RESUMO
Ulcerative colitis (UC) is an inflammatory bowel disease of unknown cause that typically affects the colon and rectum. Innate intestinal immunity, including macrophages, plays a significant role in the pathological development of UC. Using the CIBERSORT algorithm, we observed elevated levels of 22 types of immune cell infiltrates, as well as increased M1 and decreased M2 macrophages in UC compared to normal colonic mucosa. Weighted gene coexpression network analysis (WGCNA) was used to identify modules associated with macrophages and UC, resulting in the identification of 52 macrophage-related genes (MRGs) that were enriched in macrophages at single-cell resolution. Consensus clustering based on these 52 MRGs divided the integrated UC cohorts into three subtypes. Machine learning algorithms were used to identify ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1), sodium- and chloride-dependent neutral and basic amino acid transporter B(0+) (SLC6A14), and 3-hydroxy-3-methylglutaryl-CoA synthase 2 (HMGCS2) in the training set, and their diagnostic value was validated in independent validation sets. Gene set enrichment analysis (GSEA) and gene set variation analysis (GSVA) revealed the main biological effects, and that interleukin-17 was one of several signaling pathways enriched by the three genes. We also constructed a competitive endogenous RNA (CeRNA) network reflecting a potential posttranscriptional regulatory mechanism. Expression of diagnostic markers was validated in vivo and in biospecimens, and our immunohistochemistry (IHC) results confirmed that HMGCS2 gradually decreased during the transformation of UC to colorectal cancer. In conclusion, ENPP1, SLC6A14, and HMGCS2 are associated with macrophages and the progression of UC pathogenesis and have good diagnostic value for patients with UC.
Assuntos
Colite Ulcerativa , Humanos , Colite Ulcerativa/patologia , Reto/patologia , Macrófagos/metabolismo , Mucosa Intestinal/metabolismoRESUMO
Hepatocellular carcinoma (HCC) is the fourth major contributor to cancer-related deaths worldwide, and patients mostly have poor prognosis. Although several drugs have been approved for the treatment of HCC, cisplatin (CDDP) is still applied in treatment of HCC as a classical chemotherapeutic drug. Unfortunately, the emergence of CDDP resistance has caused HCC patients to exhibit poor drug response. How to mitigate or even reverse CDDP resistance is an urgent clinical issue to be solved. Because of critical roles in biological functional processes and disease developments, non-coding RNAs (ncRNAs) have been extensively studied in HCC in recent years. Importantly, ncRNAs have also been demonstrated to be involved in the development of HCC to CDDP resistance process. Therefore, this review highlighted the regulatory roles of ncRNAs in CDDP resistance of HCC, elucidated the multiple potential mechanisms by which HCC develops CDDP resistance, and attempted to propose multiple drug delivery systems to alleviate CDDP resistance. Recently, ncRNA-based therapy may be a feasible strategy to alleviate CDDP resistance in HCC. Meanwhile, nanoparticles can overcome the deficiencies in ncRNA-based therapy and make it possible to reverse tumor drug resistance. The combined use of these strategies provides clues for reversing CDDP resistance and overcoming the poor prognosis of HCC.
Assuntos
Antineoplásicos/uso terapêutico , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Cisplatino/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , RNA não Traduzido , Animais , HumanosRESUMO
RNF2 (also known as ding, Ring1B or Ring2) is a member of the Ring finger protein family, which functions as E3 ubiquitin ligase for monoubiquitination of histone H2A at lysine 119 (H2AK119ub). RNF2 gene is located at the 1q25.3 site of human chromosome and the coding region is composed of 9 exons, encoding 336 amino acids in total. Many studies have demonstrated that overexpressed RNF2 was involved in the pathological progression of multiple cancers and has an impact on their clinical features. For instance, the upregulated expression level of RNF2 is positively correlated with the occurrence and progression of hepatocellular carcinoma, melanoma, prostate cancer, breast cancer, pancreatic cancer, gastric cancer, and bladder urothelial carcinoma, as well as with the radioresistance of lung cancer and chemoresistance of ovarian cancer. This review provides an up-to-date perspective on the relationship between RNF2 and several cancers and highlights recent studies on RNF2 regulation. In particular, the relevant cellular signaling pathways and potential clinical value of RNF2 in cancers are also discussed, suggesting its potential as an epigenetic biomarker and therapeutic target for these cancers.
Assuntos
Carcinoma de Células de Transição/genética , Regulação Neoplásica da Expressão Gênica/genética , Complexo Repressor Polycomb 1/metabolismo , Neoplasias da Bexiga Urinária/genética , Carcinoma de Células de Transição/metabolismo , Carcinoma de Células de Transição/patologia , Histonas/metabolismo , Humanos , Ubiquitinação , Neoplasias da Bexiga Urinária/metabolismoRESUMO
Zinc finger E-box-binding homeobox 1 (ZEB1), a functional protein of zinc finger family, was aberrant expressed in many kinds of liver disease including hepatic fibrosis and Hepatitis C virus. Bioinformatics results showed that ZEB1 was abnormally expressed in HCC tissues. However, to date, the potential regulatory role and molecular mechanisms of ZEB1 are still unclear in the occurrence and development of HCC. This study demonstrated that the expression level of ZEB1 was significantly elevated both in liver tissues of HCC patients and cell lines (HepG2 and SMMC-7721 cells). Moreover, ZEB1 could promote the proliferation, migration, and invasion of HCC cells. On the downstream regulation mechanism, ZEB1 could activate the Wnt/ß-catenin signaling pathway by upregulating the protein expression levels of ß-catenin, c-Myc, and cyclin D1. Novel studies showed that miR-708 particularly targeted ZEB1 3'-UTR regions and inhibited the HCC cell proliferation, migration, and invasion. Furthermore, results of nude mice experiments of HCC model indicated that miR-708 could inhibit tumor growth and xenograft metastasis model was established to validate that miR-708 could inhibit HCC cell metastasis through tail-vein injection in vivo. Together, the study suggested that ZEB1 modulated by miR-708 might be a potential therapeutic target for HCC therapy.
Assuntos
Apoptose/fisiologia , Carcinoma Hepatocelular/fisiopatologia , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Via de Sinalização Wnt/fisiologia , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo , Adulto , Idoso , Animais , Carcinogênese/metabolismo , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal/fisiologia , Feminino , Humanos , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Metástase Neoplásica/fisiopatologiaRESUMO
BACKGROUND: There is a need to determine lenvatinib-associated real-world adverse events (AEs) as its adverse effects may result in its discontinuation. RESEARCH DESIGN AND METHODS: Lenvatinib-associated AEs were analyzed and quantified and risk signals from the first quarter of 2015 to the fourth quarter of 2023 were detected through data mining. Potential targets for lenvatinib-associated cholecystitis, cholangitis, and hepatic encephalopathy were identified by data mining. RESULT: 68 Preferred Terms (PTs) with an important imbalance were kept. Unexpected AEs, such as immune-mediated hepatitis, portal vein thrombosis and adrenal insufficiency were associated with the use of lenvatinib use. Lenvatinib alone was more strongly associated with adrenal insufficiency than lenvatinib and pembrolizumab combination. Hepatic encephalopathy was more strongly correlated with drug use when Lenvatinib was administered to male patients with hepatocellular carcinoma. Most AEs occurred during the first month after treatment, with a median onset time of 41 days. FGFR4, PDGFRA, and KIT (Lenvatinib targets) are potentially linked to cholecystitis, cholangitis, and hepatic encephalopathy. CONCLUSIONS: We identified Lenvatinib-associated AEs and discovered new AEs that will be useful for clinical monitoring and risk assessment.
RESUMO
In order to investigate the dynamic changes of flavor compounds, Ultra Performance Liquid Chromatography Tandem Mass Spectrometry (UPLC-MS/MS) combined with Headspace Solid Phase Microextraction Gas Chromatography Mass Spectrometry (HS-SPME-GC-MS) was used to detect the metabolites in different drying processes. A total of 80 volatile compounds and 1319 non-volatile compounds were identified. The trend in the changes of C-8 compounds and sulfur-containing compounds were generally consistent with the trend of key enzyme activities. 479 differential metabolites were identified and revealed that metabolic profiles of compounds in Boletus edulis were altered with increased organic acids and derivatives and lipids and lipid-like molecules. Fatty acids and amino acids were transformed into volatile compounds under the action of enzymes, which played a significant role in the formation of the distinctive flavor of Boletus edulis. Our study provided a theoretical support for fully comprehending the formation mechanism of flavor from Boletus edulis during drying processes.
RESUMO
Cancer is characterized by unlimited proliferation and metastasis, and traditional therapeutic strategies usually result in the acquisition of drug resistance, thus highlighting the need for more personalized treatment. mRNA vaccines transfer the gene sequences of exogenous target antigens into human cells through transcription and translation to stimulate the body to produce specific immune responses against the encoded proteins, so as to enable the body to obtain immune protection against said antigens; this approach may be adopted for personalized cancer therapy. Since the recent coronavirus pandemic, the development of mRNA vaccines has seen substantial progress and widespread adoption. In the present review, the development of mRNA vaccines, their mechanisms of action, factors influencing their function and the current clinical applications of the vaccine are discussed. A focus is placed on the application of mRNA vaccines in cancer, with the aim of highlighting unique advances and the remaining challenges of this novel and promising therapeutic approach.
Assuntos
Vacinas Anticâncer , Neoplasias , Desenvolvimento de Vacinas , Vacinas de mRNA , Humanos , Neoplasias/imunologia , Neoplasias/terapia , Vacinas Anticâncer/uso terapêutico , Vacinas Anticâncer/imunologia , Vacinas Sintéticas/imunologia , Vacinas Sintéticas/uso terapêutico , COVID-19/prevenção & controle , COVID-19/imunologia , RNA Mensageiro/genética , RNA Mensageiro/imunologia , Medicina de Precisão/métodos , Imunoterapia/métodosRESUMO
Corticotropin-releasing hormone-binding protein (CRHBP) is involved in many physiological processes. However, it is still unclear what role CRHBP has in tumor immunity and prognosis prediction. Using databases such as the Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO), Tumor Protein Database, Timer Database, and Gene Expression Profiling Interactive Analysis (GEPIA), we evaluated the potential role of CRHBP in diverse cancers. Further research looked into the relationships between CRHBP and tumor survival prognosis, immune infiltration, immune checkpoint (ICP) indicators, tumor mutation burden (TMB), microsatellite instability (MSI), mismatch repair (MMR), DNA methylation, tumor microenvironment (TME), and drug responsiveness. The anticancer effect of CRHBP in liver hepatocellular carcinoma (LIHC) was shown by Western blotting, EdU staining, JC-1 staining, transwell test, and wound healing assays. CRHBP expression is significantly low in the majority of tumor types and is associated with survival prognosis, ICP markers, TMB, and microsatellite instability (MSI). The expression of CRHBP was found to be substantially related to the quantity of six immune cell types, as well as the interstitial and immunological scores, showing that CRHBP has a substantial impact in the TME. We also noticed a link between the IC50 of a number of anticancer medicines and the degree of CRHBP expression. CRHBP-related signaling pathways were discovered using functional enrichment. Cox regression analysis showed that CRHBP expression was an independent prognostic factor for LIHC. CRHBP has a tumor suppressor function in LIHC, according to cell and molecular biology trials. CRHBP has a significant impact on tumor immunity, treatment, and prognosis, and has the potential as a cancer treatment target and prognostic indicator.
Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Instabilidade de Microssatélites , Prognóstico , Bases de Dados de Proteínas , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Microambiente Tumoral/genéticaRESUMO
Noncoding RNAs with a length of 2224 nt are known as microRNAs (miRNAs or miRs), which are critical regulators of protein translation. Over the past 10 years, the roles of miRNAs have been extensively investigated in several human cancer types. There is evidence to indicate that miRNAs regulate gene expression by concentrating on a number of substances that have an impact on the physiology and development of cancer cells. Thus, miRNAs as regarded as effective targets for further studies on the design of novel therapeutic strategies. Hepatocellular carcinoma, breast, prostate, and ovarian cancer are only a few of the cancers that miR124 suppresses. Furthermore, it has been shown that miR124 is linked to the development and aggressive spread of malignancies. The aim of the present review was to clarify and highlight the role of miR124 in the development and progression of cancer, emphasizing recent research illustrating how miR124 has been used as a therapeutic agent against cancer, as well as the diagnostic potential, regulatory mechanisms and clinical application of miR124.
Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , Neoplasias Ovarianas , Masculino , Feminino , Humanos , MicroRNAs/genética , MicroRNAs/metabolismoRESUMO
OBJECTIVES: To develop a model that can assist in the diagnosis and prediction of prognosis for head and neck squamous cell carcinoma (HNSCC). MATERIALS AND METHODS: Data from TCGA and GEO databases were used to generate normalized gene expression data. Consensus Cluster Plus was used for cluster analysis and the relationship between angiogenesis-associated gene (AAG) expression patterns, clinical characteristics and survival was examined. Support vector machine (SVM) and least absolute shrinkage and selection operator (LASSO) analyzes and multiple logistic regression analyzes were performed to determine the diagnostic model, and a prognostic nomogram was constructed using univariate and multivariate Cox regression analyses. ESTIMATE, XCELL, TIMER, QUANTISEQ, MCPCOUNTER, EPIC, CIBERSORT-ABS, CIBERSORT algorithms were used to assess the immune microenvironment of HNSCC patients. In addition, gene set enrichment analysis, treatment sensitivity analysis, and AAGs mutation studies were performed. Finally, we also performed immunohistochemistry (IHC) staining in the tissue samples. RESULTS: We classified HNSCC patients into subtypes based on differences in AAG expression from TCGA and GEO databases. There are differences in clinical features, TME, and immune-related gene expression between two subgroups. We constructed a HNSCC diagnostic model based on nine AAGs, which has good sensitivity and specificity. After further screening, we constructed a prognostic risk signature for HNSCC based on six AAGs. The constructed risk score had a good independent prognostic significance, and it was further constructed into a prognostic nomogram together with age and stage. Different prognostic risk groups have differences in immune microenvironment, drug sensitivity, gene enrichment and gene mutation. CONCLUSION: We have constructed a diagnostic and prognostic model for HNSCC based on AAG, which has good performance. The constructed prognostic risk score is closely related to tumor immune microenvironment and immunotherapy response.
Assuntos
Angiogênese , Benzoquinonas , Neoplasias de Cabeça e Pescoço , Lactamas Macrocíclicas , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/terapia , Prognóstico , Imunoterapia , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/terapia , Microambiente Tumoral/genéticaRESUMO
BACKGROUND: Numerous studies have shown that Schistosoma japonicum infection correlates with an increased risk of liver hepatocellular carcinoma (LIHC). However, data regarding the role of this infection in LIHC oncogenesis are scarce. This study aimed to investigate the potential mechanisms of hepatocarcinogenesis associated with Schistosoma japonicum infection. METHODS: By examining chronic liver disease as a mediator, we identified the genes contributing to Schistosoma japonicum infection and LIHC. We selected 15 key differentially expressed genes (DEGs) using weighted gene co-expression network analysis (WGCNA) and random survival forest models. Consensus clustering revealed two subgroups with distinct prognoses. Least Absolute Shrinkage and Selection Operator (LASSO) and Cox regression identified six prognostic DEGs, forming an Schistosoma japonicum infection-associated signature for strong prognosis prediction. This signature, which is an independent LIHC risk factor, was significantly correlated with clinical variables. Four DEGs, including BMI1, were selected based on their protein expression levels in cancerous and normal tissues. We confirmed BMI1's role in LIHC using Schistosoma japonicum-infected mouse models and molecular experiments. RESULTS: We identified a series of DEGs that mediate schistosomiasis, the parasitic disease caused by Schistosoma japonicum infection, and hepatocarcinogenesis, and constructed a suitable prognostic model. We analyzed the mechanisms by which these DEGs regulate disease and present the differences in prognosis between the different genotypes. Finally, we verified our findings using molecular biology experiments. CONCLUSION: Bioinformatics and molecular biology analyses confirmed a relationship between schistosomiasis and liver hepatocellular cancer. Furthermore, we validated the role of a potential oncoprotein factor that may be associated with infection and carcinogenesis. These findings enhance our understanding of Schistosoma japonicum infection's role in LIHC carcinogenesis.
RESUMO
Objective: To compare the period of viral clearance and its influencing factors after severe acute respiratory syndrome coronavirus (SARS-CoV-2) infection between patients with lymphoma and lung cancer. Methods: We retrospectively collected the clinical data of patients with lymphoma and lung cancer (118 cases) diagnosed with SARS-CoV-2 infection and hospitalized in the First Affiliated Hospital of Anhui Medical University between 1 December 2022, and 15 March 2023. Finally, 87 patients with prolonged virus clearance times were included and divided into lymphoma (40 cases) and lung cancer (47 cases) groups. We used the Kaplan-Meier method to draw a negative turn curve. We performed a univariate analysis of the prolongation of virus clearance time and a Cox regression model for multivariate analysis. Results: The median times for viral clearance in the lung cancer and lymphoma groups were 18 (95% confidence interval [CI] 15.112-20.888) and 32 (95%CI 27.429-36.571) days, respectively. Log-rank analysis showed a statistically significant difference (p = 0.048), and the lymphocyte count in the lymphoma group was lower than that in the lung cancer group (p = 0.044). We used the Cox regression model to conduct a multivariate analysis, which revealed that in lymphoma patients, the interval between the time of diagnosis and the time of SARS-CoV-2 infection <24 months (hazard ratio [HR]: 0.182, 95%CI: 0.062-0.535, p = 0.02), an interval between the last anti-CD20 monoclonal antibody treatment and the time of SARS-CoV-2 infection of <2 months (HR: 0.101, 95%CI: 0.029-0.358, p < 0.001), and a decrease in peripheral blood lymphocyte levels (HR: 0.380, 95%CI: 0.179-0.808, p = 0.012) were independent risk factors for prolonged viral clearance time. Conclusion: Patients with lymphoma combined with SARS-CoV-2 infection had a longer virus clearance time than did patients with lung cancer. Moreover, the lymphocyte count in the lymphoma group was lower than that in the lung cancer group; therefore, the immune status of patients with lymphoma is lower than that of patients with lung cancer. An interval between lymphoma diagnosis and SARS-CoV-2 infection of <2 years, anti-CD20 monoclonal antibody treatment within the past 2 months, and a decrease in lymphocyte levels in the peripheral blood prolonged the virus clearance time in the patients in this study.
RESUMO
KD is an acute systemic vasculitis that most commonly affects children under 5 years old. Sepsis is a systemic inflammatory response syndrome caused by infection. The main clinical manifestations of both are fever, and laboratory tests include elevated WBC count, C-reactive protein, and procalcitonin. However, the two treatments are very different. Therefore, it is necessary to establish a dynamic nomogram based on clinical data to help clinicians make timely diagnoses and decision-making. In this study, we analyzed 299 KD patients and 309 sepsis patients. We collected patients' age, sex, height, weight, BMI, and 33 biological parameters of a routine blood test. After dividing the patients into a training set and validation set, the least absolute shrinkage and selection operator method, support vector machine and receiver operating characteristic curve were used to select significant factors and construct the nomogram. The performance of the nomogram was evaluated by discrimination and calibration. The decision curve analysis was used to assess the clinical usefulness of the nomogram. This nomogram shows that height, WBC, monocyte, eosinophil, lymphocyte to monocyte count ratio (LMR), PA, GGT and platelet are independent predictors of the KD diagnostic model. The c-index of the nomogram in the training set and validation is 0.926 and 0.878, which describes good discrimination. The nomogram is well calibrated. The decision curve analysis showed that the nomogram has better clinical application value and decision-making assistance ability. The nomogram has good performance of distinguishing KD from sepsis and is helpful for clinical pediatricians to make early clinical decisions.
Assuntos
Síndrome de Linfonodos Mucocutâneos , Sepse , Criança , Humanos , Pré-Escolar , Síndrome de Linfonodos Mucocutâneos/diagnóstico , Sepse/diagnóstico , Síndrome de Resposta Inflamatória Sistêmica , Febre , Aprendizado de Máquina , NomogramasRESUMO
Non-thermal plasma (NTP) is thought to have a cytotoxic effect on tumor cells. Although its application in cancer therapy has shown considerable promise, the current understanding of its mechanism of action and cellular responses remains incomplete. Furthermore, the use of melatonin (MEL) as an adjuvant anticancer drug remains unexplored. In this study, we found that NTP assists MEL in promoting apoptosis, delaying cell cycle progression, and inhibiting cell invasion and migration in hepatocellular carcinoma (HCC) cells. This mechanism may be associated with the regulation of intracellular reactive oxygen species levels and ribonucleotide reductase regulatory subunit M2 expression. Our findings confirm the pharmacological role of MEL and the adjuvant value of NTP, emphasizing their potential in combination therapy for HCC. Our study may have important implications for the development of new approaches for HCC treatment.
RESUMO
Background: Focal adhesion serves as a bridge between tumour cells and the extracellular matrix (ECM) and has multiple roles in tumour invasion, migration, and therapeutic resistance. However, studies on focal adhesion-related genes (FARGs) in head and neck squamous cell carcinoma (HNSCC) are limited. Methods: Data on HNSCC samples were obtained from The Cancer Genome Atlas and GSE41613 datasets, and 199 FARGs were obtained from the Molecular Signatures database. The integrated datasets' dimensions were reduced by the use of cluster analysis, which was also used to classify patients with HNSCC into subclusters. A FARG signature model was developed and utilized to calculate each patient's risk score using least extreme shrinkage and selection operator regression analysis. The risk score was done to quantify the subgroups of all patients. We evaluated the model's value for prognostic prediction, immune infiltration status, and therapeutic response in HNSCC. Preliminary molecular and biological experiments were performed to verify these results. Results: Two different HNSCC molecular subtypes were identified according to FARGs, and patients with C2 had a shorter overall survival (OS) than those with C1. We constructed an FARG signature comprising nine genes. We constructed a FARG signature consisting of nine genes. Patients with higher risk scores calculated from the FARG signature had a lower OS, and the FARG signature was considered an independent prognostic factor for HNSCC in univariate and multivariate analyses. FARGs are associated with immune cell invasion, gene mutation status, and chemosensitivity. Finally, we observed an abnormal overexpression of MAPK9 in HNSCC tissues, and MAPK9 knockdown greatly impeded the proliferation, migration, and invasion of HNSCC cells. Conclusion: The FARG signature can provide reliable prognostic prediction for patients with HNSCC. Apart from that, the genes in this model were related to immune invasion, gene mutation status, and chemosensitivity, which may provide new ideas for targeted therapies for HNSCC.
Assuntos
Adesões Focais , Neoplasias de Cabeça e Pescoço , Humanos , Adesão Celular , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Prognóstico , Neoplasias de Cabeça e Pescoço/genéticaRESUMO
BACKGROUND: Thyroid disease is a common endocrine disorder, and thyroid surgeries and postoperative complications have increased recently. This study aimed to explore the effectiveness of intraoperative nerve monitoring (IONM) in endoscopic thyroid surgery using subgroup analysis and determine confounding factors. MATERIALS AND METHODS: Two researchers individually searched for relevant studies published till November 2022 in the PubMed, Embase, Web of Science and Cochrane Library databases. Eventually, eight studies met the inclusion criteria. Heterogeneity was assessed using the Cochran's Q test, and a funnel plot was implemented to evaluate publication bias. The odds ratio or risk difference were calculated using fixed-effects models. The weighted mean difference of continuous variables was calculated. Subgroup analysis was performed according to the disease type. RESULTS: Eight eligible papers included 915 patients and 1242 exposed nerves. The frequencies of transient, permanent and total recurrent laryngeal nerve (RLN) palsy were 2.64, 0.19 and 2.83%, respectively, in the IONM group and 6.15, 0.75 and 6.90%, respectively, in the conventional exposure group. In addition, analysis of the secondary outcome indicators for the average total length of surgery, localisation time of the RLN, recognition rate of the superior laryngeal nerve and length of incision revealed that IONM reduced the localisation time of the RLN and increased the identification rate of the superior laryngeal nerve. Subgroup analysis showed that IONM significantly reduced the incidence of RLN palsy in patients with malignancies. CONCLUSIONS: The use of IONM significantly reduced the incidence of transient RLN palsy during endoscopic thyroid surgery, but it did not significantly reduce the incidence of permanent RLN palsy. However, the reduction in the total RLN palsy was statistically significant. In addition, IONM can effectively reduce the location time of the RLN and increase the recognition rate of the superior laryngeal nerve. Therefore, the application of IONM for malignant tumours is recommended.
Assuntos
Traumatismos do Nervo Laríngeo Recorrente , Paralisia das Pregas Vocais , Humanos , Glândula Tireoide/cirurgia , Tireoidectomia/efeitos adversos , Nervo Laríngeo Recorrente/fisiologia , Monitorização Intraoperatória , Traumatismos do Nervo Laríngeo Recorrente/etiologia , Traumatismos do Nervo Laríngeo Recorrente/prevenção & controle , Paralisia das Pregas Vocais/etiologia , Paralisia das Pregas Vocais/prevenção & controleRESUMO
Alcoholic liver disease (ALD) is a leading chronic liver disease in which immune cells play a vital role. Myeloid cells have been extensively studied in ALD, including granulocytes, macrophages, monocytes, and dendritic cells, which are involved in the occurrence and progression of steatosis, inflammation, fibrosis, and eventual cirrhosis. These cells can be popularly targeted and regulated by factors from different sources, including cytokines secreted by other cells, extracellular vesicles, and substances in serum-for example, infiltration of monocytes or neutrophils, activation of Kupffer cells, and polarization of macrophages. These processes can affect and change the function and phenotype of myeloid cells. Here we mainly review the key mediators that affect the infiltration and function of mainly myeloid cells in ALD as well as their regulatory mechanisms on target cells, which may provide novel immunotherapeutic approaches. The single-cell multimodal omics of myeloid cells is also discussed to help transform them into basic research or therapeutic strategy of ALD clinically.
Assuntos
Fígado Gorduroso , Hepatopatias Alcoólicas , Citocinas , Humanos , Células de Kupffer , Células MieloidesRESUMO
Background: Head and neck squamous cell carcinoma (HNSCC) is a highly prevalent and malignant tumor that is difficult to effectively prognosticate outcomes. Recent reports have suggested that inflammation is strongly related to tumor progression, and several biomarkers linked to inflammation have been demonstrated to be useful for making a prognosis. The goal of this research was to explore the relevance between the inflammatory-related genes and HNSCC prognosis. Methods: The clinical information and gene expression data of patients with HNSCC were acquired from publicly available data sources. A multigene prognostic signature model was constructed in The Cancer Genome Atlas and verified in the Gene Expression Omnibus database. According to the risk score calculated for each patient, they were divided into low- and high-risk groups based on the median. The Kaplan-Meier survival curve and receiver operating characteristic curve were applied to determine the prognostic value of the risk model. Further analysis identified the independent prognostic factors, and a prognostic nomogram was built. The relationship between tumor immune infiltration status and risk scores was investigated using Spearman correlation analysis. Finally, to confirm the expression of genes in HNSCC, quantitative real-time polymerase chain reaction (qRT-PCR) was performed. Results: A prognostic model consisting of 14 inflammatory-related genes was constructed. The samples with a high risk had an apparently shorter overall survival than those with a low risk. Independent prognostic analysis found that risk scores were a separate prognostic factor in HNSCC patients. Immune infiltration analysis suggested that the abundance of B cells, CD8 T cells, M2 macrophages, myeloid dendritic cells, and monocytes in the low-risk group was higher, while that of M0, M1 macrophages, and resting NK cells was obviously higher in the high-risk group. The risk scores were related to chemotherapeutic sensitivity and the expression of several immune checkpoint genes. Moreover, CCL22 and IL10 were significantly higher in HNSCC tissues, as determined by qRT-PCR. Conclusion: Taken together, we constructed a novel inflammatory response-related gene signature, which may be used to estimate outcomes for patients with HNSCC and may be developed into a powerful tool for forecasting the efficacy of immunotherapeutic and chemotherapeutic drugs for HNSCC.
RESUMO
Background: This network meta-analysis aimed to comprehensively compare the operative and postoperative outcomes of different parotidectomy incisions. Methods: Embase, PubMed, Web of Science, and Cochrane Central Register of Controlled Trials were searched up to April 2022. A complete Bayesian network meta-analysis was performed using the Markov Monte Carlo method in OpenBUGS. Results: Seventeen studies with 1609 patients were included. Thirteen were retrospective cohort studies, three were prospective cohort studies, and one was a randomized controlled study. The quality of evidence was rated as very low in most comparisons. The incision satisfaction score of the modified facelift incision (MFI), retroauricular hairline incision (RAHI), V-shaped incision (VI) were higher than that of the modified Blair incision (MBI) (MBI vs. MFI: mean difference [MD] -1.39; 95% credible interval [CrI] -2.23, -0.57) (MBI vs. RAHI: MD -2.25; 95% CrI -3.40, -1.12) (MBI vs. VI: MD -2.58; 95% CrI -3.71, -1.46); the tumor size treated by VI was smaller than that by MBI (MD 5.15; 95% CrI 0.76, 9.38) and MFI (MD 5.16; 95% CrI 0.34, 9.86); and the risk of transient facial palsy in the MFI was lower than that in the MBI (OR 2.13; 95% CrI 1.28, 3.64). There were no differences in operation time, drainage volume, wound infection, hematoma, salivary complications, Frey syndrome, or permanent facial palsy between incision types. Conclusion: The traditional MBI is frequently used for large tumor volumes, but the incision satisfaction score is low and postoperative complication control is poor. However, emerging incisions performed well in terms of incision satisfaction scores and control of complications. More randomized controlled trials are needed to compare the different parotidectomy incisions. Patients should be fully informed about the characteristics of each incision to make the most informed decision, along with the physician's advice. Systematic Review Registration: PROSPERO, identifier CRD42022331756.
RESUMO
Synovial sarcoma (SS) is an epithelial-differentiated malignant stromal tumor that has the highest incidence in young people and can occur almost anywhere in the body. Many noncoding RNAs are involved in the occurrence, development, or pathogenesis of SS. In particular, the role of MicroRNAs (miRNAs) in SS is receiving increasing attention. MiRNA is a noncoding RNA abundant in cells and extracellular serums. Increasing evidence suggests that miRNA has played a significant role in the incidence and development of tumors in recent years, including sarcomas. Previous studies show that various sarcomas have their unique miRNA expression patterns and that various miRNA expression profiles can illustrate the classes of miRNAs that may elicit cancer-relevant activities in specific sarcoma subtypes. Furthermore, SS has been reported to have the most number of differentially expressed miRNAs, which indicated that miRNA is linked to SS. In fact, according to many publications, miRNAs have been shown to have a role in the development and appearance of SS in recent years, according to many publications. Since many studies showing that various miRNAs have a role in the development and appearance of SS in recent years have not been systematically summarized, we summarize the recent studies on the relationship between miRNA and SS in this review. For example, miR-494 promotes the development of SS via modulating cytokine gene expression. The role of miR-494-3p as a tumor suppressor is most likely linked to the CXCR4 (C-X-C chemokine receptor 4) regulator, although the exact mechanism is unknown. Our review aims to reveal in detail the potential biological value and clinical significance of miRNAs for SS and the potential clinical value brought by the association between SS and miRNAs.