Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 599(7886): 582-586, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34819682

RESUMO

Heavy-fermion systems represent one of the paradigmatic strongly correlated states of matter1-5. They have been used as a platform for investigating exotic behaviour ranging from quantum criticality and non-Fermi liquid behaviour to unconventional topological superconductivity4-12. The heavy-fermion phenomenon arises from the exchange interaction between localized magnetic moments and conduction electrons leading to Kondo lattice physics, and represents one of the long-standing open problems in quantum materials3. In a Kondo lattice, the exchange interaction gives rise to a band with heavy effective mass. This intriguing phenomenology has so far been realized only in compounds containing rare-earth elements with 4f or 5f electrons1,4,13,14. Here we realize a designer van der Waals heterostructure where artificial heavy fermions emerge from the Kondo coupling between a lattice of localized magnetic moments and itinerant electrons in a 1T/1H-TaS2 heterostructure. We study the heterostructure using scanning tunnelling microscopy and spectroscopy and show that depending on the stacking order of the monolayers, we can reveal either the localized magnetic moments and the associated Kondo effect, or the conduction electrons with a heavy-fermion hybridization gap. Our experiments realize an ultimately tunable platform for future experiments probing enhanced many-body correlations, dimensional tuning of quantum criticality and unconventional superconductivity in two-dimensional artificial heavy-fermion systems15-17.

2.
Phys Rev Lett ; 130(10): 100401, 2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36962053

RESUMO

Spectral functions of non-Hermitian Hamiltonians can reveal the existence of topologically nontrivial line gaps and the associated topological edge modes. However, the computation of spectral functions in a non-Hermitian many-body system remains an open challenge. Here, we put forward a numerical approach to compute spectral functions of a non-Hermitian many-body Hamiltonian based on the kernel polynomial method and the matrix-product state formalism. We show that the local spectral functions computed with our algorithm reveal topological spin excitations in a non-Hermitian spin model, faithfully reflecting the nontrivial line gap topology in a many-body model. We further show that the algorithm works in the presence of the non-Hermitian skin effect. Our method offers an efficient way to compute local spectral functions in non-Hermitian many-body systems with tensor networks, allowing us to characterize line gap topology in non-Hermitian quantum many-body models.

3.
Adv Mater ; 35(45): e2305409, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37592888

RESUMO

Unconventional superconductors represent one of the fundamental directions in modern quantum materials research. In particular, nodal superconductors are known to appear naturally in strongly correlated systems, including cuprate superconductors and heavy-fermion systems. Van der Waals materials hosting superconducting states are well known, yet nodal monolayer van der Waals superconductors have remained elusive. Here, using low-temperature scanning tunneling microscopy (STM) and spectroscopy (STS) experiments, it is shown that pristine monolayer 1H-TaS2 realizes a nodal superconducting state. Non-magnetic disorder drives the nodal superconducting state to a conventional gapped s-wave state. Furthermore, many-body excitations emerge close to the gap edge, signalling a potential unconventional pairing mechanism. The results demonstrate the emergence of nodal superconductivity in a van der Waals monolayer, providing a building block for van der Waals heterostructures exploiting unconventional superconducting states.

4.
J Phys Condens Matter ; 34(48)2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36202090

RESUMO

Magnetic frustrations in two-dimensional materials provide a rich playground to engineer unconventional phenomena. However, despite intense efforts, a realization of tunable frustrated magnetic order in two-dimensional materials remains an open challenge. Here we propose Coulomb engineering as a versatile strategy to tailor magnetic ground states in layered materials. Using the frustrated van der Waals monolayer 1T-TaS2as an example, we show how long-range Coulomb interactions renormalize the low energy nearly flat band structure, leading to a Heisenberg model which depends on the Coulomb interactions. Based on this, we show that superexchange couplings in the material can be precisely tailored by means of environmental dielectric screening, ultimately allowing to externally drive the material towards a tunable frustrated regime. Our results put forward Coulomb engineering as a powerful tool to manipulate magnetic properties of van der Waals materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA