Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Genesis ; 62(2): e23590, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38490949

RESUMO

The role of neurogenesis in neurodevelopmental disorders (NDDs) merits much attention. The complex process by which stem cells produce daughter cells that in turn differentiate into neurons, migrate various distances, and form synaptic connections that are then refined by neuronal activity or experience is integral to the development of the nervous system. Given the continued postnatal neurogenesis that occurs in the mammalian olfactory system, it provides an ideal model for understanding how disruptions in distinct stages of neurogenesis contribute to the pathophysiology of various NDDs. This review summarizes and discusses what is currently known about the disruption of neurogenesis within the olfactory system as it pertains to attention-deficit/hyperactivity disorder, autism spectrum disorder, Down syndrome, Fragile X syndrome, and Rett syndrome. Studies included in this review used either human subjects, mouse models, or Drosophila models, and lay a compelling foundation for continued investigation of NDDs by utilizing the olfactory system.


Assuntos
Transtorno do Espectro Autista , Síndrome do Cromossomo X Frágil , Transtornos do Neurodesenvolvimento , Camundongos , Animais , Humanos , Neurogênese/fisiologia , Síndrome do Cromossomo X Frágil/genética , Neurônios , Transtornos do Neurodesenvolvimento/genética , Mamíferos
2.
J Bioenerg Biomembr ; 51(1): 41-51, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30302619

RESUMO

Olfactory sensory neurons (OSNs) are generated throughout life from progenitor cells in the olfactory epithelium. OSN axons project in an odorant receptor-specific manner to the olfactory bulb (OB), forming an ordered array of glomeruli where they provide sensory input to OB neurons. The tetracycline transactivator (tTA) system permits developmental stage-specific expression of reporter genes in OSNs and has been widely used for structural and functional studies of the development and plasticity of the mouse olfactory system. However, the cellular ages at which OSNs stop expressing reporters driven by the immature OSN-specific Gγ8-tTA driver line and begin to express reporters driven by the mature OSN-specific OMP-tTA driver line have not been directly determined. We pulse-labeled terminally dividing cells in the olfactory epithelium of 28-day-old (P28) mice with EdU and analyzed EdU labeling in OSNs expressing fluorescent reporter proteins under control of either the Gγ8-tTA or OMP-tTA driver line 5-14 days later. Expression of OMP-tTA-driven reporters began in 6-day-old OSNs, while the vast majority of newborn OSNs did not express Gγ8-tTA-driven fluorescent proteins beyond 8 days of cellular age. Surprisingly, we also found a low survival rate for P28-born OSNs, very few of which survived for more than 14 days. We propose that OSN survival requires the formation of stable synaptic connections and hence may be dependent on organismal age.


Assuntos
Mucosa Olfatória/citologia , Neurônios Receptores Olfatórios/fisiologia , Fatores Etários , Animais , Morte Celular , Diferenciação Celular , Camundongos , Sinapses
3.
J Neurosci ; 37(5): 1117-1138, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28003347

RESUMO

In the main olfactory bulb (MOB), the first station of sensory processing in the olfactory system, GABAergic interneuron signaling shapes principal neuron activity to regulate olfaction. However, a lack of known selective markers for MOB interneurons has strongly impeded cell-type-selective investigation of interneuron function. Here, we identify the first selective marker of glomerular layer-projecting deep short-axon cells (GL-dSACs) and investigate systematically the structure, abundance, intrinsic physiology, feedforward sensory input, neuromodulation, synaptic output, and functional role of GL-dSACs in the mouse MOB circuit. GL-dSACs are located in the internal plexiform layer, where they integrate centrifugal cholinergic input with highly convergent feedforward sensory input. GL-dSAC axons arborize extensively across the glomerular layer to provide highly divergent yet selective output onto interneurons and principal tufted cells. GL-dSACs are thus capable of shifting the balance of principal tufted versus mitral cell activity across large expanses of the MOB in response to diverse sensory and top-down neuromodulatory input. SIGNIFICANCE STATEMENT: The identification of cell-type-selective molecular markers has fostered tremendous insight into how distinct interneurons shape sensory processing and behavior. In the main olfactory bulb (MOB), inhibitory circuits regulate the activity of principal cells precisely to drive olfactory-guided behavior. However, selective markers for MOB interneurons remain largely unknown, limiting mechanistic understanding of olfaction. Here, we identify the first selective marker of a novel population of deep short-axon cell interneurons with superficial axonal projections to the sensory input layer of the MOB. Using this marker, together with immunohistochemistry, acute slice electrophysiology, and optogenetic circuit mapping, we reveal that this novel interneuron population integrates centrifugal cholinergic input with broadly tuned feedforward sensory input to modulate principal cell activity selectively.


Assuntos
Axônios/fisiologia , Dendritos/fisiologia , Bulbo Olfatório/fisiologia , Animais , Feminino , Imunofluorescência , Imuno-Histoquímica , Interneurônios/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Condutos Olfatórios/fisiologia , Sistema Nervoso Parassimpático/fisiologia , Sensação/fisiologia , Sinapses/fisiologia
4.
Cereb Cortex ; 25(9): 3025-35, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24836895

RESUMO

Mature neocortex adapts to altered sensory input by changing neural activity in cortical circuits. The underlying cellular mechanisms remain unclear. We used blood oxygen level-dependent (BOLD) functional magnetic resonance imaging (fMRI) to show reorganization in somatosensory cortex elicited by altered whisker sensory input. We found that there was rapid expansion followed by retraction of whisker cortical maps. The cellular basis for the reorganization in primary somatosensory cortex was investigated with paired electrophysiological recordings in the periphery of the expanded whisker representation. During map expansion, the chance of finding a monosynaptic connection between pairs of pyramidal neurons increased 3-fold. Despite the rapid increase in local excitatory connectivity, the average strength and synaptic dynamics did not change, which suggests that new excitatory connections rapidly acquire the properties of established excitatory connections. During map retraction, entire excitatory connections between pyramidal neurons were lost. In contrast, connectivity between pyramidal neurons and fast spiking interneurons was unchanged. Hence, the changes in local excitatory connectivity did not occur in all circuits involving pyramidal neurons. Our data show that pyramidal neurons are recruited to and eliminated from local excitatory networks over days. These findings suggest that the local excitatory connectome is dynamic in mature neocortex.


Assuntos
Córtex Cerebral/fisiologia , Rede Nervosa/fisiologia , Vias Neurais/fisiologia , Sinapses/fisiologia , Análise de Variância , Animais , Córtex Cerebral/irrigação sanguínea , Córtex Cerebral/citologia , Espinhas Dendríticas , Processamento de Imagem Assistida por Computador , Técnicas In Vitro , Imageamento por Ressonância Magnética , Potenciais da Membrana , Rede Nervosa/irrigação sanguínea , Inibição Neural/fisiologia , Vias Neurais/irrigação sanguínea , Neurônios/fisiologia , Oxigênio/sangue , Técnicas de Patch-Clamp , Estimulação Física , Ratos , Transmissão Sináptica/fisiologia , Vibrissas/inervação
5.
Cereb Cortex ; 24(2): 521-31, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23118196

RESUMO

Behavioral experience alters the strength of neuronal connections in adult neocortex. These changes in synaptic strength are thought to be central to experience-dependent plasticity, learning, and memory. However, it is not known how changes in synaptic transmission between neurons become persistent, thereby enabling the storage of previous experience. A long-standing hypothesis is that altered synaptic strength is maintained by structural modifications to synapses. However, the extent of synaptic modifications and the changes in neurotransmission that the modifications support remain unclear. To address these questions, we recorded from pairs of synaptically connected layer 2/3 pyramidal neurons in the barrel cortex and imaged their contacts with high-resolution confocal microscopy after altering sensory experience by whisker trimming. Excitatory connections strengthened by experience exhibited larger axonal varicosities, dendritic spines, and interposed contact zones. Electron microscopy showed that contact zone size was strongly correlated with postsynaptic density area. Therefore, our findings indicate that whole synapses are larger at strengthened connections. Synaptic transmission was both stronger and more reliable following experience-dependent synapse enlargement. Hence, sensory experience modified both presynaptic and postsynaptic function. Our findings suggest that the enlargement of synaptic contacts is an integral part of long-lasting strengthening of cortical connections and, hence, of information storage in the neocortex.


Assuntos
Neocórtex/fisiologia , Plasticidade Neuronal/fisiologia , Células Piramidais/fisiologia , Sinapses/fisiologia , Percepção do Tato/fisiologia , Potenciais de Ação , Animais , Axônios/fisiologia , Axônios/ultraestrutura , Espinhas Dendríticas/fisiologia , Espinhas Dendríticas/ultraestrutura , Potenciais Pós-Sinápticos Excitadores , Técnicas In Vitro , Microscopia Confocal , Microscopia Eletrônica , Neocórtex/citologia , Vias Neurais/citologia , Vias Neurais/fisiologia , Técnicas de Patch-Clamp , Densidade Pós-Sináptica/fisiologia , Densidade Pós-Sináptica/ultraestrutura , Células Piramidais/citologia , Ratos , Sinapses/diagnóstico por imagem , Ultrassonografia , Vibrissas/fisiologia
6.
Proc Natl Acad Sci U S A ; 109(4): 1311-6, 2012 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-22232689

RESUMO

Ocular dominance (OD) plasticity in the visual cortex is a classic model system for understanding developmental plasticity, but the visual cortex also shows plasticity in adulthood. Whether the plasticity mechanisms are similar or different at the two ages is not clear. Several plasticity mechanisms operate during development, including homeostatic plasticity, which acts to maintain the total excitatory drive to a neuron. In agreement with this idea, we found that an often-studied substrain of C57BL/6 mice, C57BL/6JOlaHsd (6JOla), lacks both the homeostatic component of OD plasticity as assessed by intrinsic signal imaging and synaptic scaling of mEPSC amplitudes after a short period of dark exposure during the critical period, whereas another substrain, C57BL/6J (6J), exhibits both plasticity processes. However, in adult mice, OD plasticity was identical in the 6JOla and 6J substrains, suggesting that adult plasticity occurs by a different mechanism. Consistent with this interpretation, adult OD plasticity was normal in TNFα knockout mice, which are known to lack juvenile synaptic scaling and the homeostatic component of OD plasticity, but was absent in adult α-calcium/calmodulin-dependent protein kinase II;T286A (αCaMKII(T286A)) mice, which have a point mutation that prevents autophosphorylation of αCaMKII. We conclude that increased responsiveness to open-eye stimulation after monocular deprivation during the critical period is a homeostatic process that depends mechanistically on synaptic scaling during the critical period, whereas in adult mice it is mediated by a different mechanism that requires αCaMKII autophosphorylation. Thus, our study reveals a transition between homeostatic and long-term potentiation-like plasticity mechanisms with increasing age.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Dominância Ocular/fisiologia , Homeostase/fisiologia , Plasticidade Neuronal/fisiologia , Córtex Visual/fisiologia , Fatores Etários , Análise de Variância , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Eletrofisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosforilação , Fator de Necrose Tumoral alfa/genética
7.
bioRxiv ; 2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37873436

RESUMO

Parkinson's disease (PD) targets some dopamine (DA) neurons more than others. Sex differences offer insights, with females more protected from DA neurodegeneration. The mammalian vesicular glutamate transporter VGLUT2 and Drosophila ortholog dVGLUT have been implicated as modulators of DA neuron resilience. However, the mechanisms by which VGLUT2/dVGLUT protects DA neurons remain unknown. We discovered DA neuron dVGLUT knockdown increased mitochondrial reactive oxygen species in a sexually dimorphic manner in response to depolarization or paraquat-induced stress, males being especially affected. DA neuron dVGLUT also reduced ATP biosynthetic burden during depolarization. RNA sequencing of VGLUT+ DA neurons in mice and flies identified candidate genes that we functionally screened to further dissect VGLUT-mediated DA neuron resilience across PD models. We discovered transcription factors modulating dVGLUT-dependent DA neuroprotection and identified dj-1ß as a regulator of sex-specific DA neuron dVGLUT expression. Overall, VGLUT protects DA neurons from PD-associated degeneration by maintaining mitochondrial health.

8.
Nat Commun ; 13(1): 6194, 2022 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-36261441

RESUMO

Postnatal neurogenesis provides an opportunity to understand how newborn neurons integrate into circuits to restore function. Newborn olfactory sensory neurons (OSNs) wire into highly organized olfactory bulb (OB) circuits throughout life, enabling lifelong plasticity and regeneration. Immature OSNs form functional synapses capable of evoking firing in OB projection neurons but what contribution, if any, they make to odor processing is unknown. Here, we show that immature OSNs provide odor input to the mouse OB, where they form monosynaptic connections with excitatory neurons. Importantly, immature OSNs respond as selectively to odorants as mature OSNs and exhibit graded responses across a wider range of odorant concentrations than mature OSNs, suggesting that immature and mature OSNs provide distinct odor input streams. Furthermore, mice can successfully perform odor detection and discrimination tasks using sensory input from immature OSNs alone. Together, our findings suggest that immature OSNs play a previously unappreciated role in olfactory-guided behavior.


Assuntos
Neurônios Receptores Olfatórios , Camundongos , Animais , Neurônios Receptores Olfatórios/fisiologia , Bulbo Olfatório/fisiologia , Odorantes , Neurogênese/fisiologia , Interneurônios
9.
J Neurosci ; 30(38): 12566-71, 2010 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-20861362

RESUMO

Visual and somatosensory cortices exhibit profound experience-dependent plasticity during development and adulthood and are common model systems for probing the synaptic and molecular mechanisms of plasticity. However, comparisons between the two areas may be confounded by a lack of accurate information on their relative rates of development. In this study, we used whole-cell recording in acute brain slices to study synaptic development in mouse barrel and visual cortex. We found that short-term plasticity (STP) switched from strong depression at postnatal day (P)12 to weaker depression and facilitation in mature cortex. However, presynaptic maturation was delayed by ∼2 weeks at layer (L)4 to L2/3 excitatory synapses in visual cortex relative to barrel cortex. This developmental delay was pathway-specific; maturation of L2/3 to L2/3 synapses occurred over similar timescales in barrel and visual cortex. The developmental increase in the paired-pulse ratio to values greater than unity was mirrored by a developmental decrease in presynaptic release probability. Therefore, L4 to L2/3 excitatory synapses had lower release probabilities and showed greater short-term facilitation in barrel cortex than in visual cortex at P28. Postsynaptic mechanisms could not account for the delayed maturation of STP in visual cortex. These findings indicate that synaptic development is delayed in the L4 to L2/3 pathway in visual cortex, and emphasize the need to take into account the changes in synaptic properties that occur during development when comparing plasticity mechanisms in different cortical areas.


Assuntos
Plasticidade Neuronal/fisiologia , Terminações Pré-Sinápticas/fisiologia , Córtex Somatossensorial/fisiologia , Sinapses/fisiologia , Córtex Visual/fisiologia , Animais , Potenciais Pós-Sinápticos Excitadores/fisiologia , Feminino , Masculino , Camundongos , Neurônios/fisiologia , Técnicas de Patch-Clamp , Fatores de Tempo
10.
J Physiol ; 589(Pt 23): 5691-9, 2011 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-21946850

RESUMO

The postsynaptic response to a stimulus is dependent on the history of previous activity at that synapse. This short-term plasticity (STP) is a key determinant of neural network function. During postnatal development, many excitatory intracortical synapses switch from strong depression during early postnatal life, to weaker depression and in some cases facilitation in adulthood. However, it is not known whether this developmental switch is an innate feature of synaptic maturation, or whether it requires activity. We investigated this question in the barrel and visual cortex, two widely studied models of experience-dependent plasticity. We have previously defined the time course over which presynaptic development occurs in these two cortical areas, enabling us to make the first direct comparison of the role of sensory experience during synaptic development. We found that maturation of STP in visual cortex was unaffected by dark rearing from before eye opening. In marked contrast, total whisker deprivation completely blocked the developmental decrease in presynaptic release probability (Pr), and the concomitant increase in paired pulse ratio (PPR), which occur in barrel cortex during the third and fourth postnatal weeks. However, the developmental increase in the steady state response to a train of stimuli was unaffected by whisker deprivation. This supports a mechanistic link between Pr and the PPR, but dissociates Pr from the steady state amplitude during repetitive stimulation. Our findings indicate that sensory experience plays a greater role in presynaptic development at L4 to L2/3 excitatory synapses in the barrel cortex than in the visual cortex.


Assuntos
Plasticidade Neuronal/fisiologia , Privação Sensorial/fisiologia , Córtex Somatossensorial/fisiologia , Sinapses/fisiologia , Vibrissas/fisiologia , Córtex Visual/fisiologia , Animais , Maleato de Dizocilpina/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Feminino , Masculino , Camundongos , Neurônios/fisiologia , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/fisiologia
11.
Curr Biol ; 31(9): R439-R442, 2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-33974870

RESUMO

For many organisms, certain odorants trigger instinctive responses that are essential for survival. A new study shows that mixing odorants interferes with this innate valence, demonstrating that innate odor information does not follow a privileged path through the brain.


Assuntos
Máscaras , Olfato , Encéfalo , Odorantes
12.
Aging Cell ; 20(5): e13365, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33909313

RESUMO

Age is the greatest risk factor for Parkinson's disease (PD) which causes progressive loss of dopamine (DA) neurons, with males at greater risk than females. Intriguingly, some DA neurons are more resilient to degeneration than others. Increasing evidence suggests that vesicular glutamate transporter (VGLUT) expression in DA neurons plays a role in this selective vulnerability. We investigated the role of DA neuron VGLUT in sex- and age-related differences in DA neuron vulnerability using the genetically tractable Drosophila model. We found sex differences in age-related DA neurodegeneration and its associated locomotor behavior, where males exhibit significantly greater decreases in both DA neuron number and locomotion during aging compared with females. We discovered that dynamic changes in DA neuron VGLUT expression mediate these age- and sex-related differences, as a potential compensatory mechanism for diminished DA neurotransmission during aging. Importantly, female Drosophila possess higher levels of VGLUT expression in DA neurons compared with males, and this finding is conserved across flies, rodents, and humans. Moreover, we showed that diminishing VGLUT expression in DA neurons eliminates females' greater resilience to DA neuron loss across aging. This offers a new mechanism for sex differences in selective DA neuron vulnerability to age-related DA neurodegeneration. Finally, in mice, we showed that the ability of DA neurons to achieve optimal control over VGLUT expression is essential for DA neuron survival. These findings lay the groundwork for the manipulation of DA neuron VGLUT expression as a novel therapeutic strategy to boost DA neuron resilience to age- and PD-related neurodegeneration.


Assuntos
Envelhecimento/fisiologia , Neurônios Dopaminérgicos/fisiologia , Proteínas de Drosophila/fisiologia , Caracteres Sexuais , Proteínas Vesiculares de Transporte de Glutamato/fisiologia , Animais , Sobrevivência Celular , Neurônios Dopaminérgicos/metabolismo , Drosophila/metabolismo , Drosophila/fisiologia , Proteínas de Drosophila/metabolismo , Feminino , Humanos , Locomoção , Masculino , Camundongos , Ratos , Proteínas Vesiculares de Transporte de Glutamato/metabolismo
14.
Sci Rep ; 10(1): 20080, 2020 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-33184373

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

15.
Sci Rep ; 10(1): 9442, 2020 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-32523006

RESUMO

Dendritic spines are small protrusions on dendrites that endow neurons with the ability to receive and transform synaptic input. Dendritic spine number and morphology are altered as a consequence of synaptic plasticity and circuit refinement during adolescence. Dendritic spine density (DSD) is significantly different based on sex in subcortical brain regions associated with the generation of sex-specific behaviors. It is largely unknown if sex differences in DSD exist in auditory and visual brain regions and if there are sex-specific changes in DSD in these regions that occur during adolescent development. We analyzed dendritic spines in 4-week-old (P28) and 12-week-old (P84) male and female mice and found that DSD is lower in female mice due in part to fewer short stubby, long stubby and short mushroom spines. We found striking layer-specific patterns including a significant age by layer interaction and significantly decreased DSD in layer 4 from P28 to P84. Together these data support the possibility of developmental sex differences in DSD in visual and auditory regions and provide evidence of layer-specific refinement of DSD over adolescent brain development.


Assuntos
Córtex Auditivo/fisiologia , Espinhas Dendríticas/fisiologia , Córtex Visual/fisiologia , Fatores Etários , Animais , Dendritos/fisiologia , Espinhas Dendríticas/metabolismo , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Plasticidade Neuronal/fisiologia , Neurônios , Células Piramidais/fisiologia , Caracteres Sexuais
16.
J Neurosci ; 28(37): 9249-60, 2008 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-18784305

RESUMO

Experience-dependent plasticity in adulthood is slower than during development. Previous experience can accelerate adult cortical plasticity. However, the contributions of functional synaptic changes and modifications in neuronal structure to the acceleration of adult cortical plasticity remain unclear. If structural remodeling was important then it should be exhibited by neuronal connections that have altered during plasticity. We trimmed rodents' whiskers to induce experience-dependent plasticity and reconstructed pairs of layer 2/3 (L2/3) pyramidal neurons after electrophysiological recording. We reported recently that local excitatory connections strengthen without a change in synapse number in cortex with retained sensory input (spared) (Cheetham et al., 2007). Here, we show that strengthened connections are rewired. The rewiring involves remodeling of the axonal arbor of excitatory connections with only minor changes in postsynaptic dendritic trees. The axonal remodeling resulted in a greater length of presynaptic axon close to postsynaptic dendrites at existing local excitatory connections in spared cortex. In control cortex, the length of axon close to dendrite in unconnected pairs of L2/3 pyramidal neurons was similar to that in synaptically connected pairs of L2/3 pyramidal neurons. This finding suggests that the probability of forming a synapse and, therefore, establishing a connection, is not driven solely by the length of axon close to dendrite. The axonal remodeling that we describe is not associated with altered synapse number, but instead increases the number of sites where synapses could be formed between synaptically connected neurons with minimal structural changes. This enables rapid and cost-efficient rewiring of local excitatory connections when re-exposed to similarly altered sensory experience in adulthood.


Assuntos
Mapeamento Encefálico , Neocórtex/citologia , Neocórtex/fisiologia , Plasticidade Neuronal , Células Piramidais/fisiologia , Sinapses/fisiologia , Vibrissas/inervação , Análise de Variância , Animais , Animais Recém-Nascidos , Dendritos/fisiologia , Dendritos/ultraestrutura , Espinhas Dendríticas/fisiologia , Espinhas Dendríticas/ultraestrutura , Técnicas In Vitro , Microscopia Confocal , Modelos Estatísticos , Neocórtex/crescimento & desenvolvimento , Rede Nervosa/fisiologia , Células Piramidais/citologia , Ratos , Privação Sensorial/fisiologia
17.
J Neurosci ; 27(13): 3456-65, 2007 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-17392462

RESUMO

Neocortical circuitry can alter throughout life with experience. However, the contributions of changes in synaptic strength and modifications in neuronal wiring to experience-dependent plasticity in mature animals remain unclear. We trimmed whiskers of rats and made electrophysiological recordings after whisker cortical maps have developed. Measurements of miniature EPSPs suggested that synaptic inputs to layer 2/3 pyramidal neurons were altered at the junction of deprived and spared cortex in primary somatosensory cortex. Whole-cell recordings were made from pairs of synaptically connected pyramidal neurons to investigate possible changes in local excitatory connections between layer 2/3 pyramidal neurons. The neurons were filled with fluorescent dyes during recording and reconstructed in three dimensions using confocal microscopy and image deconvolution to identify putative synapses. We show that sensory deprivation induces a striking reduction in connectivity between layer 2/3 pyramidal neurons in deprived cortex without large-scale, compensatory increases in the strength of remaining local excitatory connections. A markedly different situation occurs in spared cortex. Connection strength is potentiated, but local excitatory connectivity and synapse number per connection are unchanged. Our data suggest that alterations in local excitatory circuitry enhance the expansion of spared representations into deprived cortex. Moreover, our findings offer one explanation for how the responses of spared and deprived cortex to sensory deprivation can be dissociated in developed animals.


Assuntos
Mapeamento Encefálico , Rede Nervosa/fisiologia , Plasticidade Neuronal/fisiologia , Células Piramidais/fisiologia , Sensação/fisiologia , Sinapses/fisiologia , Animais , Córtex Cerebral/citologia , Córtex Cerebral/crescimento & desenvolvimento , Potenciais Somatossensoriais Evocados/fisiologia , Técnicas In Vitro , Potenciação de Longa Duração/fisiologia , Microscopia Confocal , Técnicas de Patch-Clamp , Células Piramidais/citologia , Ratos , Privação Sensorial/fisiologia , Córtex Somatossensorial/citologia , Córtex Somatossensorial/fisiologia , Vibrissas/fisiologia
18.
Curr Protoc Cytom ; 85(1): e40, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29944202

RESUMO

Multiphoton intravital calcium imaging is a powerful technique that enables high-resolution longitudinal monitoring of cellular and subcellular activity hundreds of microns deep in the living organism. This unit addresses the application of 2-photon microscopy to imaging of genetically encoded calcium indicators (GECIs) in the mouse brain. The protocols in this unit enable real-time intravital imaging of intracellular calcium concentration simultaneously in hundreds of neurons, or at the resolution of single synapses, as mice respond to sensory stimuli or perform behavioral tasks. Protocols are presented for implantation of a cranial imaging window to provide optical access to the brain and for 2-photon image acquisition. Protocols for implantation of both open skull and thinned skull windows for single or multi-session imaging are described. © 2018 by John Wiley & Sons, Inc.


Assuntos
Encéfalo , Sinalização do Cálcio/fisiologia , Microscopia Intravital/métodos , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Sinapses/fisiologia , Animais , Encéfalo/citologia , Encéfalo/fisiologia , Microscopia Intravital/instrumentação , Camundongos , Camundongos Transgênicos , Microscopia de Fluorescência por Excitação Multifotônica/instrumentação
19.
Nat Commun ; 7: 10729, 2016 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-26898529

RESUMO

Incorporation of new neurons enables plasticity and repair of circuits in the adult brain. Adult neurogenesis is a key feature of the mammalian olfactory system, with new olfactory sensory neurons (OSNs) wiring into highly organized olfactory bulb (OB) circuits throughout life. However, neither when new postnatally generated OSNs first form synapses nor whether OSNs retain the capacity for synaptogenesis once mature, is known. Therefore, how integration of adult-born OSNs may contribute to lifelong OB plasticity is unclear. Here, we use a combination of electron microscopy, optogenetic activation and in vivo time-lapse imaging to show that newly generated OSNs form highly dynamic synapses and are capable of eliciting robust stimulus-locked firing of neurons in the mouse OB. Furthermore, we demonstrate that mature OSN axons undergo continuous activity-dependent synaptic remodelling that persists into adulthood. OSN synaptogenesis, therefore, provides a sustained potential for OB plasticity and repair that is much faster than OSN replacement alone.


Assuntos
Plasticidade Neuronal , Bulbo Olfatório/fisiologia , Neurônios Receptores Olfatórios/fisiologia , Animais , Feminino , Masculino , Camundongos Transgênicos , Neurônios Receptores Olfatórios/ultraestrutura , Optogenética , Terminações Pré-Sinápticas/fisiologia
20.
Front Cell Neurosci ; 10: 178, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27471450

RESUMO

The mammalian olfactory bulb (OB) displays robust activity-dependent plasticity throughout life. Dopaminergic (DA) neurons in the glomerular layer (GL) of the OB are particularly plastic, with loss of sensory input rapidly reducing tyrosine hydroxylase (TH) expression and dopamine production, followed by a substantial reduction in DA neuron number. Here, we asked whether microglia participate in activity-dependent elimination of DA neurons in the mouse OB. Interestingly, we found a significant reduction in the number of both DA neurons and their synapses in the OB ipsilateral to the occluded naris (occluded OB) within just 7 days of sensory deprivation. Concomitantly, the volume of the occluded OB decreased, resulting in an increase in microglial density. Microglia in the occluded OB also adopted morphologies consistent with activation. Using in vivo 2-photon imaging and histological analysis we then showed that loss of olfactory input markedly altered microglial-neuronal interactions during the time that DA neurons are being eliminated: both microglial process motility and the frequency of wrapping of DA neuron somata by activated microglia increased significantly in the occluded OB. Furthermore, we found microglia in the occluded OB that had completely engulfed components of DA neurons. Together, our data provide evidence that loss of olfactory input modulates microglial-DA neuron interactions in the OB, thereby suggesting an important role for microglia in the activity-dependent elimination of DA neurons and their synapses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA