Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 15(6): 4206-13, 2015 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-26020567

RESUMO

Transparent conductive film on plastic substrate is a critical component in low-cost, flexible, and lightweight optoelectronics. Industrial-scale manufacturing of high-performance transparent conductive flexible plastic is needed to enable wide-ranging applications. Here, we demonstrate a continuous roll-to-roll (R2R) production of transparent conductive flexible plastic based on a metal nanowire network fully encapsulated between graphene monolayer and plastic substrate. Large-area graphene film grown on Cu foil via a R2R chemical vapor deposition process was hot-laminated onto nanowires precoated EVA/PET film, followed by a R2R electrochemical delamination that preserves the Cu foil for reuse. The encapsulated structure minimized the resistance of both wire-to-wire junctions and graphene grain boundaries and strengthened adhesion of nanowires and graphene to plastic substrate, resulting in superior optoelectronic properties (sheet resistance of ∼8 Ω sq(-1) at 94% transmittance), remarkable corrosion resistance, and excellent mechanical flexibility. With these advantages, long-cycle life flexible electrochromic devices are demonstrated, showing up to 10000 cycles.

2.
Adv Mater ; 32(31): e2002831, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32583941

RESUMO

Bismuth oxyselenide (Bi2 O2 Se), a new type of 2D material, has recently attracted increased attention due to its robust bandgap, stability under ambient conditions, and ultrahigh electron mobility. In such complex oxides, fine structural distortion tends to play a decisive role in determining the unique physical properties, such as the ferrorotational order, ferroelectricity, and magnetoelasticity. Therefore, an in-depth investigation of the fine structural symmetry of Bi2 O2 Se is necessary to exploit its potential applications. However, conventional techniques are either time consuming or requiring tedious sample treatment. Herein, a noninvasive and high-throughput approach is reported for characterizing the fine structural distortion in 2D centrosymmetric Bi2 O2 Se by polarization-dependent third-harmonic generation (THG). Unprecedentedly, the divergence between the experimental results and the theoretical prediction of the perpendicular component of polarization-dependent THG indicates a fine structural distortion, namely, a <1.4° rotation of the oxygen square in the tetragonal (Bi2 O2 ) layers. This rotation breaks the intrinsic mirror symmetry of 2D Bi2 O2 Se, eventually reducing the symmetry from the D4h to the C4h point group. The results demonstrate that THG is highly sensitive to even fine symmetry variations, thereby showing its potential to uncover hidden phase transitions and interacting polarized sublattices in novel 2D material systems.

3.
Nat Commun ; 6: 6972, 2015 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-25898022

RESUMO

Patterning of high-quality two-dimensional chalcogenide crystals with unique planar structures and various fascinating electronic properties offers great potential for batch fabrication and integration of electronic and optoelectronic devices. However, it remains a challenge that requires accurate control of the crystallization, thickness, position, orientation and layout. Here we develop a method that combines microintaglio printing with van der Waals epitaxy to efficiently pattern various single-crystal two-dimensional chalcogenides onto transparent insulating mica substrates. Using this approach, we have patterned large-area arrays of two-dimensional single-crystal Bi2Se3 topological insulator with a record high Hall mobility of ∼1,750 cm(2) V(-1) s(-1) at room temperature. Furthermore, our patterned two-dimensional In2Se3 crystal arrays have been integrated and packaged to flexible photodetectors, yielding an ultrahigh external photoresponsivity of ∼1,650 A W(-1) at 633 nm. The facile patterning, integration and packaging of high-quality two-dimensional chalcogenide crystals hold promise for innovations of next-generation photodetector arrays, wearable electronics and integrated optoelectronic circuits.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA