Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Zhonghua Xin Xue Guan Bing Za Zhi ; 41(12): 1034-9, 2013 Dec.
Artigo em Zh | MEDLINE | ID: mdl-24524607

RESUMO

OBJECTIVE: To detect expression of Slit2 and Robo4 in mouse ventricular muscle blood vessel and explore the impact of exogenous Slit2 on proliferation and migrate of mouse cardiac microvascular endothelial cells. METHODS: Slit2 and Robo4 expression in mouse ventricular muscle blood vessel was detected by immunohistochemistry. Slit2 and Robo4 expression in cardiac microvascular endothelial cells isolated from mouse ventricular muscle were detected by euzymelinked immunosorbent assay and immunofluorescence, respectively. The effects of various concentrations exogenous Slit2 on proliferation of mouse cardiac microvascular endothelial cells was examined by CCK-8 cell proliferation kit. Transwell chamber was used to detect migration of mouse cardiac microvascular endothelial cells treated with 800 µl M199 culture medium containing 20%FBS (negative control), 10 ng/ml VEGF(positive control), 100 ng/ml Slit2(Slit2) and 100 ng/ml Slit2+10 ng/ml VEGF (Slit2+VEGF) and incubated for 18 h at 37 °C and 5%CO(2). RESULTS: Both Slit2 and Robo4 protein expressions were detected in ventricular muscle blood vessel. Slit2 protein expression was detected in mouse microvascular endothelial cells. Protein and mRNA Robo4 expressions were also evidenced in mouse microvascular endothelial cells. Proliferation of mouse cardiac microvascular endothelial cells was not affected by exogenous Slit2. Migration of mouse cardiac microvascular endothelial cells was not affected by exogenous Slit2 (22.1 ± 2.8 vs. 23.2 ± 3.8 in negative control, P > 0.05) and significantly enhanced by VEGF (65.3 ± 3.8, P < 0.05 vs. Slip2 and negative control), this effect could be blocked by cotreatment with Slip2 (29.2 ± 3.4 in Slip2+VEGF, P < 0.05 vs. VEGF) CONCLUSION: Slit2 and Robo4 are expressed in mouse ventricular muscle blood vessels and cardiac microvascular endothelial cells. Exogenous Slit2 has no impact on the proliferation of mouse cardiac microvascular endothelial cells but could inhibit VEGF-induced mouse cardiac microvascular endothelial cell migration.


Assuntos
Células Endoteliais/citologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Receptores de Superfície Celular/metabolismo , Receptores Imunológicos/metabolismo , Animais , Movimento Celular , Proliferação de Células , Camundongos , Miocárdio/citologia , Transdução de Sinais
3.
Sci Total Environ ; 479-480: 241-6, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24561929

RESUMO

The degradation behavior of veterinary antibiotics in soil is commonly studied using the following methods of adding antibiotics to the soil: (i) adding manure collected from animals fed with a diet containing antibiotics, (ii) adding antibiotic-free animal manure spiked with antibiotics and (iii) directly adding antibiotics. No research simultaneously comparing different antibiotic addition methods was found. Oxytetracycline (OTC) was used as a model antibiotic to compare the effect of the three commonly used antibiotic addition methods on OTC degradation behavior in soil. The three treatment methods have similar trends, though OTC degradation half-lives show the following significant differences (P<0.05): manure from swine fed OTC (treatment A)

Assuntos
Antibacterianos/química , Oxitetraciclina/química , Poluentes do Solo/química , Solo/química , Antibacterianos/análise , Esterco , Modelos Químicos , Oxitetraciclina/análise , Microbiologia do Solo , Poluentes do Solo/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA