Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
1.
J Am Chem Soc ; 146(30): 21025-21033, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39025790

RESUMO

Artificial photosynthesis represents a sustainable strategy for accessing high-value chemicals; however, the conversion efficiency is significantly limited by its difficulty in the cycle of coenzymes such as NADH. In this study, we report a series of isostructural triazine covalent organic frameworks (COFs) and explore their N-substituted microenvironment-dependent photocatalytic activity for NADH regeneration. We discovered that the rational alteration of N-heterocyclic species, which are linked to the triazine center through an imine linkage, can significantly regulate both the electron band structure and planarity of a COF layer. This results in different separation efficiencies of the photoinduced electron-hole pairs and electron transfer behavior within and between individual layers. The optimal COF catalyst herein achieves an NADH regeneration capacity of 89% within 20 min, outperforming most of the reported nanomaterial photocatalysts. Based on this, an artificial photosynthesis system is constructed for the green synthesis of a high-value compound, L-glutamate, and its conversion efficiency significantly surpasses the enzymatic approach without the NADH photocatalytic cycle. This work offers new insights into the coenzyme regeneration by means of regulating the distal heterocyclic microenvironment of a COF skeleton, holding great potential for the green photosynthesis of important chemicals.


Assuntos
Estruturas Metalorgânicas , Triazinas , Triazinas/química , Catálise , Estruturas Metalorgânicas/química , NAD/química , NAD/metabolismo , Processos Fotoquímicos , Estrutura Molecular , Coenzimas/química , Coenzimas/metabolismo , Fotossíntese
2.
J Am Chem Soc ; 146(25): 17189-17200, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38864358

RESUMO

Spatial immobilization of fragile enzymes using a nanocarrier is an efficient means to design heterogeneous biocatalysts, presenting superior stability and recyclability to pristine enzymes. An immobilized enzyme, however, usually compromises its catalytic activity because of inevasible mass transfer issues and the unfavorable conformation changes in a confined environment. Here, we describe a synergetic metal-organic framework pore-engineering strategy to trap lipase (an important hydrolase), which confers lipase-boosted stability and activity simultaneously. The hierarchically porous NU-1003, featuring interconnected mesopore and micropore channels, is precisely modified by chain-adjustable fatty acids on its mesopore channel, into which lipase is trapped. The interconnected pore structure ensures efficient communication between trapped lipase and exterior media, while the fatty acid-mediated hydrophobic pore can activate the opening conformation of lipase by interfacial interaction. Such dual pore compartmentalization and hydrophobization activation effects render the catalytic center of trapped lipase highly accessible, resulting in 1.57-fold and 2.46-fold activities as native lipase on ester hydrolysis and enantioselective catalysis. In addition, the feasibility of these heterogeneous biocatalysts for kinetic resolution of enantiomer is also validated, showing much higher efficiency than native lipase.


Assuntos
Estabilidade Enzimática , Enzimas Imobilizadas , Interações Hidrofóbicas e Hidrofílicas , Lipase , Lipase/química , Lipase/metabolismo , Porosidade , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Estruturas Metalorgânicas/química , Hidrólise , Biocatálise
3.
J Am Chem Soc ; 146(3): 1967-1976, 2024 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-38131319

RESUMO

Engineering nanotraps to immobilize fragile enzymes provides new insights into designing stable and sustainable biocatalysts. However, the trade-off between activity and stability remains a long-standing challenge due to the inevitable diffusion barrier set up by nanocarriers. Herein, we report a synergetic interfacial activation strategy by virtue of hydrogen-bonded supramolecular encapsulation. The pore wall of the nanotrap, in which the enzyme is encapsulated, is modified with methyl struts in an atomically precise position. This well-designed supramolecular pore results in a synergism of hydrogen-bonded and hydrophobic interactions with the hosted enzyme, and it can modulate the catalytic center of the enzyme into a favorable configuration with high substrate accessibility and binding capability, which shows up to a 4.4-fold reaction rate and 4.9-fold conversion enhancements compared to free enzymes. This work sheds new light on the interfacial activation of enzymes using supramolecular engineering and also showcases the feasibility of interfacial assembly to access hierarchical biocatalysts featuring high activity and stability simultaneously.


Assuntos
Hidrogênio , Catálise , Hidrogênio/química
4.
Chembiochem ; 25(17): e202400339, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-38801661

RESUMO

Utilizing covalent organic frameworks (COFs) as porous supports to encapsulate enzyme represents an advanced strategy for constructing COFs biocatalysts, which has inspired numerous interests across various applications. As the structural advantages including ultrastable covalent-bonded linkage, tailorable pore structure, and metal-free biocompatibility, the resultant enzyme-COFs biocatalysts showcase functional enhancement in catalytic activity, chemical stability, long-term durability, and recyclability. This Concept describes the recent advances in the methodological strategies for engineering the COFs biocatalysts, with specific emphasis on the pore entrapment and in situ encapsulation strategies. The structural advantages of the COFs hybrid biocatalysts for organic synthesis, environment- and energy-associated applications are also canvassed. Additionally, the remaining challenges and the forward-looking directions in this field are also discussed. We believe that this Concept can offer useful methodological guidance for developing active and robust COFs biocatalysts.


Assuntos
Biocatálise , Enzimas Imobilizadas , Estruturas Metalorgânicas , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/metabolismo , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Porosidade , Enzimas/metabolismo , Enzimas/química
5.
Environ Sci Technol ; 58(27): 11869-11886, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38940189

RESUMO

Developing efficient technologies to eliminate or degrade contaminants is paramount for environmental protection. Biocatalytic decontamination offers distinct advantages in terms of selectivity and efficiency; however, it still remains challenging when applied in complex environmental matrices. The main challenge originates from the instability and difficult-to-separate attributes of fragile enzymes, which also results in issues of compromised activity, poor reusability, low cost-effectiveness, etc. One viable solution to harness biocatalysis in complex environments is known as enzyme immobilization, where a flexible enzyme is tightly fixed in a solid carrier. In the case where a reticular crystal is utilized as the support, it is feasible to engineer next-generation biohybrid catalysts functional in complicated environmental media. This can be interpreted by three aspects: (1) the highly crystalline skeleton can shield the immobilized enzyme against external stressors. (2) The porous network ensures the high accessibility of the interior enzyme for catalytic decontamination. And (3) the adjustable and unambiguous structure of the reticular framework favors in-depth understanding of the interfacial interaction between the framework and enzyme, which can in turn guide us in designing highly active biocomposites. This Review aims to introduce this emerging biocatalysis technology for environmental decontamination involving pollutant degradation and greenhouse gas (carbon dioxide) conversion, with emphasis on the enzyme immobilization protocols and diverse catalysis principles including single enzyme catalysis, catalysis involving enzyme cascades, and photoenzyme-coupled catalysis. Additionally, the remaining challenges and forward-looking directions in this field are discussed. We believe that this Review may offer a useful biocatalytic technology to contribute to environmental decontamination in a green and sustainable manner and will inspire more researchers at the intersection of the environment science, biochemistry, and materials science communities to co-solve environmental problems.


Assuntos
Enzimas Imobilizadas , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Porosidade , Biocatálise , Poluentes Ambientais/química
6.
Angew Chem Int Ed Engl ; 63(8): e202319876, 2024 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-38183367

RESUMO

Utilizing covalent organic framework (COF) as a hypotoxic and porous scaffold to encapsulate enzyme (enzyme@COF) has inspired numerous interests at the intersection of chemistry, materials, and biological science. In this study, we report a convenient scheme for one-step, aqueous-phase synthesis of highly crystalline enzyme@COF biocatalysts. This facile approach relies on an ionic liquid (2 µL of imidazolium ionic liquid)-mediated dynamic polymerization mechanism, which can facilitate the in situ assembly of enzyme@COF under mild conditions. This green strategy is adaptive to synthesize different biocatalysts with highly crystalline COF "exoskeleton", as well evidenced by the low-dose cryo-EM and other characterizations. Attributing to the rigorous sieving effect of crystalline COF pore, the hosted lipase shows non-native selectivity for aliphatic acid hydrolysis. In addition, the highly crystalline linkage affords COF "exoskeleton" with higher photocatalytic activity for in situ production of H2 O2 , enabling us to construct a self-cascading photo-enzyme coupled reactor for pollutants degradation, with a 2.63-fold degradation rate as the poorly crystalline photo-enzyme reactor. This work showcases the great potentials of employing green and trace amounts of ionic liquid for one-step synthesis of crystalline enzyme@COF biocatalysts, and emphasizes the feasibility of diversifying enzyme functions by integrating the reticular chemistry of a COF.


Assuntos
Disciplinas das Ciências Biológicas , Líquidos Iônicos , Estruturas Metalorgânicas , Polimerização , Lipase
7.
Small ; : e2308716, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-38072769

RESUMO

The selective quantification of copper ions (Cu2+ ) in biosamples holds great importance for disease diagnosis, treatment, and prognosis since the Cu2+ level is closely associated with the physiological state of the human body. While it remains a long-term challenge due to the extremely low level of free Cu2+ and the potential interference by the complex matrices. Here, a pore-engineered hydrogen-bonded organic framework (HOF) fluorosensor is constructed enabling the ultrasensitive and highly selective detection of free Cu2+ . Attributing to atomically precise functionalization of active amino "arm" within the HOF pores and the periodic π-conjugated skeleton, this porous HOF fluorosensor affords high affinity toward Cu2+ through double copper-nitrogen (Cu─N) coordination interactions, resulting in specific fluorescence quenching of the HOF as compared with a series of substances ranging from other metal ions, metabolites, amino acids to proteins. Such superior fluorescence quenching effect endows the Cu2+ quantification by this new HOF sensor with a wide linearity of 50-20 000 nm, a low detection limit of 10 nm, and good recoveries (89.5%-115%) in human serum matrices, outperforming most of the reported approaches. This work highlights the practicability of hydrogen-bonded supramolecular engineering for designing facile and ultrasensitive biosensors for clinical free Cu2+ determination.

8.
J Surg Res ; 283: 824-832, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36915009

RESUMO

BACKGROUND: Altered levels of inflammatory markers secondary to severe trauma present a major problem to physicians and are prone to interfering with the clinical identification of sepsis events. This study aimed to establish the profiles of cytokines in trauma patients to characterize the nature of immune responses to sepsis, which might enable early prediction and individualized treatments to be developed for targeted intervention. METHODS: A 15-plex human cytokine magnetic bead assay system was used to measure analytes in citrated plasma samples. Analysis of the kinetics of these cytokines was performed in 40 patients with severe blunt trauma admitted to our trauma center between March 2016 and February 2017, with an Injury Severity Score (ISS) greater than 20 with regard to sepsis (Sepsis-3) over a 14-d time course. RESULTS: In total, the levels of six cytokines were altered in trauma patients across the 1-, 3-, 5-, 7-, and 14-d time points. Additionally, IL-6, IL-10, IL-15, macrophage derived chemokine (MDC), GRO, sCD40 L, granulocyte colony-stimulating factor (G-CSF), and fibroblast growth factor (FGF)-2 levels could be used to provide a significant discrimination between sepsis and nonsepsis patients at day 3 and afterward, with an area under the curve (AUC) of up to 0.90 through a combined analysis of the eight biomarkers (P < 0.001). Event-related analysis demonstrated 1.5- to 4-fold serum level changes for these cytokines within 72 h before clinically apparent sepsis. CONCLUSIONS: Cytokine profiles demonstrate a high discriminatory ability enabling the timely identification of evolving sepsis in trauma patients. These abrupt changes enable sepsis to be detected up to 72 h before clinically overt deterioration. Defining cytokine release patterns that distinguish sepsis risk from trauma patients might enable physicians to initiate timely treatment and reduce mortality. Large prospective studies are needed to validate and operationalize the findings. TRIAL REGISTRATION: Clinicaltrials, NCT01713205. Registered October 22, 2012, https://register. CLINICALTRIALS: gov/NCT01713205.


Assuntos
Sepse , Ferimentos não Penetrantes , Humanos , Citocinas , Triagem , Sepse/complicações , Biomarcadores , Ferimentos não Penetrantes/complicações , Ferimentos não Penetrantes/diagnóstico , Fenótipo
9.
Chem Soc Rev ; 51(15): 6824-6863, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35852480

RESUMO

Enzymes are a class of natural catalysts with high efficiency, specificity, and selectivity unmatched by their synthetic counterparts and dictate a myriad of reactions that constitute various cascades in living cells. The development of suitable supports is significant for the immobilization of structurally flexible enzymes, enabling biomimetic transformation in the extracellular environment. Accordingly, porous organic frameworks, including metal organic frameworks (MOFs), covalent organic frameworks (COFs) and hydrogen-bonded organic frameworks (HOFs), have emerged as ideal supports for the immobilization of enzymes because of their structural features including ultrahigh surface area, tailorable porosity, and versatile framework compositions. Specially, organic framework-encased enzymes have shown significant enhancement in stability and reusability, and their tailorable pore opening provides a gatekeeper-like effect for guest sieving, which is beneficial for mimicking intracellular biocatalysis processes. This immobilization technique brings new insight into the development of next-generation enzyme materials and shows huge potential in healthcare applications, such as biomarker diagnosis, biostorage, and cancer and antibacterial therapies. In this review, we describe the state-of-the-art strategies for the structural immobilization of enzymes using the well-explored MOFs and burgeoning COFs and HOFs as scaffolds, with special emphasis on how these porous framework-confined technologies can provide a favorable microenvironment for mimicking natural biocatalysis. Subsequently, advanced characterization techniques for enzyme conformation, the effect of the confined microenvironment on the activity of enzymes, and the emerging healthcare applications will be surveyed.


Assuntos
Estruturas Metalorgânicas , Catálise , Atenção à Saúde , Enzimas Imobilizadas/química , Hidrogênio , Estruturas Metalorgânicas/química , Porosidade
10.
Angew Chem Int Ed Engl ; 62(13): e202218661, 2023 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-36719177

RESUMO

Mimicking the bioactivity of native enzymes through synthetic chemistry is an efficient means to advance the biocatalysts in a cell-free environment, however, remains long-standing challenges. Herein, we utilize structurally explicit hydrogen-bonded organic frameworks (HOFs) to mimic photo-responsive oxidase, and uncover the important role of pore environments on mediating oxidase-like activity by means of constructing isostructural HOFs. We discover that the HOF pore with suitable geometry can stabilize and spatially organize the catalytic substrate into a favorable catalytic route, as with the function of the native enzyme pocket. Based on the desirable photo-responsive oxidase-like activity, a visual and sensitive HOFs biosensor is established for the detection of phosphatase, an important biomarker of skeletal and hepatobiliary diseases. This work demonstrates that the pore environments significantly influence the nanozymes' activity in addition to the active center.


Assuntos
Hidrogênio , Oxirredutases , Catálise , Ligação de Hidrogênio , Monoéster Fosfórico Hidrolases
11.
Anal Chem ; 94(41): 14385-14393, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36205458

RESUMO

Enzymes featuring high catalytic efficiency and selectivity have been widely used as the sensing element in analytical chemistry. However, the structural fragility and poor machinability of an enzyme significantly limit its practicability in biosensors. Herein, we develop a robust and sensitive hybrid biosensor by means of co-encapsulating enzymes into a defective metal-organic framework (MOF), followed by a double-crosslinked alginate gelatinization. The defective MOF encapsulation can enhance the stability of enzymes, yet well preserve their biocatalytic function, while the alginate gelatinization allows the MOF biohybrid high stretchability and mechanical strength, which facilitates the integration of a bead-, fiber-, and sheet-like portable biosensor. In this work, the enzymes consisting of glucose oxidase and peroxidase are co-encapsulated into this MOF hydrogel, and it can efficiently convert glucose into a blue-violet product through the biocatalytic cascade of encapsulated enzymes, enabling the colorimetric biosensing of glucose on a miniaturized MOF hydrogel when coupling with a smartphone. Interestingly, this MOF biohybrid hydrogel outputs a stronger sensing signal than the free biohybrid powders, attributed to the catalytic product-accumulated effect of the highly hydrophilic microenvironment of the hydrogel. As a result, this portable biosensor can sensitively and selectively sense glucose with a linear range from 0.05 to 4 mM. Importantly, both the hydrophilic hydrogel and MOF "armor" endow enzymes with high durability, and its sensing activity was well-maintained even after placing the biosensor at room temperature for 30 d. We believe that this MOF biohybrid hydrogel has huge potential for the engineering of next-generation portable biosensors.


Assuntos
Técnicas Biossensoriais , Estruturas Metalorgânicas , Alginatos , Glucose , Glucose Oxidase/química , Hidrogéis , Estruturas Metalorgânicas/química , Peroxidases , Smartphone
12.
Chembiochem ; 23(10): e202100567, 2022 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-35025113

RESUMO

The highly efficient and specific catalysis of enzymes allows them to recognize a myriad of substrates, which enables biosensing. However, the fragility of natural enzymes severely restricts their practical applications. Metal-organic frameworks (MOFs) with porous networks and attractive functions have been intelligently employed as supports to encase enzymes and protect them against harsh environments. More importantly, customizable construction and composition affords the intrinsic enzyme-like activity of some MOFs (known as nanozymes), which provides an alternative route for the construction of robust enzyme mimics. This review will introduce the concept of these biocatalytic MOFs, with special emphasis on how biocatalytic processes that operate in these materials can reverse the plight of native enzyme-based biosensing. In addition, the present challenges and future outlooks in this research field are briefly discussed.


Assuntos
Estruturas Metalorgânicas , Biocatálise , Catálise , Estruturas Metalorgânicas/química , Porosidade
13.
Chemistry ; 28(34): e202200074, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35404521

RESUMO

Multienzyme biocatalytic cascade systems (MBCS) have attracted widespread research in the field of biosensing due to selective substrate transformations and signal amplification function. However, the poor stability of enzymes significantly restricts their effectiveness in practical applications. The spatial organization of MBCS within porous organic frameworks (POFs), such as metal-organic frameworks, covalent organic frameworks, and hydrogen-bonded organic frameworks, is regarded as a promising strategy to overcome these challenges. This advanced biotechnology sets up a POFs microenvironment for enzymes immobilization, and thus make it possible to shield the enzyme from the external stimulus by POFs-guided structural confinement. Simultaneously, the tailorable porous structure of POFs shell allows for the selective transport of substrates into interior enzymes, thereby accelerating the sensing process. Herein, we present the concept of this POFs-confined MBCS, wherein enzymes were completely encapsulated into, rather than adsorption onto, the POFs. We highlight the new strategies for MBCS spatial organization through rational POFs support, and describe how this new bio-nanosystem that integrates framework and enzymes functions can be designed as a versatile biosensing platform. In addition, the challenges and outlooks are also discussed.


Assuntos
Estruturas Metalorgânicas , Adsorção , Biocatálise , Enzimas Imobilizadas/química , Estruturas Metalorgânicas/química , Porosidade
14.
Anal Chem ; 93(41): 13981-13989, 2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34605631

RESUMO

Nanozymes are of particular interest due to their enzyme-mimicking activity and high stability that are favorable in biomedical sensing and immunoassays. In this work, we report a highly specific N-doped nanozyme through pyrolysis of framework-confined bovine serum albumin (BSA). This strategy allows one to translate the low-cost and featureless BSA into a highly active enzyme mimic. The obtained carbon nanozyme (denoted as HBF-1-C800) displays 3- to 7-fold enhancement on peroxidase (POD) activity compared with the conventional carbon nanozymes and also shows ca. 5-fold activity enhancement compared to the reported N-doping graphene. Such excellent POD activity originates from high N-doping efficiency, protein-induced defective sites, and the intrinsic porous structure of HBF-1-C800, which provides abundantly accessible active sites and accelerates substrate diffusion simultaneously. Importantly, the HBF-1-C800 nanozyme has highly specific POD activity and also enables resistance to several harsh conditions that should denature natural enzymes. These features allow it with high accuracy, stability, and sensitivity for biosensing applications. Moreover, HBF-1-C800 has been designed as a promising platform for colorimetric biosensing of several biomarkers including H2O2, glutathione, and glucose, with wide linear ranges and low limits of detection that are satisfied with the disease diagnosis.


Assuntos
Técnicas Biossensoriais , Nanoestruturas , Biomarcadores , Colorimetria , Hidrogênio , Peróxido de Hidrogênio
15.
Angew Chem Int Ed Engl ; 60(44): 23608-23613, 2021 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-34459532

RESUMO

Herein, we report the first example of using mesoporous hydrogen-bonded organic frameworks (MHOFs) as the protecting scaffold to organize a biocatalytic cascade. The confined microenvironment of MHOFs has robust and large transport channels, allowing the efficient transport of a wide range of biocatalytic substrates. This new MHOF-confined cascade system shows superior activity, extended scope of catalytic substrates, and ultrahigh stability that enables the operation of complex chemical transformations in a porous carrier. In addition, the advantages of MHOF-confined cascades system for point-of-care biosensing are also demonstrated. This study highlights the advantages of HOFs as scaffold for multiple enzyme assemblies, which has huge potential for mimicking complex cellular transformation networks in a controllable manner.


Assuntos
Técnicas Biossensoriais , Glucose Oxidase/metabolismo , Peroxidase do Rábano Silvestre/metabolismo , Imidazóis/metabolismo , Sistemas Automatizados de Assistência Junto ao Leito , Zeolitas/metabolismo , Biocatálise , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Glucose Oxidase/química , Peroxidase do Rábano Silvestre/química , Ligação de Hidrogênio , Imidazóis/química , Tamanho da Partícula , Porosidade , Propriedades de Superfície , Zeolitas/química
16.
Anal Chem ; 92(23): 15550-15557, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33166109

RESUMO

The photoluminescent (PL) properties of lanthanide metal-organic frameworks (Ln-MOFs) are intrinsically subtle to water molecules, which remains the major challenge that severely limits their applications as fluorescent probes in aqueous samples. Herein novel composite fluorescent probes were prepared by growing Ln-MOFs (Tb-MOF, Eu-MOF, and Tb/Eu-MOF) on carboxylated porous graphene oxide (PGO-COOH). The 3D thorny composites presented significantly longer fluorescent lifetimes and higher quantum yields than that of the bare Ln-MOFs and exhibited long-term PL stabilities in aqueous samples up to 15 days. The stable and improved PL properties demonstrated that the highly hybrid composite structures protected the MOF components from the adverse effects of water. Furthermore, the unexpected antenna effect of the PGO-COOH substrate on Ln3+ was supposed to be another reason for the improved PL properties. The composites present ultralow detection limits as low as 5.6 nM for 2,4-dinitrotoluene and 2.3 nM for dipicolinic acid as turn-off and ratiometric fluorescent probes, respectively, which was attributed to the incoporation of PGO-COOH that dramatically enahnced inner filter effects and effectively protected the energy transfer process in the MOF components from the interference of the surrounding water. This work presents an effective strategy for creating ultrasensitive and stable fluorescent probes based on Ln-MOFs for applications in aqueous samples.

17.
Chembiochem ; 21(18): 2585-2590, 2020 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-32291902

RESUMO

Metal-organic frameworks (MOFs) with attractive properties such as high surface area, tunable porosity, designable functionality and excellent stability, have aroused great interest from researchers as the matrices for enzyme immobilization. Recently, several efficient strategies including surface immobilization, post-synthetic infiltration and in situ encapsulation have been explored. MOF-immobilized enzymes, named enzymes@MOFs, show remarkably enhanced stability and recyclability, accelerating cell-free biocatalysis in diverse applications. This concept will impart the typical strategies for enzyme immobilization with MOFs, and their potential applications.


Assuntos
Enzimas/metabolismo , Estruturas Metalorgânicas/metabolismo , Biocatálise , Enzimas/química , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Estruturas Metalorgânicas/química
18.
Angew Chem Int Ed Engl ; 59(23): 8786-8798, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-31901003

RESUMO

Cell-free enzymatic catalysis (CFEC) is an emerging biotechnology that enable the biological transformations in complex natural networks to be imitated. This biomimetic approach allows industrial products such as biofuels and biochemical to be manufactured in a green manner. Nevertheless, the main challenge in CFEC is the poor stability, which restricts the effectiveness and lifetime of enzymes in sophisticated applications. Immobilization of the enzymes within solid carriers is considered an efficient strategy for addressing these obstacles. Specifically, putting an "armor-like" porous metal-organic framework (MOF) exoskeleton tightly around the enzymes not only shields the enzymes against external stimulus, but also allows the selective transport of guests through the accessible porous network. Herein we present the concept of this biotechnology of MOF-entrapped enzymes and its cutting-edge applications.


Assuntos
Biotecnologia/métodos , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Estruturas Metalorgânicas/química , Porosidade , Propriedades de Superfície
19.
Angew Chem Int Ed Engl ; 59(33): 13947-13954, 2020 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-32400001

RESUMO

Rationally tailoring a robust artificial coating can enhance the life-time of fragile biomacromolecules. However, the coating also can restrain the activity of the guest because of the decreased substrate accessibility. Herein, we report a peptide-directed strategy that enables in situ tailoring of the MOF-shrouded biohybrids into controllable nanoarchitectures. The MOF biohybrid can be shaped from different 3D microporous architectures into a 2D mesoporous layer by a peptide modulator. Using this mild strategy, we show that the nanoarchitectures of the MOF coatings significantly affect the biological functions of the contained biomacromolecules. The biomacromolecules entrapped within the novel 2D mesoporous spindle-shaped MOFs (2D MSMOFs) have significantly increased bioactivity compared to when encased within the hitherto explored 3D microporous MOFs. The improvement results from the shortened diffusion path and enlarged pore channel in 2D MSMOFs. Meanwhile, the thin 2D MSMOF layer also can provide excellent protection of the hosted biomacromolecules or protein-scaffolded biominerals through structural confinement.


Assuntos
Estruturas Metalorgânicas/química , Peptídeos/química , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Análise Espectral/métodos
20.
Angew Chem Int Ed Engl ; 59(7): 2867-2874, 2020 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-31749284

RESUMO

Embedding an enzyme within a MOF as exoskeleton (enzyme@MOF) offers new opportunities to improve the inherent fragile nature of the enzyme, but also to impart novel biofunctionality to the MOF. Despite the remarkable stability achieved for MOF-embedded enzymes, embedding patterns and conversion of the enzymatic biofunctionality after entrapment by a MOF have only received limited attention. Herein, we reveal how embedding patterns affect the bioactivity of an enzyme encapsulated in ZIF-8. The enzyme@MOF can maintain high activity when the encapsulation process is driven by rapid enzyme-triggered nucleation of ZIF-8. When the encapsulation is driven by slow coprecipitation and the enzymes are not involved in the nucleation of ZIF-8, enzyme@MOF tends to be inactive owing to unfolding and competing coordination caused by the ligand, 2-methyl imidazole. These two embedding patterns can easily be controlled by chemical modification of the amino acids of the enzymes, modulating their biofunctionality.


Assuntos
Estruturas Metalorgânicas/metabolismo , Zeolitas/metabolismo , Álcool Desidrogenase/química , Álcool Desidrogenase/metabolismo , Cápsulas/química , Cápsulas/metabolismo , Catalase/química , Catalase/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/química , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Glucose Oxidase/química , Glucose Oxidase/metabolismo , Peroxidase do Rábano Silvestre/química , Peroxidase do Rábano Silvestre/metabolismo , Estruturas Metalorgânicas/química , Urato Oxidase/química , Urato Oxidase/metabolismo , Zeolitas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA