Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 5724, 2023 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-37029182

RESUMO

Several studies have shown that males suffer more severe damage than females in the process of ischemia and reperfusion of the brain, heart and kidney. Accordingly, our study will reveal the correlation between the severity of hepatic ischemia‒reperfusion injury (HIRI) and sex, and preliminarily analyze the underlying mechanism. A total of 75 patients who were considered to have "benign liver tumors" at the initial admission and underwent partial hepatectomy were enrolled. We identified potential differences between different groups and discussed the correlation between the severity of HIRI and sex through a comparative analysis. Results showed that HIRI was more severe in males than in females, especially in younger patients. To explore whether estrogen level differences are the main reason for the sex differences in HIRI, we further revealed that HIRI in premenopausal females was more severe than that in postmenopausal females. By comparing the levels of gonadal hormones, we speculated that multiple gonadal hormones, including follicle-stimulating hormone, luteinizing hormone and testosterone, may jointly participate in the regulation of sex differences in HIRI together with estrogen.


Assuntos
Traumatismo por Reperfusão , Caracteres Sexuais , Humanos , Masculino , Feminino , Estudos Transversais , Fígado , Estrogênios , Hormônios Gonadais
2.
Redox Biol ; 57: 102498, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36242914

RESUMO

LncRNAs are involved in the pathophysiologic processes of multiple diseases, but little is known about their functions in hepatic ischemia/reperfusion injury (HIRI). As a novel lncRNA, the pathogenetic significance of hepatic nuclear factor 4 alpha, opposite strand (Hnf4αos) in hepatic I/R injury remains unclear. Here, differentially expressed Hnf4αos and Hnf4α antisense RNA 1 (Hnf4α-as1) were identified in liver tissues from mouse ischemia/reperfusion models and patients who underwent liver resection surgery. Hnf4αos deficiency in Hnf4αos-KO mice led to improved liver function, alleviated the inflammatory response and reduced cell death. Mechanistically, we found a regulatory role of Hnf4αos-KO in ROS metabolism through PGC1α upregulation. Hnf4αos also promoted the stability of Hnf4α mRNA through an RNA/RNA duplex, leading to the transcriptional activation of miR-23a and miR-23a depletion was required for PGC1α function in hepatoprotective effects on HIRI. Together, our findings reveal that Hnf4αos elevation in HIRI leads to severe liver damage via Hnf4αos/Hnf4α/miR-23a axis-mediated PGC1α inhibition.

3.
Free Radic Biol Med ; 163: 141-152, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33276082

RESUMO

Targeting energy metabolism holds the potential to effectively treat a variety of malignant diseases, and peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC1α) is a key regulator of energy metabolism. However, PGC1α's role in cancer, especially in hepatocellular carcinoma (HCC) remains largely unknown. In the present study, we reported that PGC1α was significantly downregulated in HCC cell lines and specimens. Moreover, reduced expression of PGC1α in tumor cells was correlated with poor prognosis. PGC1α overexpression substantially inhibited cell proliferation and induced apoptosis in vitro and in vivo. On the contrary, the knockdown of PGC1α produced the opposite effect. The mechanism was at least partially due to the upregulation of mitochondrial pyruvate carrier 1 (MPC1) caused by PGC1α, which promoted mitochondrial biogenesis by binding to nuclear respiratory factor 1 (NRF1). Consequently, the production of cellular reactive oxygen species (ROS) caused by mitochondrial oxidation was elevated above a critical threshold for survival. Furthermore, we found that PGC1α could enhance the antitumor activity of sorafenib and doxorubicin in HCC through ROS accumulation-mediated cell death. These results indicate that PGC1α/NRF1-MPC1 axis is involved in HCC progression and could be a promising target for HCC treatment.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Doxorrubicina/farmacologia , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Proteínas de Transporte da Membrana Mitocondrial , Transportadores de Ácidos Monocarboxílicos , Fator 1 Nuclear Respiratório/genética , Fator 1 Nuclear Respiratório/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Sorafenibe/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA