, NFKB1, NFKB2 and the NF-κB target MMP1, which itself promotes tumour intravasation by a mechanism that is different from 12(S)-HETE. Conversely, the inhibition of NFKB2 induced AHR, CYP1A1 and 12(S)-HETE synthesis. The approved clinical drugs guanfacine and vinpocetine, which inhibit CYP1A1 and NF-κB, respectively, significantly inhibited LEC barrier breaching in vitro indicating an option to reduce metastatic dissemination.


Assuntos
Ácido 12-Hidroxi-5,8,10,14-Eicosatetraenoico/biossíntese , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Neoplasias da Mama/metabolismo , Citocromo P-450 CYP1A1/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Neoplasias da Mama/patologia , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Feminino , Técnicas de Silenciamento de Genes , Humanos , Metástase Linfática , Linfócitos/metabolismo , Células MCF-7 , Metaloproteinase 1 da Matriz/metabolismo , NF-kappa B/metabolismo , Metástase Neoplásica , Transdução de Sinais , Esferoides Celulares , Células Tumorais Cultivadas
3.
J Med Assoc Thai ; 99 Suppl 1: S22-7, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26817235

RESUMO

BACKGROUND: Opisthorchis viverrini (OV) infection generates oxidative stress/free radicals and is considered as a primary cause ofcholangiocarcinoma since it primarily triggers sclerosing cholangitis. OBJECTIVE: In this study, the impacts of andrographolide on acute opisthorchaisis in ß-naphthoflavone (BNF)-exposed hamsters were investigated. MATERIAL AND METHOD: Ethoxyresorufin O-deethylase (EROD) and methoxyresorufin O-demethylase (MROD) activities and Thiobarbituric acid reaction substances (TBARS) assay of andrographolide in acute opisthorchiasis in the BNF-exposed hamsters were assessed. RESULTS: The results showed that andrographolide ameliorated the hepatic CYP1A1 and CYP1A2 activities by decreases of the specific enzymatic reactions of EROD and MROD, respectively, in the BNF-exposed hamsters. Moreover, andrographolide lowered the formation of malondialdehyde in the livers and brains of the hamsters. CONCLUSION: These observations revealed the promising chemo-protective and antioxidant activities of andrographolide via suppression of the specific EROD and MROD reactions and lipid peroxidation against acute opisthorchiasis in the BNF-exposed hamsters.


Assuntos
Anti-Helmínticos/farmacologia , Citocromo P-450 CYP1A1/metabolismo , Citocromo P-450 CYP1A2/metabolismo , Diterpenos/farmacologia , Peroxidação de Lipídeos/efeitos dos fármacos , Mesocricetus , Opistorquíase/veterinária , Doenças dos Roedores/metabolismo , Doença Aguda , Animais , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A2/genética , Ativadores de Enzimas/química , Feminino , Opistorquíase/enzimologia , Opistorquíase/metabolismo , Opistorquíase/parasitologia , Opisthorchis/fisiologia , Doenças dos Roedores/enzimologia , Doenças dos Roedores/parasitologia , beta-Naftoflavona/química
4.
Pharm Biol ; 54(5): 770-9, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26449771

RESUMO

CONTEXT: The incidence of drug-induced liver disease associated with oxidant-antioxidant imbalance is increasing. Colored rice can potentially improve these hepatic disorders through antioxidative and glutathione-restoring effects. OBJECTIVES: The objective of this study is to determine the in vitro antioxidant properties of extracts from red (Hom-Dang and Hom-Kularb-Dang) and black (Hom-Dum-Sukhothai and Kum-Doi-Saket) Thai rice cultivars [Oryza sativa L. (Poaceae)] and to examine the in vivo hepatoprotective potential of Hom-Dang extract in paracetamol-treated mice. MATERIALS AND METHODS: The in vitro antioxidant properties of the extracts were determined by ABTS, [Formula: see text], [Formula: see text], metal chelating capacity, and lipid peroxidation assays. To investigate hepatoprotective effects in vivo, mice administered 60 mg/kg/d paracetamol were given Hom-Dang extract (128, 256, and 512 mg/kg/d) and/or control antioxidant N-acetyl-cysteine (NAC, 150 mg/kg/d) for 7 and 30 d. Liver health was ascertained by measuring levels of hepatic transaminases (GPT/GOT), determining the glutathione profile (GSH/GSSG ratio), and histomorphological examination of liver tissue. RESULTS: Hom-Dang extract showed the highest in vitro antioxidant potency (an IC50 value of 36.50 ± 0.46, 12.98 ± 0.23, 21.83 ± 2.58, 15.87 ± 0.30, and 86.21 ± 2.45 mg/mL for ABTS, OH(•), [Formula: see text], metal chelating, and lipid peroxidation, respectively). Mice administered paracetamol exhibited increases in GPT/GOT with decreases in GSH and GSH/GSSG ratio followed by histomorphological signs of liver injury. In the presence of the Hom-Dang extract, the GPT/GOT values were normalized, GSH production was induced, and the GSH/GSSG ratio was increased. CONCLUSION: Thai colored rice cultivars, especially the Hom-Dang variety, are promising candidates for health supplements due to their antioxidative and hepatoprotective properties.


Assuntos
Acetaminofen/toxicidade , Medicamentos de Ervas Chinesas/farmacologia , Glutationa/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Oryza , Animais , Antioxidantes/isolamento & purificação , Antioxidantes/farmacologia , Medicamentos de Ervas Chinesas/isolamento & purificação , Feminino , Camundongos , Camundongos Endogâmicos ICR , Tailândia
5.
Pharm Biol ; 54(11): 2606-2615, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27180784

RESUMO

CONTEXT: Garcinia mangostana Linn. (Guttiferae) (GM) pericarp has been shown to exhibit good in vitro antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA); however, there is currently no available information regarding its in vivo antibacterial activity. OBJECTIVE: To examine in vivo antibacterial activity of G. mangostana extract against MRSA. MATERIALS AND METHODS: GM pericarp was extracted by ethanol (GM-EtOH) and methanol (GM-MeOH). The crude extracts were examined for in vitro antibacterial activity against MRSA using broth microdilution assay. The in vivo antibacterial activity of 10% GM-EtOH against MRSA was determined in a tape stripping mouse model of superficial skin infection for 9 days by evaluating transepidermal water loss (TEWL) and performing colony counts from cultured swabs. RESULTS: GM-EtOH showed greater in vitro activity against MRSA than GM-MeOH in broth microdilution assay with minimum inhibitory concentration 17 versus 20 µg/mL and minimum bactericidal concentration 30 versus 35 µg/mL, respectively. The GM-EtOH (13.20 ± 0.49%) contained α-mangostin more than the GM-MeOH (9.83 ± 0.30%). In the tape stripping mouse model, 10% GM-EtOH reduced the number of MRSA colonies (0-1) recovered from infected wounds (>100 colonies) on the first day of treatment, restored TEWL to normal levels on the fourth day, and had completely healed the wounds by day 9. CONCLUSION: GM-EtOH showed promising in vivo antibacterial activity against MRSA in a superficial skin infection model in mice. It is of interest to develop a topical formulation of GM-EtOH to further study its potential as a novel antibacterial agent.


Assuntos
Antibacterianos/farmacologia , Garcinia mangostana , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Extratos Vegetais/farmacologia , Infecções Cutâneas Estafilocócicas/tratamento farmacológico , Animais , Modelos Animais de Doenças , Eritromicina/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos ICR , Testes de Sensibilidade Microbiana , Extratos Vegetais/análise , Cicatrização/efeitos dos fármacos , Xantonas/farmacologia
6.
Pak J Pharm Sci ; 27(6): 1731-7, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25362599

RESUMO

Diabetes mellitus (DM) type 1 is a chronic disease characterized by hyperglycemia and lacking of insulin. Oxidative stress participates in development and progression of DM, in which changes of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione (GSH) content were noted in DM mice. In this study, the effects of GSH supplement on anti-oxidation system in streptozotocin-induced DM type 1 Imprinting Control Region (ICR) mice were determined. The co-treatment of insulin and GSH significantly lowered the hepatic manganese superoxide dismutase (Mn-SOD), CAT, and GPx mRNA expression. Moreover, co-administration of insulin and GSH restored SOD and CAT activities to non-DM group except that of the CAT activity in the kidney. The GSH contents and GSH/GSSG ratio in the mouse livers were normalized to the normal levels by the GSH treatment and the co-administration of insulin and GSH. These observations reveal that GSH supplement potentially has the protective roles in delaying diabetic progression via the improvement of antioxidant balance.


Assuntos
Antioxidantes/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Glutationa/administração & dosagem , Animais , Catalase/metabolismo , Glutationa Peroxidase/metabolismo , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos ICR
7.
Pharm Biol ; 2013 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-24188560

RESUMO

Abstract Context: Diabetes mellitus (DM) type 2 is a chronic disease characterized by hyperglycemia and insulin resistance. Oxidative stress participates in development and progression of DM, in which changes of superoxide dismutase (SOD) and catalase (CAT) were noted in DM mice. Berberine has been widely used as an alternative medicine and proved to be effective for the treatment of DM and dyslipidemia. Objective: Impacts of berberine on transcriptional regulation of SOD and CAT and their enzyme activities, including the level of malondialdehyde (MDA) formation, were examined in the DM type 2-induced mice to clarify its antioxidation potential, compared with a common hypoglycemic drug, glibenclamide. Materials and methods: Noninsulin-dependent diabetes was induced in mice by a single intraperitoneal streptozotocin-nicotinamide injection. Diabetic mice were treated daily with glibenclamide (10 mg/kg/d) and/or berberine (100 mg/kg/d) for 2 weeks. The fasting blood glucose and the MDA levels in the mouse liver, brain and kidneys were monitored using Glucometer® (Accu-Check® Advantage II Performa kits, Roche Diagnostics, Germany) and thiobarbituric acid substance assay, respectively. The expression of SOD and CAT mRNA were determined in the mouse liver and the activities of SOD and CAT enzymes were determined in mouse liver, brain and kidneys, respectively. Results: Berberine exhibited similar hypoglycemic potential as glibenclamide to lower area under the curve of the fasting blood glucose. In DM type 2 mice, berberine increased the hepatic CuZn-SOD mRNA expression and the kidney SOD and CAT activities to normal levels. Moreover, DM-induced lipid peroxidation by increasing of MDA levels in both the liver and brain and lipid peroxidation status was restored by berberine. Conclusion: Berberine possessed hypoglycemic properties and strong potential to improve the oxidant-antioxidant balance, though the combination treatment of berberine and glibenclamide did not show additional benefit over the treatment with berberine alone.

8.
Heliyon ; 9(6): e17483, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37416687

RESUMO

Dipterocarpus alatus has been used for the treatment of infectious skin diseases and ulcerative wounds in Thai traditional medicine. A major pathogen in human superficial skin infections is methicillin-resistant Staphylococcus aureus (MRSA). This study determined the wound healing, antibacterial, and anti-inflammatory activities of D. alatus twig emulgel against MRSA-infected mouse superficial skin wounds. Ethyl acetate-methanol crude extract of D. alatus twig was incorporated into emulgel at concentrations of 20 and 40 mg/g (D20 and D40) and its activity was compared to tetracycline emulgel (160 µg/g, Tetra). MRSA-infected superficial wounds demonstrated decreased skin barrier strength, increased transepidermal water loss (TEWL), and mast cell accumulation. Expression of toll-like receptor 2 (TLR-2), NF-κß, TNFα, IL-1ß, IL-6 and IL-10 genes were induced after MRSA infection. Daily application of 100 µL of D20 or D40 for 9 days restored skin barrier strength and TEWL while reducing mast cell and MRSA numbers compared to the non-treated group (MRSA-NT). The wounds treated with D20 and D40 were entirely healed on day 9. Expression of TLR-2 and cytokine-related genes NF-κß, TNFα, IL-1ß, IL-6 and IL-10 were normalized by treatment with either D20 or D40. Therefore, emulgel containing 20 to 40 mg/g ethyl acetate-methanol crude D. alatus twig extract is a good candidate for development as a topical formulation for MRSA-infected ulcerated wounds.

9.
J Appl Toxicol ; 32(12): 994-1001, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22499231

RESUMO

The effects of six Thai fruits, namely banana, guava, mangosteen, pineapple, ripe mango and ripe papaya, on cytochrome P450 (P450) activities were investigated. The median inhibitory concentrations (IC(50) ) of each of the fruit juices on CYP1A1, CYP1A2, CYP2E1 and CYP3A11 activities were determined. Pineapple juice showed the strongest inhibitory effect against all the evaluated P450 isozyme activities in mouse hepatic microsomes, followed by mangosteen, guava, ripe mango, ripe papaya and banana. The study was further performed in male ICR mice given pineapple juice intragastrically at doses of 10, 20 and 40 mg kg(-1) per day for 7 or 28 days. In a concentration-dependent fashion, the pineapple juice raised ethoxyresorufin O-deethylase, aniline hydroxylase and erythromycin N-demethylase activities, which are marker enzymatic reactions responsible for CYP1A1, CYP2E1 and CYP3A11, respectively. The effect of pineapple juice on the expression of CYP1A1, CYP2E1 and CYP3A11 mRNAs corresponded to their enzymatic activities. However, the pineapple juice significantly decreased methoxyresorufin O-demethylase activity. These observations supported that the six Thai fruits were a feasible cause of food-drug interaction or adverse drug effects owing to their potential to modify several essential P450 activities. Individuals consuming large quantities of pineapple for long periods of time should be cautioned of these potential adverse effects.


Assuntos
Bebidas , Inibidores das Enzimas do Citocromo P-450 , Inibidores Enzimáticos/farmacologia , Flavonoides/farmacologia , Frutas , Fígado/efeitos dos fármacos , Animais , Bebidas/análise , Sistema Enzimático do Citocromo P-450/biossíntese , Indução Enzimática , Inibidores Enzimáticos/isolamento & purificação , Flavonoides/isolamento & purificação , Interações Alimento-Droga , Frutas/química , Frutas/crescimento & desenvolvimento , Fígado/enzimologia , Masculino , Camundongos , Camundongos Endogâmicos ICR , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/enzimologia , Tailândia , Regulação para Cima
10.
J Appl Toxicol ; 32(12): 1002-7, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22610983

RESUMO

The aims of the present study were to determine cytochrome P450 enzyme activity in six strains of experimental rodents (n = 5/sex/species): ICR, C57BL/6 and DBA/2 mice; Sprague Dawley and Wistar rats; and Dunkin Hartley guinea pigs. After animals were treated with the typical inducers ß-naphthoflavone (BNF), dexamethasone (DEX) and phenobarbital (PB), the levels of O-dealkylation of ethoxyresorufin (EROD), methoxyresorufin (MROD), pentoxyresorufin (PROD) and benzyloxyresorufin (BROD) activity were determined using responsive catalytic reactions to study CYP1A1, CYP1A2 and CYP2B, respectively. A maximal induction of EROD and MROD was found in BNF-treated animals from all strains (2.4- to 15.1-fold) except DBA/2 (0.9- to 1.8-fold). C57BL/6 mice had the strongest BNF-induced EROD (15.1-fold) and MROD (8.3-fold) activities. No differences in BNF-induced EROD and MROD activities were observed between males and females. However, the EROD activity of Wistar rats and the MROD activity of Sprague Dawley rats were higher in males than females. DEX induced PROD activity only in mice (1.3- to 7.1-fold), but not in rats and guinea pigs (0.2- to 1.1-fold). However, induction of BROD activity was found in DEX-treated mice and rats (1.5 to 12.5-fold), but not in guinea pigs (0.3 to 0.4-fold). PB caused a significant elevation of PROD (1.7- to 10.4-fold) and BROD (31- to 13.2-fold) activities in all the animals. PB-induced BROD activity was higher in females than males in Sprague Dawley rats. These observations strongly suggest that the choice of experimental animal strain, species and inducer is of critical importance for studies of drug metabolism and interaction.


Assuntos
Citocromo P-450 CYP1A1/metabolismo , Citocromo P-450 CYP2B1/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Fígado/enzimologia , Animais , Citocromo P-450 CYP1A1/biossíntese , Citocromo P-450 CYP2B1/biossíntese , Sistema Enzimático do Citocromo P-450/biossíntese , Dexametasona/farmacologia , Indução Enzimática , Feminino , Cobaias , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Camundongos Endogâmicos ICR , Fenobarbital/farmacologia , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Especificidade da Espécie , beta-Naftoflavona/farmacologia
11.
Pharm Biol ; 50(8): 1007-12, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22775417

RESUMO

CONTEXT: Diabetes mellitus (DM), a chronic disease, has been increasing and subsequently devastates the quality of life and economic status of the patients. Oxidative stress participates in development and progression of diabetes, in which levels of glutathione peroxidase (GPx) and superoxide dismutase (SOD) were changed in diabetic mice. Berberine has been widely used as an alternative medicine and proved to be effective for treatment of DM and dyslipidemia. OBJECTIVE: Impacts of berberine on regulation of GPx and SOD messenger RNAs (mRNAs), and glutathione (GSH) content were examined in diabetic mice to clarify its antioxidative stress potential. MATERIALS AND METHODS: Noninsulin-dependent diabetes was induced in mice by a single intraperitoneal streptozotocin injection. Diabetic mice were daily treated with metformin (100 mg/kg/d) or berberine (200 mg/kg/d) for 2 weeks. The fasting blood glucose and GSH content were monitored. GPx and SOD mRNA expression were semi-quantified by reverse transcription-polymerase chain reaction. RESULTS: Berberine showed the same hypoglycemic potential as metformin, a hypoglycemic drug. Interestingly, berberine did not change levels of GPx, copper-zinc SOD (CuZn-SOD), and manganese SOD (Mn-SOD) mRNA in the normal mice but significantly recovered these levels in the diabetic mice to nearly the same levels as the normal. The GSH contents, including total GSH and reduced/oxidized GSH contents, were restored to the normal level by berberine, corresponded to GPx levels. DISCUSSION AND CONCLUSION: Berberine conveyed antioxidative effect via down- and up-regulation of GPx and CuZn-SOD expression, respectively. Therefore, use of berberine as a hypoglycemic compound for alternative treatment of DM could bring extra-beneficent consequence according to its antioxidative stress.


Assuntos
Antioxidantes/uso terapêutico , Berberina/uso terapêutico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Glutationa Peroxidase/metabolismo , Hipoglicemiantes/uso terapêutico , Fígado/efeitos dos fármacos , Superóxido Dismutase/metabolismo , Animais , Antioxidantes/efeitos adversos , Berberina/efeitos adversos , Glicemia/análise , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/metabolismo , Regulação para Baixo/efeitos dos fármacos , Glutationa/metabolismo , Hipoglicemiantes/efeitos adversos , Fígado/enzimologia , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , RNA Mensageiro/metabolismo , Distribuição Aleatória , Estreptozocina , Regulação para Cima/efeitos dos fármacos
12.
Pak J Biol Sci ; 25(1): 15-22, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35001571

RESUMO

<b>Background and Objective:</b> Pineapple (<i>Ananas comosus</i>) is a popular fruit worldwide with natural antioxidant properties. This study examined how pineapple modified the expression of drug-metabolizing enzymes (CYP1A2, CYP2C9, CYP3A4, UGT1A6, NAT2 and SULT1A1) and a drug transporter (OATP1B1) in human hepatocarcinoma (HepG2) cells. <b>Materials and Methods:</b> HepG2 cells (2.5×10<sup>5</sup> cells/well in a 24-well plate) were incubated with pineapple juice extract (125-1,000 µg mL<sup>1</sup>) for 48 hrs in phenol red-free medium. Resazurin reduction, ROS, AST and ALT assays were performed. The mRNA expression of target genes was determined by RT/qPCR. <b>Results:</b> Pineapple juice slightly reduced HepG2 cell viability to 80% of the control, while ROS, AST and ALT levels were not changed. Pineapple juice did not alter the expression of CYP1A2, CYP2C9 and UGT1A6 mRNA. All tested concentrations of pineapple juice suppressed CYP3A4, NAT2 and OATP1B1 expression, while SULT1A1 expression was induced. <b>Conclusion:</b> Though pineapple juice slightly decreased the viability of HepG2 cells, cell morphology and cell function remained normal. Pineapple juice disturbed the expression of phase I (CYP3A4) and phase II (NAT2 and SULT1A1) metabolizing genes and the drug transporter OATP1B1. Therefore, the consumption of excessive amounts of pineapple juice poses a risk for drug interactions.


Assuntos
Ananas/metabolismo , Sucos de Frutas e Vegetais/normas , Expressão Gênica/efeitos dos fármacos , Células Hep G2/efeitos dos fármacos , Ananas/microbiologia , Arilamina N-Acetiltransferase/efeitos dos fármacos , Arilamina N-Acetiltransferase/genética , Arilsulfotransferase/efeitos dos fármacos , Arilsulfotransferase/genética , Citocromo P-450 CYP3A/efeitos dos fármacos , Citocromo P-450 CYP3A/genética , Células Hep G2/fisiologia , Humanos
13.
Pak J Biol Sci ; 25(1): 56-66, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35001576

RESUMO

<b>Background and Objective:</b> Dill<i> </i>(<i>Anethum graveolens</i> L.) has the potential to develop as a new alternative medicine due to its pharmacological activities. However, studies into its safety regarding herb-drug interactions have been neglected. This study investigated the risk of dill-induced herb-drug interactions (HDI) by examining its effect on the expression of phase I and II drug-metabolizing enzyme and transporter genes in Caco-2 cells. <b>Materials and Methods:</b> Caco-2 cells (5×10<sup>5</sup> cells/well) were treated with 10 µM ketoconazole, 20 µM rifampicin or dill extract (60-240 µg mL<sup>1</sup>) for 72 hrs. Cell viability was assessed using the resazurin assay and reactive oxygen species (ROS) content was determined with 2 ,7 -dichlorofluorescein diacetate. Aspartate (AST) and alanine aminotransferase (ALT) levels were measured using L-aspartate and L-alanine with α-ketoglutarate as substrate. Expression of phase I (<i>CYP1A2</i>, <i>CYP2C19</i>, <i>CYP2D6</i>, <i>CYP2E1 </i>and <i>CYP3A4</i>) and II (<i>UGT1A6</i>,<i> SULT1A1</i>,<i> NAT1</i>,<i> NAT2 </i>and<i> GSTA1/2</i>) metabolizing genes and transporters (<i>ABCB1</i>,<i> ABCC2</i>,<i> ABCG2 </i>and <i>SLCO1B1</i>) were determined by RT/qPCR. <b>Results:</b> All tested concentrations of dill did not affect cell viability or AST and ALT levels. The highest concentration of dill extract (240 µg mL<sup>1</sup>) significantly lowered the ROS level. Expression of <i>CYP1A2</i>, <i>CYP2C19</i>, <i>SULT1A1</i>, <i>NAT2 </i>and <i>ABCB1 </i>mRNA was significantly up-regulated by dill extract. <b>Conclusion:</b> Dill extract did not directly damage Caco-2 cells but prolonged use of dill may increase the risk of HDI via the up-regulation of the drug-metabolizing genes <i>CYP1A2</i>, <i>CYP2C19</i>, <i>SULT1A1</i>, <i>NAT2 </i>and the transporter <i>ABCB1</i>.


Assuntos
Anethum graveolens/metabolismo , Células CACO-2/efeitos dos fármacos , Regulação para Cima/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/efeitos dos fármacos , Arilamina N-Acetiltransferase/efeitos dos fármacos , Arilsulfotransferase/efeitos dos fármacos , Citocromo P-450 CYP1A2/efeitos dos fármacos , Citocromo P-450 CYP2C19/efeitos dos fármacos , Interações Ervas-Drogas/fisiologia , Humanos , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico
14.
Pak J Biol Sci ; 25(9): 843-851, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36098087

RESUMO

<b>Background and Objective:</b> Ulcerative colitis (UC) is inflammation of the large intestine with ulceration but can also cause extraintestinal manifestations (EIM) by damaging surrounding organs such as the liver. <i>Garcinia mangostana</i> (GM) pericarp and α-mangostin (MGS) have been reported to have anti-inflammatory activity. This study evaluated the effects of GM pericarp extract and MGS on the expression of hepatic cytochrome P450 (CYP) enzymes as an EIM of UC. <b>Materials and Methods:</b> Male ICR mice were orally administered GM pericarp extract (40, 200 and 1000 mg/kg/day), MGS (30 mg/kg/day) or sulfasalazine (SUL) (100 mg/kg/day) daily for 7 days. On days 4-7, UC was induced by dextran sulfate sodium (DSS 40 kDa, 6 g/kg/day). Profiles of CYP mRNA expression were determined by RT/qPCR. Alkoxyresorufin <i>O</i>-dealkylation (including ethoxy-, methoxy-, pentoxy- and benzyloxy-resorufin), aniline hydroxylation and erythromycin <i>N</i>-demethylation CYP responsive activities were also examined. <b>Results:</b> The DSS-induced UC mice showed suppressed expression<i> </i>of <i>Cyp1a1</i>, <i>Cyp1a2</i>, <i>Cyp2b9/10</i>, <i>Cyp2e1</i>, <i>Cyp2c29</i>, <i>Cyp2d9</i>, <i>Cyp3a11</i> and <i>Cyp3a13</i> mRNAs. The GM pericarp extract and MGS restored expression of all investigated CYPs and their responsive enzyme activities in DSS-induced UC mice to levels comparable to the control and parallel to the effects of the anti-inflammatory control SUL. <b>Conclusion:</b> The GM is a promising therapy to restore UC-modified hepatic CYP profiles.


Assuntos
Colite Ulcerativa , Garcinia mangostana , Animais , Anti-Inflamatórios/farmacologia , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Sistema Enzimático do Citocromo P-450/efeitos adversos , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Sulfato de Dextrana/efeitos adversos , Garcinia mangostana/metabolismo , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos ICR , Extratos Vegetais/farmacologia , Xantonas
15.
J Ethnopharmacol ; 265: 113384, 2021 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-32927006

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Ulcerative colitis (UC) is an inflammatory disorder of the colon. Garcinia mangostana Linn. (GM) has been traditionally used for its anti-inflammatory and antioxidant activities. AIM OF THE STUDY: The effects of GM and its bioactive constituent α-mangostin on dextran sulfate sodium (DSS)-induced UC in mice were investigated. MATERIALS AND METHODS: Adult ICR mice (n = 63) were pretreated with ethanolic GM extract at 40, 200, and 1000 mg/kg/day (GM40, GM200, and GM1000), α-mangostin at 30 mg/kg/day, or sulfasalazine at 100 mg/kg/day (SA) for 7 consecutive days. On days 4-7, UC was induced in the mice by the oral administration of DSS (40 kDa, 6 g/kg/day), while control mice received distilled water. The UC disease activity index (DAI) and histological changes were recorded. The activities of myeloperoxidase, catalase, and superoxide dismutase, and the levels of reactive oxygen species (ROS), nitric oxide (NO), and malondialdehyde (MDA) were determined. The mRNA expression of inflammatory related genes including proinflammatory cytokine Tnf-α, Toll-like receptor (Tlr-2), adhesion molecules (Icam-1 and Vcam-1), and monocyte chemoattractant protein (Mcp-1) were evaluated. RESULTS: Treatment with GM or α-mangostin decreased the UC DAI and protected against colon shortening and spleen and kidney enlargement. GM and α-mangostin prevented histological damage, reduced mast cell infiltration in the colon, and decreased myeloperoxidase activity. GM and α-mangostin increased catalase and superoxide dismutase activity and decreased ROS, NO, and MDA production. GM downregulated mRNA expression of Tnf-α, Tlr-2, Icam-1, Vcam-1, and Mcp-1. CONCLUSIONS: GM and α-mangostin attenuated the severity of DSS-induced UC via anti-inflammatory and antioxidant effects. Therefore, GM is a promising candidate for development into a novel therapeutic agent for UC.


Assuntos
Anti-Inflamatórios/farmacologia , Colite Ulcerativa/tratamento farmacológico , Garcinia mangostana/química , Extratos Vegetais/farmacologia , Animais , Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/isolamento & purificação , Antioxidantes/administração & dosagem , Antioxidantes/isolamento & purificação , Antioxidantes/farmacologia , Colite Ulcerativa/patologia , Sulfato de Dextrana , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Etanol/química , Masculino , Camundongos , Camundongos Endogâmicos ICR , Óxido Nítrico/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Xantonas/administração & dosagem , Xantonas/isolamento & purificação , Xantonas/farmacologia
16.
Pak J Biol Sci ; 24(11): 1195-1201, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34842392

RESUMO

<b>Background and Objective:</b> The medicinal herb <i>Plumbago indica</i> (PI) and its major constituent plumbagin have reported pharmacological properties but there is a lack of information about their herb-drug interactions. The effects of methanolic (PI-MeOH) and ethanolic (PI-EtOH) crude extracts of PI and plumbagin on the expression of cytochrome P450s (<i>CYP1A2</i>, <i>CYP2E1</i> and <i>CYP3A4</i>) and transporters (<i>ABCC1</i>, <i>ABCG2</i> and <i>SLC22A11</i>) were investigated in BeWo and HepG2 cells. <b>Materials and Methods:</b> BeWo or HepG2 cells were treated with 0.5-5 µM plumbagin or 25-500 µg mL<sup>1</sup> of PI-MeOH or PI-EtOH for 24 hrs. Total RNA was extracted and mRNA expression of CYPs and transporters were determined using RT-qPCR. <b>Results:</b> PI and plumbagin affected mRNA expression differently in the two tested cell types. In BeWo cells, all concentrations of PI-MeOH induced <i>CYP2E1</i>, 100 and 500 µg Ml<sup>1</sup> PI-MeOH and PI-EtOH up-regulated <i>CYP1A2</i>, <i>CYP3A4 </i>and <i>ABCG2 </i>and 500 µg mL<sup>1</sup> PI-EtOH induced <i>ABCG2</i> expression. Plumbagin suppressed <i>CYP1A2</i> and induced <i>SLC22A11 </i>expression at the highest concentration, 5 µM. In HepG2 cells, 5 µM plumbagin and 500 µg Ml<sup>1</sup> PI-EtOH suppressed <i>CYP3A4 </i>expression and 500 µg mL<sup>1</sup> PI-MeOH and PI-EtOH up-regulated <i>CYP1A2</i> and <i>CYP2E1 </i>expression. <i>ABCC1</i> expression was induced by all treatments while <i>ABCG2</i> and <i>SLC22A11 </i>were induced only by 500 µg mL<sup>1</sup> PI-MeOH and PI-EtOH. <b>Conclusion:</b> The use of PI or plumbagin supplements in large quantities or for long periods should be carefully considered due to the risk of herbal drug interactions via modulated expression of CYPs and transporters.


Assuntos
Sistema Enzimático do Citocromo P-450/efeitos dos fármacos , Células Hep G2/efeitos dos fármacos , Naftoquinonas/farmacologia , Plumbaginaceae/metabolismo , Sistema Enzimático do Citocromo P-450/farmacologia , Humanos
17.
Pak J Biol Sci ; 24(7): 790-800, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34486298

RESUMO

<b>Background and Objective:</b> Phenol red, the pH indicator in cell culture media, influences the expression of cytochrome P450s (CYPs) in cell lines. This study aimed to examine how phenol red modified CYP induction by benzo[<i>a</i>]pyrene and dexamethasone in human hepatocarcinoma (HepG2), colorectal adenocarcinoma (Caco-2) and choriocarcinoma (BeWo) cells. <b>Materials and Methods:</b> The cells (1×10<sup>5</sup> cells/well in a 24-well plate) were incubated with benzo[<i>a</i>]pyrene (0.1, 1 and 10 µM) or dexamethasone (1, 5 and 10 µM) in either phenol red or phenol red-free media for 24 hrs. The mRNA expression of CYPs was determined by Real-Time Polymerase Chain Reaction (RT/qPCR). <b>Results:</b> Phenol red enhanced expression of benzo[<i>a</i>]pyrene-induced CYP1A2 inHepG2 and BeWo cells and suppressed benzo[<i>a</i>]pyrene-induced CYP2A6 expression in HepG2 and Caco-2 cells, benzo[<i>a</i>]pyrene induced CYP2B6 expression in HepG2 cells and benzo[<i>a</i>]pyrene- and dexamethasone-induced CYP3A4 expression in HepG2 and Caco-2 cells. The expression of CYP3A5 was affected differently in HepG2 and Caco-2 cell lines. Phenol red enhanced benzo[<i>a</i>]pyrene- and dexamethasone-induced CYP3A5 expression in Caco-2 cells but suppressed benzo[<i>a</i>]pyrene- and dexamethasone-induced CYP3A5 expression in HepG2 cells. <b>Conclusion:</b> Phenol red differentially influenced expression of benzo[<i>a</i>]pyrene- and dexamethasone-induced CYP1A2, CYP2A6, CYP2B6, CYP3A4 and CYP3A5 mRNAs in HepG2, Caco-2 and BeWo cells. Therefore, the inclusion of phenol red in cell culture media is of concern in studies of drug and xenobiotic metabolism via CYPs in human cell line models.


Assuntos
Benzo(a)pireno/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Dexametasona/metabolismo , Fenolsulfonaftaleína/farmacologia , Células CACO-2 , Linhagem Celular Tumoral , Células Hep G2 , Humanos
18.
Pak J Biol Sci ; 24(12): 1217-1225, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34989199

RESUMO

<b>Background and Objective:</b> Pineapple (<i>Ananas comosus</i> L.) has antioxidant and other pharmacological properties. This study examined how pineapple modified mitochondrial permeability transition and expression of drug-metabolizing enzymes, i.e., CYP1A2, CYP2C9, CYP3A4, UGT1A6, NAT2 and the drug transporter OATP1B1 in human colorectal adenocarcinoma (Caco-2) cells. <b>Materials and Methods:</b> Caco-2 cells (2.5×10<sup>5</sup> cells well<sup>1</sup> in 24-well plates) were incubated with pineapple (125 to 1,000 µg mL<sup>1</sup>) for 48 hrs in a phenol red-free medium. Mitochondrial permeability transition, resazurin cell viability and AST and ALT levels were investigated. The mRNA expression of target genes was determined by RT/qPCR. <b>Results:</b> Pineapple significantly reduced depolarized mitochondria, slightly decreased cell viability and did not change AST and ALT levels. Pineapple did not modify the mRNA expressions of CYP1A2, CYP2C9 and CYP3A4 but markedly induced UGT1A6 expression. The highest tested concentration of pineapple (1,000 µg mL<sup>1</sup>) significantly suppressed NAT2 and OATP1B1 expression. <b>Conclusion:</b> Although pineapple slightly decreased cell viability to ~80% of control, the morphology and functions of the cells were unaffected. Pineapple showed a beneficial effect to reduce depolarized mitochondria, which consequently decreased reactive oxygen species production. Pineapple did not modify the expression of CYPs, whilst it altered the expression of phase 2 metabolizing genes UGT1A6 and NAT2 and the transporter OATP1B1. Therefore, the consumption of large amounts of pineapple is of concern for the risk of drug interaction via alteration of UGT1A6, NAT2 and OATP1B1 expression.


Assuntos
Ananas/metabolismo , Células CACO-2/efeitos dos fármacos , Necrose Dirigida por Permeabilidade Transmembrânica da Mitocôndria/fisiologia , Preparações Farmacêuticas/metabolismo , Células CACO-2/metabolismo , Humanos
19.
Biol Pharm Bull ; 33(10): 1698-703, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20930378

RESUMO

The present study examined modifications of ß-naphthoflavone (ß-NF)-induced cytochrome P450 1A1 (CYP1A1) expression by flavonoids in mouse hepatocytes in primary culture. Some flavonoids (apigenin, chrysin, flavone, flavanone, galangin, luteolin, and naringenin) by themselves induced CYP1A1 mRNA expression, especially flavone which was even more effective than ß-NF. The effect on ß-NF-induced CYP1A1 mRNA expression was varied, namely additive, suppressive, or both. An additive effect was observed after combined treatment with flavanone, naringenin, and chrysin, whereas kaempferol, myricetin, and quercetin decreased CYP1A1 levels. Apigenin, chrysin, galangin, luteolin, and morin synergistically enhanced ß-NF-induced CYP1A1 expression at 24 h, but considerably suppressed it at 9 h. The structure-activity relationship of flavonoids affecting CYP1A1 expression as inducers or inhibitors is discussed. The present observations suggest the need to reveal the mechanism by which CYP1A1 expression is modified by flavonoids for risk assessment, since CYP1A1 activates environmental carcinogenic polycyclic hydrocarbons and flavonoids are major constituents in food.


Assuntos
Citocromo P-450 CYP1A1/metabolismo , Flavonoides/farmacologia , Hepatócitos/efeitos dos fármacos , beta-Naftoflavona/farmacologia , Animais , Linhagem Celular , Citocromo P-450 CYP1A1/genética , Sinergismo Farmacológico , Flavonas/farmacologia , Hepatócitos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , RNA Mensageiro/metabolismo , Relação Estrutura-Atividade
20.
Reprod Med Biol ; 9(1): 51-56, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29699329

RESUMO

PURPOSE: We investigated the effects of a bovine testes extract (BTE), which was developed as an alternative product for andropausal men, on expression of testicular enzymes responsible for sex hormone synthesis genes and a carcinogen activation related gene. METHODS: Expression of testicular CYP1A2, CYP11A1, CYP17, 3ß-HSD, and 17ß-HSD3 mRNAs as well as hepatic CYP1A2 mRNA were semi-quantitatively determined by RT-PCR. In addition, expression of hepatic CYP1A2 protein and methoxyresorufin O-demethylase activity were carried out. RESULTS: Bovine testes extract did not alter the testicular expression of CYP11A1, CYP17, and 3ß-HSD mRNAs, while that of CYP11A1 was significantly down-regulated by testosterone. Interestingly, administration of BTE for 3 weeks significantly suppressed testicular 17ß-HSD3 and hepatic CYP1A2 mRNA. Correspondingly, methoxyresorufin O-demethylase (MROD) activity and expression of hepatic CYP1A2 protein were significantly decreased. CONCLUSIONS: These findings strongly suggested considering risks versus benefits and raised concerns regarding the use of BTE as an alternative medication or health supplement in andropausal men due to its potential for suppressing expression of both 17ß-HSD3 and CYP1A2 mRNAs, testicular enzymes responsible for sex hormone gene synthesis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA