Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(1): 878-883, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38154046

RESUMO

Molecular Ir catalysts have emerged as an important class of model catalysts for understanding structure-activity relationships in water oxidation, a reaction that is central to renewable fuel synthesis. Prior efforts have mostly focused on controlling and elucidating the emergence of active species from prepared precursors. However, the development of efficient and stable molecular Ir catalysts also necessitates probing of reaction intermediates. To date, relatively little is known about the key intermediates in the cycles of the molecular Ir catalysts. Herein, we probed the catalytic cycle of a homogeneous Ir catalyst ("blue dimer") at a Au electrode/aqueous electrolyte interface by combining surface-enhanced infrared absorption spectroscopy (SEIRAS) with phase-sensitive detection (PSD). Cyclic voltammograms (CVs) from 1.4 to 1.7 VRHE (RHE = reversible hydrogen electrode) give rise to a band at ∼818 cm-1, whereas CVs from 1.4 to ≥1.85 VRHE generate an additional band at ∼1146 cm-1. Isotope labeling experiments indicate that the bands at ∼818 and ∼1146 cm-1 are attributable to oxo (IrV═O) and superoxo (IrIV-OO•) moieties, respectively. This study establishes PSD-SEIRAS as a sensitive tool for probing water oxidation cycles at electrode/electrolyte interfaces and demonstrates that the relative abundance of two key intermediates can be tuned by the thermodynamic driving force of the reaction.

2.
J Am Chem Soc ; 146(19): 13438-13444, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38687695

RESUMO

The Baeyer-Villiger oxidation of ketones is a crucial oxygen atom transfer (OAT) process used for ester production. Traditionally, Baeyer-Villiger oxidation is accomplished by thermally oxidizing the OAT from stoichiometric peroxides, which are often difficult to handle. Electrochemical methods hold promise for breaking the limitation of using water as the oxygen atom source. Nevertheless, existing demonstrations of electrochemical Baeyer-Villiger oxidation face the challenges of low selectivity. We report in this study a strategy to overcome this challenge. By employing a well-known water oxidation catalyst, Fe2O3, we achieved nearly perfect selectivity for the electrochemical Baeyer-Villiger oxidation of cyclohexanone. Mechanistic studies suggest that it is essential to produce surface hydroperoxo intermediates (M-OOH, where M represents a metal center) that promote the nucleophilic attack on ketone substrates. By confining the reactions to the catalyst surfaces, competing reactions (e.g., dehydrogenation, carboxylic acid cation rearrangements, and hydroxylation) are greatly limited, thereby offering high selectivity. The surface-initiated nature of the reaction is confirmed by kinetic studies and spectroelectrochemical characterizations. This discovery adds nucleophilic oxidation to the toolbox of electrochemical organic synthesis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA