Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Clin Proteomics ; 20(1): 56, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38053024

RESUMO

BACKGROUND: Cell surface proteins perform critical functions related to immune response, signal transduction, cell-cell interactions, and cell migration. Expression of specific cell surface proteins can determine cell-type identity, and can be altered in diseases including infections, cancer and genetic disorders. Identification of the cell surface proteome remains a challenge despite several enrichment methods exploiting their biochemical and biophysical properties. METHODS: Here, we report a novel method for enrichment of proteins localized to cell surface. We developed this new approach designated surface Biotinylation Site Identification Technology (sBioSITe) by adapting our previously published method for direct identification of biotinylated peptides. In this strategy, the primary amine groups of lysines on proteins on the surface of live cells are first labeled with biotin, and subsequently, biotinylated peptides are enriched by anti-biotin antibodies and analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). RESULTS: By direct detection of biotinylated lysines from PC-3, a prostate cancer cell line, using sBioSITe, we identified 5851 peptides biotinylated on the cell surface that were derived from 1409 proteins. Of these proteins, 533 were previously shown or predicted to be localized to the cell surface or secreted extracellularly. Several of the identified cell surface markers have known associations with prostate cancer and metastasis including CD59, 4F2 cell-surface antigen heavy chain (SLC3A2) and adhesion G protein-coupled receptor E5 (CD97). Importantly, we identified several biotinylated peptides derived from plectin and nucleolin, both of which are not annotated in surface proteome databases but have been shown to have aberrant surface localization in certain cancers highlighting the utility of this method. CONCLUSIONS: Detection of biotinylation sites on cell surface proteins using sBioSITe provides a reliable method for identifying cell surface proteins. This strategy complements existing methods for detection of cell surface expressed proteins especially in discovery-based proteomics approaches.

2.
J Proteome Res ; 20(8): 4165-4175, 2021 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-34292740

RESUMO

Since the recent outbreak of COVID-19, there have been intense efforts to understand viral pathogenesis and host immune response to combat SARS-CoV-2. It has become evident that different host alterations can be identified in SARS-CoV-2 infection based on whether infected cells, animal models or clinical samples are studied. Although nasopharyngeal swabs are routinely collected for SARS-CoV-2 detection by RT-PCR testing, host alterations in the nasopharynx at the proteomic level have not been systematically investigated. Thus, we sought to characterize the host response through global proteome profiling of nasopharyngeal swab specimens. A mass spectrometer combining trapped ion mobility spectrometry (TIMS) and high-resolution QTOF mass spectrometer with parallel accumulation-serial fragmentation (PASEF) was deployed for unbiased proteome profiling. First, deep proteome profiling of pooled nasopharyngeal swab samples was performed in the PASEF enabled DDA mode, which identified 7723 proteins that were then used to generate a spectral library. This approach provided peptide level evidence of five missing proteins for which MS/MS spectrum and mobilograms were validated with synthetic peptides. Subsequently, quantitative proteomic profiling was carried out for 90 individual nasopharyngeal swab samples (45 positive and 45 negative) in DIA combined with PASEF, termed as diaPASEF mode, which resulted in a total of 5023 protein identifications. Of these, 577 proteins were found to be upregulated in SARS-CoV-2 positive samples. Functional analysis of these upregulated proteins revealed alterations in several biological processes including innate immune response, viral protein assembly, and exocytosis. To the best of our knowledge, this study is the first to deploy diaPASEF for quantitative proteomic profiling of clinical samples and shows the feasibility of adopting such an approach to understand mechanisms and pathways altered in diseases.


Assuntos
COVID-19 , Proteoma , Humanos , Nasofaringe , Proteômica , SARS-CoV-2 , Manejo de Espécimes , Espectrometria de Massas em Tandem
3.
J Proteome Res ; 20(7): 3404-3413, 2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-34077217

RESUMO

SARS-CoV-2 infection has become a major public health burden and affects many organs including lungs, kidneys, the liver, and the brain. Although the virus is readily detected and diagnosed using nasopharyngeal swabs by reverse transcriptase polymerase chain reaction (RT-PCR), detection of its presence in body fluids is fraught with difficulties. A number of published studies have failed to detect viral RNA by RT-PCR methods in urine. Although microbial identification in clinical microbiology using mass spectrometry is undertaken after culture, here we undertook a mass spectrometry-based approach that employed an enrichment step to capture and detect SARS-CoV-2 nucleocapsid protein directly from urine of COVID-19 patients without any culture. We detected SARS-CoV-2 nucleocapsid protein-derived peptides from 13 out of 39 urine samples. Further, a subset of COVID-19 positive and COVID-19 negative urine samples validated by mass spectrometry were used for the quantitative proteomics analysis. Proteins with increased abundance in urine of SARS-CoV-2 positive individuals were enriched in the acute phase response, regulation of complement system, and immune response. Notably, a number of renal proteins such as podocin (NPHS2), an amino acid transporter (SLC36A2), and sodium/glucose cotransporter 5 (SLC5A10), which are intimately involved in normal kidney function, were decreased in the urine of COVID-19 patients. Overall, the detection of viral antigens in urine using mass spectrometry and alterations of the urinary proteome could provide insights into understanding the pathogenesis of COVID-19.


Assuntos
Líquidos Corporais , COVID-19 , Antígenos Virais , Humanos , Imunidade , Espectrometria de Massas , Fosfoproteínas , RNA Viral , SARS-CoV-2
4.
Clin Chem ; 67(11): 1545-1553, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34240163

RESUMO

BACKGROUND: We evaluated the analytical sensitivity and specificity of 4 rapid antigen diagnostic tests (Ag RDTs) for severe acute respiratory syndrome coronavirus 2, using reverse transcription quantitative PCR (RT-qPCR) as the reference method and further characterizing samples using droplet digital quantitative PCR (ddPCR) and a mass spectrometric antigen test. METHODS: Three hundred fifty (150 negative and 200 RT-qPCR positive) residual PBS samples were tested for antigen using the BD Veritor lateral flow (LF), ACON LF, ACON fluorescence immunoassay (FIA), and LumiraDx FIA. ddPCR was performed on RT-qPCR-positive samples to quantitate the viral load in copies/mL applied to each Ag RDT. Mass spectrometric antigen testing was performed on PBS samples to obtain a set of RT-qPCR-positive, antigen-positive samples for further analysis. RESULTS: All Ag RDTs had nearly 100% specificity compared to RT-qPCR. Overall analytical sensitivity varied from 66.5% to 88.3%. All methods detected antigen in samples with viral load >1 500 000 copies/mL RNA, and detected ≥75% of samples with viral load of 500 000 to 1 500 000 copies/mL. The BD Veritor LF detected only 25% of samples with viral load between 50 000 to 500 000 copies/mL, compared to 75% for the ACON LF device and >80% for LumiraDx and ACON FIA. The ACON FIA detected significantly more samples with viral load <50 000 copies/mL compared to the BD Veritor. Among samples with detectable antigen and viral load <50 000 copies/mL, sensitivity of the Ag RDT varied between 13.0% (BD Veritor) and 78.3% (ACON FIA). CONCLUSIONS: Ag RDTs differ significantly in analytical sensitivity, particularly at viral load <500 000 copies/mL.


Assuntos
Antígenos Virais/análise , Teste para COVID-19/métodos , Testes Imediatos , Humanos , Espectrometria de Massas , Reação em Cadeia da Polimerase em Tempo Real/métodos , SARS-CoV-2/imunologia , Sensibilidade e Especificidade , Carga Viral
5.
Clin Proteomics ; 18(1): 25, 2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34686148

RESUMO

SARS-CoV-2, a novel human coronavirus, has created a global disease burden infecting > 100 million humans in just over a year. RT-PCR is currently the predominant method of diagnosing this viral infection although a variety of tests to detect viral antigens have also been developed. In this study, we adopted a SISCAPA-based enrichment approach using anti-peptide antibodies generated against peptides from the nucleocapsid protein of SARS-CoV-2. We developed a targeted workflow in which nasopharyngeal swab samples were digested followed by enrichment of viral peptides using the anti-peptide antibodies and targeted parallel reaction monitoring (PRM) analysis using a high-resolution mass spectrometer. This workflow was applied to 41 RT-PCR-confirmed clinical SARS-CoV-2 positive nasopharyngeal swab samples and 30 negative samples. The workflow employed was highly specific as none of the target peptides were detected in negative samples. Further, the detected peptides showed a positive correlation with the viral loads as measured by RT-PCR Ct values. The SISCAPA-based platform described in the current study can serve as an alternative method for SARS-CoV-2 viral detection and can also be applied for detecting other microbial pathogens directly from clinical samples.

6.
Genome Res ; 27(1): 133-144, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28003436

RESUMO

Complementing genome sequence with deep transcriptome and proteome data could enable more accurate assembly and annotation of newly sequenced genomes. Here, we provide a proof-of-concept of an integrated approach for analysis of the genome and proteome of Anopheles stephensi, which is one of the most important vectors of the malaria parasite. To achieve broad coverage of genes, we carried out transcriptome sequencing and deep proteome profiling of multiple anatomically distinct sites. Based on transcriptomic data alone, we identified and corrected 535 events of incomplete genome assembly involving 1196 scaffolds and 868 protein-coding gene models. This proteogenomic approach enabled us to add 365 genes that were missed during genome annotation and identify 917 gene correction events through discovery of 151 novel exons, 297 protein extensions, 231 exon extensions, 192 novel protein start sites, 19 novel translational frames, 28 events of joining of exons, and 76 events of joining of adjacent genes as a single gene. Incorporation of proteomic evidence allowed us to change the designation of more than 87 predicted "noncoding RNAs" to conventional mRNAs coded by protein-coding genes. Importantly, extension of the newly corrected genome assemblies and gene models to 15 other newly assembled Anopheline genomes led to the discovery of a large number of apparent discrepancies in assembly and annotation of these genomes. Our data provide a framework for how future genome sequencing efforts should incorporate transcriptomic and proteomic analysis in combination with simultaneous manual curation to achieve near complete assembly and accurate annotation of genomes.


Assuntos
Genoma/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Anotação de Sequência Molecular , Transcriptoma/genética , Animais , Anopheles/genética , Éxons/genética , Perfilação da Expressão Gênica , Proteoma/genética , Proteômica
7.
Nature ; 509(7502): 575-81, 2014 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-24870542

RESUMO

The availability of human genome sequence has transformed biomedical research over the past decade. However, an equivalent map for the human proteome with direct measurements of proteins and peptides does not exist yet. Here we present a draft map of the human proteome using high-resolution Fourier-transform mass spectrometry. In-depth proteomic profiling of 30 histologically normal human samples, including 17 adult tissues, 7 fetal tissues and 6 purified primary haematopoietic cells, resulted in identification of proteins encoded by 17,294 genes accounting for approximately 84% of the total annotated protein-coding genes in humans. A unique and comprehensive strategy for proteogenomic analysis enabled us to discover a number of novel protein-coding regions, which includes translated pseudogenes, non-coding RNAs and upstream open reading frames. This large human proteome catalogue (available as an interactive web-based resource at http://www.humanproteomemap.org) will complement available human genome and transcriptome data to accelerate biomedical research in health and disease.


Assuntos
Proteoma/metabolismo , Proteômica , Adulto , Células Cultivadas , Bases de Dados de Proteínas , Feto/metabolismo , Análise de Fourier , Perfilação da Expressão Gênica , Genoma Humano/genética , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Humanos , Internet , Espectrometria de Massas , Anotação de Sequência Molecular , Fases de Leitura Aberta/genética , Especificidade de Órgãos , Biossíntese de Proteínas , Isoformas de Proteínas/análise , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Sinais Direcionadores de Proteínas , Transporte Proteico , Proteoma/análise , Proteoma/química , Proteoma/genética , Pseudogenes/genética , RNA não Traduzido/genética , Reprodutibilidade dos Testes , Regiões não Traduzidas/genética
9.
Clin Proteomics ; 13: 13, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27307780

RESUMO

BACKGROUND: Curcumin, derived from the rhizome Curcuma longa, is a natural anti-cancer agent and has been shown to inhibit proliferation and survival of tumor cells. Although the anti-cancer effects of curcumin are well established, detailed understanding of the signaling pathways altered by curcumin is still lacking. In this study, we carried out SILAC-based quantitative proteomic analysis of a HNSCC cell line (CAL 27) to investigate tyrosine signaling in response to curcumin. RESULTS: Using high resolution Orbitrap Fusion Tribrid Fourier transform mass spectrometer, we identified 627 phosphotyrosine sites mapping to 359 proteins. We observed alterations in the level of phosphorylation of 304 sites corresponding to 197 proteins upon curcumin treatment. We report here for the first time, curcumin-induced alterations in the phosphorylation of several kinases including TNK2, FRK, AXL, MAPK12 and phosphatases such as PTPN6, PTPRK, and INPPL1 among others. Pathway analysis revealed that the proteins differentially phosphorylated in response to curcumin are known to be involved in focal adhesion kinase signaling and actin cytoskeleton reorganization. CONCLUSIONS: The study indicates that curcumin may regulate cellular processes such as proliferation and migration through perturbation of the focal adhesion kinase pathway. This is the first quantitative phosphoproteomics-based study demonstrating the signaling events that are altered in response to curcumin. Considering the importance of curcumin as an anti-cancer agent, this study will significantly improve the current knowledge of curcumin-mediated signaling in cancer.

10.
Proteomics ; 15(2-3): 383-93, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25327479

RESUMO

Dysregulation of protein expression is associated with most diseases including cancer. MS-based proteomic analysis is widely employed as a tool to study protein dysregulation in cancers. Proteins that are differentially expressed in head and neck squamous cell carcinoma (HNSCC) cell lines compared to the normal oral cell line could serve as biomarkers for patient stratification. To understand the proteomic complexity in HNSCC, we carried out iTRAQ-based MS analysis on a panel of HNSCC cell lines in addition to a normal oral keratinocyte cell line. LC-MS/MS analysis of total proteome of the HNSCC cell lines led to the identification of 3263 proteins, of which 185 proteins were overexpressed and 190 proteins were downregulated more than twofold in at least two of the three HNSCC cell lines studied. Among the overexpressed proteins, 23 proteins were related to DNA replication and repair. These included high-mobility group box 2 (HMGB2) protein, which was overexpressed in all three HNSCC lines studied. Overexpression of HMGB2 has been reported in various cancers, yet its role in HNSCC remains unclear. Immunohistochemical labeling of HMGB2 in a panel of HNSCC tumors using tissue microarrays revealed overexpression in 77% (54 of 70) of tumors. The HMGB proteins are known to bind to DNA structure resulting from cisplatin-DNA adducts and affect the chemosensitivity of cells. We observed that siRNA-mediated silencing of HMGB2 increased the sensitivity of the HNSCC cell lines to cisplatin and 5-FU. We hypothesize that targeting HMGB2 could enhance the efficacy of existing chemotherapeutic regimens for treatment of HNSCC. All MS data have been deposited in the ProteomeXchange with identifier PXD000737 (http://proteomecentral.proteomexchange.org/dataset/PXD000737).


Assuntos
Antineoplásicos/farmacologia , Carcinoma de Células Escamosas/tratamento farmacológico , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos , Fluoruracila/farmacologia , Proteína HMGB2/genética , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Interferência de RNA , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Linhagem Celular , Linhagem Celular Tumoral , Proteína HMGB2/análise , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Proteômica , RNA Interferente Pequeno/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço , Espectrometria de Massas em Tandem
11.
J Proteome Res ; 14(6): 2466-79, 2015 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-25807139

RESUMO

Acute ischemic stroke (AIS) is a devastating cerebrovascular disorder that leads to permanent physical and neurological disabilities in adults worldwide. Proteins associated with stroke pathogenesis may appear in the serum of AIS patients due to blood-brain barrier dysfunction, thus permitting the development of blood-based biomarkers for early diagnosis of stroke. These biomarkers could perhaps be an adjunct to the existing imaging modalities and aid in better management and therapeutic intervention during the course of the disease. For this exploratory study, a combination of multiplexed isobaric tagging using iTRAQ reagents and high resolution tandem mass spectrometry was used to identify differentially expressed proteins in serum samples from AIS patients. The quantitative proteomic analysis of serum from both AIS and control subjects revealed 389 high confidence protein identifications and their relative levels. Among them, 60 proteins showed a ≥1.5-fold change in the AIS subjects. We verified the altered serum levels of candidate proteins such as vWF, ADAMTS13, S100A7, and DLG4 through ELISA, and the results also corroborate with the experimental findings. vWF and ADAMTS13 are key players that regulate blood hemostasis, and their altered concentration may contribute to endothelial dysfunction. S100A7 is a novel candidate protein identified in this study that is also known to mediate inflammation, endothelial proliferation, and angiogenesis. The current study provided a potential and novel biomarker panel that may in turn provide diagnostic aid to the existing imaging modalities for the rapid diagnosis of ischemic stroke.


Assuntos
Isquemia Encefálica/sangue , Cromatografia Líquida/métodos , Endotélio Vascular/fisiopatologia , Proteômica , Acidente Vascular Cerebral/sangue , Espectrometria de Massas em Tandem/métodos , Adulto , Biomarcadores/sangue , Endotélio Vascular/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
12.
ScientificWorldJournal ; 2015: 325721, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26788548

RESUMO

The development of esophageal squamous cell carcinoma (ESCC) is poorly understood and the major regulatory molecules involved in the process of tumorigenesis have not yet been identified. We had previously employed a quantitative proteomic approach to identify differentially expressed proteins in ESCC tumors. A total of 238 differentially expressed proteins were identified in that study including S100 calcium binding protein A9 (S100A9) as one of the major downregulated proteins. In the present study, we carried out immunohistochemical validation of S100A9 in a large cohort of ESCC patients to determine the expression and subcellular localization of S100A9 in tumors and adjacent normal esophageal epithelia. Downregulation of S100A9 was observed in 67% (n = 192) of 288 different ESCC tumors, with the most dramatic downregulation observed in the poorly differentiated tumors (99/111). Expression of S100A9 was restricted to the prickle and functional layers of normal esophageal mucosa and localized predominantly in the cytoplasm and nucleus whereas virtually no expression was observed in the tumor and stromal cells. This suggests the important role that S100A9 plays in maintaining the differentiated state of epithelium and suggests that its downregulation may be associated with increased susceptibility to tumor formation.


Assuntos
Calgranulina B/metabolismo , Carcinoma de Células Escamosas/metabolismo , Regulação para Baixo , Neoplasias Esofágicas/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Calgranulina B/genética , Carcinoma de Células Escamosas/patologia , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Células Epiteliais/metabolismo , Neoplasias Esofágicas/patologia , Humanos , Pessoa de Meia-Idade
13.
J Proteome Res ; 13(7): 3178-90, 2014 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-24804578

RESUMO

In line with the aims of the Chromosome-centric Human Proteome Project (C-HPP) to completely annotate proteins of each chromosome and biology/disease driven HPP (B/D-HPP) to decipher their relation to diseases, we have generated a nonredundant catalogue of protein-coding genes for Chromosome 12 (Chr. 12) and further annotated proteins associated with major neurological disorders. Integrating high level proteomic evidence from four major databases (neXtProt, Global Proteome Machine (GPMdb), PeptideAtlas, and Human Protein Atlas (HPA)) along with Ensembl data resource resulted in the identification of 1066 protein coding genes, of which 171 were defined as "missing proteins" based on the weak or complete absence of experimental evidence. With functional annotations using DAVID and GAD, about 40% of the proteins could be grouped as brain related with implications in cancer or neurological disorders. We used published and unpublished high confidence mass spectrometry data from our group and other literature consisting of more than 5000 proteins derived from clinical specimens from patients with human gliomas, Alzheimer's disease, and Parkinson's disease and mapped it onto Chr. 12. We observed a total of 202 proteins mapping to human Chr. 12, 136 of which were differentially expressed in these disease conditions as compared to the normal. Functional grouping indicated their association with cell cycle, cell-to-cell signaling, and other important processes and networks, whereas their disease association analysis confirmed neurological diseases and cancer as the major group along with psycological disorders, with several overexpressed genes/proteins mapping to 12q13-15 amplicon region. Using multiple strategies and bioinformatics tools, we identified 103 differentially expressed proteins to have secretory potential, 17 of which have already been reported in direct analysis of the plasma or cerebrospinal fluid (CSF) from the patients and 21 of them mapped to cancer associated protein (CAPs) database that are amenable to selective reaction monitoring (SRM) assays for targeted proteomic analysis. Our analysis also reveals, for the first time, mass spectrometric evidence for two "missing proteins" from Chr. 12, namely, synaptic vesicle 2-related protein (SVOP) and IQ motif containing D (IQCD). The analysis provides a snapshot of Chr. 12 encoded proteins associated with gliomas and major neurological conditions and their secretability which can be used to drive efforts for clinical applications.


Assuntos
Doença de Alzheimer/genética , Cromossomos Humanos Par 12/genética , Glioblastoma/genética , Doença de Parkinson/genética , Sequência de Aminoácidos , Mapeamento Cromossômico , Humanos , Anotação de Sequência Molecular , Família Multigênica , Fases de Leitura Aberta , Fragmentos de Peptídeos/química , Proteoma , Espectrometria de Massas em Tandem
14.
Biochim Biophys Acta ; 1834(11): 2308-16, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23665456

RESUMO

Protein biomarker discovery for early detection of head and neck squamous cell carcinoma (HNSCC) is a crucial unmet need to improve patient outcomes. Mass spectrometry-based proteomics has emerged as a promising tool for identification of biomarkers in different cancer types. Proteins secreted from cancer cells can serve as potential biomarkers for early diagnosis. In the current study, we have used isobaric tag for relative and absolute quantitation (iTRAQ) labeling methodology coupled with high resolution mass spectrometry to identify and quantitate secreted proteins from a panel of head and neck carcinoma cell lines. In all, we identified 2,472 proteins, of which 225 proteins were secreted at higher or lower abundance in HNSCC-derived cell lines. Of these, 148 were present in higher abundance and 77 were present in lower abundance in the cancer-cell derived secretome. We detected a higher abundance of some previously known markers for HNSCC including insulin like growth factor binding protein 3, IGFBP3 (11-fold) and opioid growth factor receptor, OGFR (10-fold) demonstrating the validity of our approach. We also identified several novel secreted proteins in HNSCC including olfactomedin-4, OLFM4 (12-fold) and hepatocyte growth factor activator, HGFA (5-fold). IHC-based validation was conducted in HNSCC using tissue microarrays which revealed overexpression of IGFBP3 and OLFM4 in 70% and 75% of the tested cases, respectively. Our study illustrates quantitative proteomics of secretome as a robust approach for identification of potential HNSCC biomarkers. This article is part of a Special Issue entitled: An Updated Secretome.


Assuntos
Biomarcadores Tumorais/metabolismo , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Neoplasias de Cabeça e Pescoço/metabolismo , Neoplasias de Cabeça e Pescoço/patologia , Proteoma/metabolismo , Proteômica/métodos , Biomarcadores Tumorais/análise , Linhagem Celular Tumoral , Cabeça/patologia , Humanos , Espectrometria de Massas/métodos , Pescoço/patologia , Proteoma/análise , Via Secretória , Carcinoma de Células Escamosas de Cabeça e Pescoço
15.
OMICS ; 27(8): 361-371, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37579183

RESUMO

For precision in clinical oncology practice, detection of tumor-derived peptides and proteins in urine offers an attractive and noninvasive alternative for diagnostic or screening purposes. In this study, we report comparative quantitative proteomic profiling of urine samples from patients with gastric cancer and healthy controls using tandem mass tags-based multiplexed mass spectrometry approach. We identified 1504 proteins, of which 246 were differentially expressed in gastric cancer cases. Notably, ephrin A1 (EFNA1), pepsinogen A3 (PGA3), sortilin 1 (SORT1), and vitronectin (VTN) were among the upregulated proteins, which are known to play crucial roles in the progression of gastric cancer. We also found other overexpressed proteins, including shisa family member 5 (SHISA5), mucin like 1 (MUCL1), and leukocyte cell derived chemotaxin 2 (LECT2), which had not previously been linked to gastric cancer. Using a novel approach for targeted proteomics, SureQuant, we validated changes in abundance of a subset of proteins discovered in this study. We confirmed the overexpression of vitronectin and sortilin 1 in an independent set of urine samples. Altogether, this study provides molecular candidates for biomarker development in gastric cancer, and the findings also support the promise of urinary proteomics for noninvasive diagnostics and personalized/precision medicine in the oncology clinic.


Assuntos
Biomarcadores Tumorais , Neoplasias Gástricas , Humanos , Biomarcadores Tumorais/metabolismo , Neoplasias Gástricas/diagnóstico , Proteômica/métodos , Vitronectina , Proteínas , Oncologia , Biomarcadores , Mucinas , Peptídeos e Proteínas de Sinalização Intercelular
16.
Clin Cancer Res ; 27(9): 2533-2548, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33619172

RESUMO

PURPOSE: Covalent inhibitors of KRASG12C specifically target tumors driven by this form of mutant KRAS, yet early studies show that bypass signaling drives adaptive resistance. Although several combination strategies have been shown to improve efficacy of KRASG12C inhibitors (KRASi), underlying mechanisms and predictive strategies for patient enrichment are less clear. EXPERIMENTAL DESIGN: We performed mass spectrometry-based phosphoproteomics analysis in KRASG12C cell lines after short-term treatment with ARS-1620. To understand signaling diversity and cell type-specific markers, we compared proteome and phosphoproteomes of KRASG12C cells. Gene expression patterns of KRASG12C cell lines and lung tumor tissues were examined. RESULTS: Our analysis suggests cell type-specific perturbation to ERBB2/3 signaling compensates for repressed ERK and AKT signaling following ARS-1620 treatment in epithelial cell type, and this subtype was also more responsive to coinhibition of SHP2 and SOS1. Conversely, both high basal and feedback activation of FGFR or AXL signaling were identified in mesenchymal cells. Inhibition of FGFR signaling suppressed feedback activation of ERK and mTOR, while AXL inhibition suppressed PI3K pathway. In both cell lines and human lung cancer tissues with KRASG12C, we observed high basal ERBB2/3 associated with epithelial gene signatures, while higher basal FGFR1 and AXL were observed in cells/tumors with mesenchymal gene signatures. CONCLUSIONS: Our phosphoproteomic study identified cell type-adaptive responses to KRASi. Markers and targets associated with ERBB2/3 signaling in epithelial subtype and with FGFR1/AXL signaling in mesenchymal subtype should be considered in patient enrichment schemes with KRASi.


Assuntos
Alelos , Substituição de Aminoácidos , Mutação , Piperazinas/farmacologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Quinazolinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Cromatografia Líquida , Biologia Computacional/métodos , Transição Epitelial-Mesenquimal/genética , Humanos , Fosfoproteínas/metabolismo , Mapeamento de Interação de Proteínas/métodos , Mapas de Interação de Proteínas , Proteômica/métodos , Proteínas Proto-Oncogênicas p21(ras)/antagonistas & inibidores , Receptor ErbB-2/metabolismo , Receptor ErbB-3/metabolismo , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Espectrometria de Massas em Tandem
17.
EBioMedicine ; 69: 103465, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34229274

RESUMO

BACKGROUND: The COVID-19 pandemic caused by severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) has overwhelmed health systems worldwide and highlighted limitations of diagnostic testing. Several types of diagnostic tests including RT-PCR-based assays and antigen detection by lateral flow assays, each with their own strengths and weaknesses, have been developed and deployed in a short time. METHODS: Here, we describe an immunoaffinity purification approach followed a by high resolution mass spectrometry-based targeted qualitative assay capable of detecting SARS-CoV-2 viral antigen from nasopharyngeal swab samples. Based on our discovery experiments using purified virus, recombinant viral protein and nasopharyngeal swab samples from COVID-19 positive patients, nucleocapsid protein was selected as a target antigen. We then developed an automated antibody capture-based workflow coupled to targeted high-field asymmetric waveform ion mobility spectrometry (FAIMS) - parallel reaction monitoring (PRM) assay on an Orbitrap Exploris 480 mass spectrometer. An ensemble machine learning-based model for determining COVID-19 positive samples was developed using fragment ion intensities from the PRM data. FINDINGS: The optimized targeted assay, which was used to analyze 88 positive and 88 negative nasopharyngeal swab samples for validation, resulted in 98% (95% CI = 0.922-0.997) (86/88) sensitivity and 100% (95% CI = 0.958-1.000) (88/88) specificity using RT-PCR-based molecular testing as the reference method. INTERPRETATION: Our results demonstrate that direct detection of infectious agents from clinical samples by tandem mass spectrometry-based assays have potential to be deployed as diagnostic assays in clinical laboratories, which has hitherto been limited to analysis of pure microbial cultures. FUNDING: This study was supported by DBT/Wellcome Trust India Alliance Margdarshi Fellowship grant IA/M/15/1/502023 awarded to AP and the generosity of Eric and Wendy Schmidt.


Assuntos
Teste Sorológico para COVID-19/métodos , Imunoensaio/métodos , Espectrometria de Massas/métodos , Animais , Antígenos Virais/química , Antígenos Virais/imunologia , Automação Laboratorial/métodos , Automação Laboratorial/normas , Teste Sorológico para COVID-19/normas , Chlorocebus aethiops , Proteínas do Nucleocapsídeo de Coronavírus/química , Proteínas do Nucleocapsídeo de Coronavírus/imunologia , Humanos , Imunoensaio/normas , Aprendizado de Máquina , Espectrometria de Massas/normas , Fosfoproteínas/química , Fosfoproteínas/imunologia , Sensibilidade e Especificidade
18.
J Cell Commun Signal ; 13(2): 163-177, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30666556

RESUMO

Gallbladder cancer (GBC) is a rare malignancy, associated with poor disease prognosis with a 5-year survival of only 20%. This has been attributed to late presentation of the disease, lack of early diagnostic markers and limited efficacy of therapeutic interventions. Elucidation of molecular events in GBC can contribute to better management of the disease by aiding in the identification of therapeutic targets. To identify aberrantly activated signaling events in GBC, tandem mass tag-based quantitative phosphoproteomic analysis of five GBC cell lines was carried out. Proline-rich Akt substrate 40 kDa (PRAS40) was one of the proteins found to be hyperphosphorylated in all the invasive GBC cell lines. Tissue microarray-based immunohistochemical labeling of phospho-PRAS40 (T246) revealed moderate to strong staining in 77% of the primary gallbladder adenocarcinoma cases. Regulation of PRAS40 activity by inhibiting its upstream kinase PIM1 resulted in a significant decrease in cell proliferation, colony forming and invasive ability of GBC cells. Our results support the role of PRAS40 phosphorylation in GBC cell survival and aggressiveness. This study also elucidates phospho-PRAS40 as a clinical marker in GBC and the role of PIM1 as a therapeutic target in GBC.

19.
Data Brief ; 19: 1124-1130, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30225281

RESUMO

Head and neck squamous cell carcinoma (HNSCC) is one of the most common cancers in India. Despite improvements in treatment strategy, the survival rates of HNSCC patients remain poor. Thus, it is necessary to identify biomarkers that can be used for early detection of disease. In this study, we employed iTRAQ-based quantitative mass spectrometry analysis to identify dysregulated proteins from a panel of head and neck squamous cell carcinoma (HNSCC) cell lines. We identified 2468 proteins, of which 496 proteins were found to be dysregulated in at least two out of three HNSCC cell lines compared to immortalized normal oral keratinocytes. We detected increased expression of replication protein A1 (RPA1) and heat shock protein family H (Hsp110) member 1 (HSPH1), in HNSCC cell lines compared to control. The differentially expressed proteins were further validated using parallel reaction monitoring (PRM) and western blot analysis in HNSCC cell lines. Immunohistochemistry-based validation using HNSCC tissue microarrays revealed overexpression of RPA1 and HSPH1 in 15.7% and 32.2% of the tested cases, respectively. Our study illustrates quantitative proteomics as a robust approach for identification of potential HNSCC biomarkers. The proteomic data has been submitted to ProteomeXchange Consortium (http://www.proteomecentral.proteomexchange.org) via the PRIDE public data repository accessible using the data identifier - PXD009241.

20.
OMICS ; 22(12): 759-769, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30571610

RESUMO

The pituitary function is regulated by a complex system involving the hypothalamus and biological networks within the pituitary. Although the hormones secreted from the pituitary have been well studied, comprehensive analyses of the pituitary proteome are limited. Pituitary proteomics is a field of postgenomic research that is crucial to understand human health and pituitary diseases. In this context, we report here a systematic proteomic profiling of human anterior pituitary gland (adenohypophysis) using high-resolution Fourier transform mass spectrometry. A total of 2164 proteins were identified in this study, of which 105 proteins were identified for the first time compared with high-throughput proteomic-based studies from human pituitary glands. In addition, we identified 480 proteins with secretory potential and 187 N-terminally acetylated proteins. These are the first region-specific data that could serve as a vital resource for further investigations on the physiological role of the human anterior pituitary glands and the proteins secreted by them. We anticipate that the identification of previously unknown proteins in the present study will accelerate biomedical research to decipher their role in functioning of the human anterior pituitary gland and associated human diseases.


Assuntos
Adeno-Hipófise/metabolismo , Proteoma/metabolismo , Proteômica/métodos , Cromatografia Líquida , Humanos , Espectrometria de Massas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA