Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Neuroimage ; 64: 437-47, 2013 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23000789

RESUMO

Many brain diseases have been linked to abnormal oxygen metabolism and blood perfusion; nevertheless, there is still a lack of robust diagnostic tools for directly imaging cerebral metabolic rate of oxygen (CMRO(2)) and cerebral blood flow (CBF), as well as the oxygen extraction fraction (OEF) that reflects the balance between CMRO(2) and CBF. This study employed the recently developed in vivo (17)O MR spectroscopic imaging to simultaneously assess CMRO(2), CBF and OEF in the brain using a preclinical middle cerebral arterial occlusion mouse model with a brief inhalation of (17)O-labeled oxygen gas. The results demonstrated high sensitivity and reliability of the noninvasive (17)O-MR approach for rapidly imaging CMRO(2), CBF and OEF abnormalities in the ischemic cortex of the MCAO mouse brain. It was found that in the ischemic brain regions both CMRO(2) and CBF were substantially lower than that of intact brain regions, even for the mildly damaged brain regions that were unable to be clearly identified by the conventional MRI. In contrast, OEF was higher in the MCAO affected brain regions. This study demonstrates a promising (17)O MRI technique for imaging abnormal oxygen metabolism and perfusion in the diseased brain regions. This (17)O MRI technique is advantageous because of its robustness, simplicity, noninvasiveness and reliability: features that are essential to potentially translate it to human patients for early diagnosis and monitoring of treatment efficacy.


Assuntos
Encéfalo/fisiopatologia , Circulação Cerebrovascular , Infarto da Artéria Cerebral Média/metabolismo , Angiografia por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/métodos , Consumo de Oxigênio , Oxigênio/metabolismo , Animais , Velocidade do Fluxo Sanguíneo , Infarto da Artéria Cerebral Média/diagnóstico , Camundongos , Oximetria/métodos , Isótopos de Oxigênio/farmacocinética , Compostos Radiofarmacêuticos/farmacocinética , Distribuição Tecidual
2.
Antimicrob Agents Chemother ; 55(6): 2662-9, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21402840

RESUMO

GS-9148 is an investigational phosphonate nucleotide analogue inhibitor of reverse transcriptase (RT) (NtRTI) of human immunodeficiency virus type 1 (HIV-1). This compound is an adenosine derivative with a 2',3'-dihydrofuran ring structure that contains a 2'-fluoro group. The resistance profile of GS-9148 is unique in that the inhibitor can select for the very rare Q151L mutation in HIV-1 RT as a pathway to resistance. Q151L is not stably selected by any of the approved nucleoside or nucleotide analogues; however, it may be a transient intermediate that leads to the related Q151M mutation, which confers resistance to multiple compounds that belong to this class of RT inhibitors. Here, we employed pre-steady-state kinetics to study the impact of Q151L on substrate and inhibitor binding and the catalytic rate of incorporation. Most importantly, we found that the Q151L mutant is unable to incorporate GS-9148 under single-turnover conditions. Interference experiments showed that the presence of GS-9148-diphosphate, i.e., the active form of the inhibitor, does not reduce the efficiency of incorporation for the natural counterpart. We therefore conclude that Q151L severely compromises binding of GS-9148-diphosphate to RT. This effect is highly specific, since we also demonstrate that another NtRTI, tenofovir, is incorporated with selectivity similar to that seen with wild-type RT. Incorporation assays with other related compounds and models based on the RT/DNA/GS-9148-diphosphate crystal structure suggest that the 2'-fluoro group of GS-9148 may cause steric hindrance with the side chain of the Q151L mutant.


Assuntos
Farmacorresistência Viral , Guanosina/análogos & derivados , Transcriptase Reversa do HIV/genética , HIV-1/efeitos dos fármacos , Mutação , Inibidores da Transcriptase Reversa/farmacologia , Sequência de Bases , Guanosina/farmacologia , HIV-1/enzimologia , Modelos Moleculares , Dados de Sequência Molecular , Relação Estrutura-Atividade
4.
Bioorg Med Chem Lett ; 20(5): 1585-8, 2010 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-20137928

RESUMO

A series of N1-heterocyclic pyrimidinediones were extensively evaluated as HIV-1 non-nucleoside reverse transcriptase inhibitors (NNRTIs). Inhibitor 1 is active against NNRTI-resistant viruses including RT mutant K103N. The co-crystal structure of inhibitor 1 with HIV-1 RT revealed that H-bonds are formed with K101 and K103. Efforts to improve the suboptimal pharmacokinetic profile of 1 resulted in the discovery of compound 13, which represents the lead compound in this series with improved pharmacokinetics and similar potency as inhibitor 1.


Assuntos
Fármacos Anti-HIV/química , Transcriptase Reversa do HIV/antagonistas & inibidores , Compostos Heterocíclicos/química , Pirimidinonas/química , Inibidores da Transcriptase Reversa/química , Timina/análogos & derivados , Animais , Fármacos Anti-HIV/síntese química , Fármacos Anti-HIV/farmacocinética , Sítios de Ligação , Cristalografia por Raios X , Cães , Transcriptase Reversa do HIV/metabolismo , Humanos , Ligação de Hidrogênio , Microssomos/metabolismo , Proteínas Mutantes/antagonistas & inibidores , Proteínas Mutantes/metabolismo , Pirimidinonas/síntese química , Pirimidinonas/farmacocinética , Inibidores da Transcriptase Reversa/síntese química , Inibidores da Transcriptase Reversa/farmacocinética , Relação Estrutura-Atividade , Timina/síntese química , Timina/química , Timina/farmacocinética
5.
Bioorg Med Chem ; 17(4): 1739-46, 2009 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-19179082

RESUMO

A diphosphate of a novel cyclopentyl based nucleoside phosphonate with potent inhibition of HIV reverse transcriptase (RT) (20, IC(50)=0.13 microM) has been discovered. In cell culture the parent phosphonate diacid 9 demonstrated antiviral activity EC(50)=16 microM, within two-fold of GS-9148, a prodrug of which is currently under clinical investigation, and within 5-fold of tenofovir (PMPA). In vitro cellular metabolism studies using 9 confirmed that the active diphosphate metabolite is produced albeit at a lower efficiency relative to GS-9148.


Assuntos
Fármacos Anti-HIV/síntese química , Fármacos Anti-HIV/farmacologia , Nucleosídeos/síntese química , Organofosfonatos/síntese química , Inibidores da Transcriptase Reversa/síntese química , Linhagem Celular Tumoral , Desenho de Fármacos , Transcriptase Reversa do HIV/antagonistas & inibidores , Transcriptase Reversa do HIV/química , Humanos , Modelos Moleculares , Estrutura Molecular , Nucleosídeos/química , Nucleosídeos/farmacologia , Organofosfonatos/química , Organofosfonatos/farmacologia , Pró-Fármacos/síntese química , Pró-Fármacos/farmacocinética , Pró-Fármacos/farmacologia , Inibidores da Transcriptase Reversa/química , Inibidores da Transcriptase Reversa/uso terapêutico , Relação Estrutura-Atividade
6.
J Mol Biol ; 363(3): 635-47, 2006 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-16979654

RESUMO

The introduction of human immunodeficiency virus type 1 (HIV-1) protease inhibitors (PIs) markedly improved the clinical outcome and control of HIV-1 infection. However, cross-resistance among PIs due to a wide spectrum of mutations in viral protease is a major factor limiting their broader clinical use. Here we report on the suppression of PI resistance using a covalent attachment of a phosphonic acid motif to a peptidomimetic inhibitor scaffold. The resulting phosphonate analogs maintain high binding affinity to HIV-1 protease, potent antiretroviral activity, and unlike the parent molecules, display no loss of potency against a panel of clinically important PI-resistant HIV-1 strains. As shown by crystallographic analysis, the phosphonate moiety is highly exposed to solvent with no discernable interactions with any of the enzyme active site or surface residues. We term this effect "solvent anchoring" and demonstrate that it is driven by a favorable change in the inhibitor binding entropy upon the interaction with mutant enzymes. This type of thermodynamic behavior, which was not found with the parent scaffold fully buried in the enzyme active site, is a result of the increased degeneracy of inhibitor binding states, allowing effective molecular adaptation to the expanded cavity volume of mutant proteases. This strategy, which is applicable to various PI scaffolds, should facilitate the design of novel PIs and potentially other antiviral therapeutics.


Assuntos
Desenho de Fármacos , Farmacorresistência Viral Múltipla , Inibidores da Protease de HIV/química , Protease de HIV/química , Organofosfonatos/química , Solventes , Sulfato de Atazanavir , Sítios de Ligação , Infecções por HIV/tratamento farmacológico , Protease de HIV/metabolismo , Inibidores da Protease de HIV/metabolismo , Inibidores da Protease de HIV/uso terapêutico , Humanos , Modelos Moleculares , Estrutura Molecular , Oligopeptídeos/química , Oligopeptídeos/metabolismo , Piridinas/química , Piridinas/metabolismo , Termodinâmica
7.
Antivir Ther ; 11(2): 155-63, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16640096

RESUMO

The HIV-1 nucleoside reverse transcriptase inhibitors (NRTIs) tenofovir (TFV), abacavir, didanosine and stavudine can select for K65R, whereas zidovudine (AZT) and stavudine can select for thymidine analogue mutations (TAMs) in HIV-1 reverse transcriptase (RT). HIV-1 with TAMs shows reduced susceptibility to all NRTIs, most notably AZT, whereas HIV-1 with K65R shows reduced susceptibility to all NRTIs except AZT. K65R and TAMs rarely occur together in patients. However, when present together, K65R can restore susceptibility to AZT. This study characterizes the underlying mechanisms of resistance of these RT mutants to TFV and AZT. K65R mediated decreased binding/incorporation of TFV and AZT (increased Ki/Km of 7.1- and 4.3-fold, respectively), but also decreased excision of TFV and AZT (0.7- and 0.3-fold, respectively) when compared with wild-type RT. By contrast, TAMs mediated increased TFV and AZT excision (11- and 5.4-fold, respectively), and showed no changes in binding/incorporation. When these mutations were combined, K65R reversed TAM-mediated AZT resistance by strongly reducing AZT excision. Molecular modelling studies suggest that K65R creates additional hydrogen bonds that reduce the conformational mobility of RT, resulting in reduced polymerization and excision. Thus, consistent with clinical HIV-1 genotyping data, there appears to be no net NRTI resistance benefit for TAMs and K65R to develop together in patients taking AZT and TFV disoproxil fumarate, where the TAM pathway alone provides the greatest resistance for both drugs.


Assuntos
Farmacorresistência Viral/genética , Transcriptase Reversa do HIV/genética , HIV-1/efeitos dos fármacos , HIV-1/enzimologia , Mutação/genética , Zidovudina/farmacologia , Linhagem Celular , HIV-1/genética , Humanos , Modelos Moleculares , Fenótipo , Ligação Proteica , Inibidores da Transcriptase Reversa/farmacologia
8.
J Med Chem ; 49(3): 1034-46, 2006 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-16451069

RESUMO

Novel non-nucleoside inhibitors of the HCV RNA polymerase (NS5b) with sub-micromolar biochemical potency have been identified which are selective for the inhibition of HCV NS5b over other polymerases. The structures of the complexes formed between several of these inhibitors and HCV NS5b were determined by X-ray crystallography, and the inhibitors were found to bind in an allosteric binding site separate from the active site. Structure-activity relationships and structural studies have identified the mechanism of action for compounds in this series, several of which possess drug-like properties, as unique, reversible, covalent inhibitors of HCV NS5b.


Assuntos
RNA Polimerases Dirigidas por DNA/antagonistas & inibidores , RNA Polimerases Dirigidas por DNA/química , Modelos Moleculares , Tiazóis/síntese química , Tionas/síntese química , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas não Estruturais Virais/química , Sítio Alostérico , Vírus da Mieloblastose Aviária/enzimologia , Sítios de Ligação , Cristalografia por Raios X , Vírus da Diarreia Viral Bovina/enzimologia , Conformação Proteica , Inibidores da Transcriptase Reversa/síntese química , Inibidores da Transcriptase Reversa/química , Relação Estrutura-Atividade , Tiazóis/química , Tionas/química
9.
AIDS ; 19(16): 1751-60, 2005 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-16227782

RESUMO

OBJECTIVE: To determine the mechanisms of resistance of K65R mutant reverse transcriptase (RT) to the currently approved nucleoside and nucleotide RT inhibitors (NRTI). METHODS: Susceptibilities of K65R mutant HIV-1 to NRTI were determined in cell culture. The Ki/Km values were measured to determine the relative binding or incorporation of the NRTI, and ATP-mediated excision of incorporated NRTI was measured to determine NRTI stability as chain terminators. RESULTS: K65R HIV-1 had decreased susceptibility to most NRTI, but increased susceptibility to zidovudine (ZDV). Ki/Km values were increased 2- to 13-fold for K65R compared to wild-type RT for all NRTI, indicating decreased binding or incorporation. However, K65R also showed decreased excision of all NRTI compared to wild-type, indicating greater stability once incorporated. At physiological nucleotide concentrations, excision of ZDV, carbovir (the active metabolite of abacavir; ABC), stavudine (d4T), and tenofovir was further decreased, while excision of didanosine (ddI), zalcitabine (ddC), lamivudine (3TC), and emtricitabine (FTC) was unchanged. The decreased binding or incorporation of ZDV by K65R appeared counteracted by decreased excision resulting in overall increased susceptibility to ZDV in cell culture. For ABC, tenofovir, and d4T, despite having decreased excision, decreased binding or incorporation resulted in reduced susceptibilities to K65R. For ddI, ddC, 3TC, and FTC, decreased binding or incorporation by K65R appeared responsible for the decreased susceptibilities in cell culture. CONCLUSIONS: NRTI resistance in cells can consist of both altered binding or incorporation and altered excision of the NRTI. For K65R, the combination of these opposing mechanisms results in decreased susceptibility to most NRTI but increased susceptibility to ZDV.


Assuntos
Fármacos Anti-HIV/uso terapêutico , Farmacorresistência Viral/genética , Infecções por HIV/tratamento farmacológico , Transcriptase Reversa do HIV/genética , HIV-1/genética , Inibidores da Transcriptase Reversa/uso terapêutico , Células Cultivadas , Transcriptase Reversa do HIV/antagonistas & inibidores , Humanos , Testes de Sensibilidade Microbiana , Mutação/genética
10.
Front Biosci ; 9: 2788-95, 2004 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-15353314

RESUMO

Collagenases are a highly specific class of enzymes. In their native states, collagenases cleave only native triple helical collagen molecules at a single peptide bond between Gly775-Leu776 for Type I collagen and Gly775-Ile776 for Type II collagen. The linear sequence of collagen is about 1050 amino acids in length, where three linear peptide sequences are required to form a triple helical collagen molecule. At present, there exist no crystallographic structures of collagenase bound to native triple helical collagen; nor has it been shown that collagenase recognizes the triple helical conformation of collagen. In our study, we have used an inhibitor design structure-activity based approach to show that collagenase recognizes and cleaves triple helical collagen conformations in preference to non-triple helical collagen conformations.


Assuntos
Colágeno/química , Inibidores Enzimáticos/farmacologia , Metaloproteinase 1 da Matriz/química , Inibidores de Metaloproteinases de Matriz , Animais , Artrite/metabolismo , Catálise , Colagenases/química , Biologia Computacional/métodos , Cristalografia por Raios X , Bases de Dados de Proteínas , Desenho de Fármacos , Modelos Moleculares , Conformação Molecular , Peptídeos/química , Conformação Proteica , Software , Suínos
11.
Protein J ; 23(3): 217-28, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15200053

RESUMO

ras-p21 protein binds to the son-of-sevenless (SOS) guanine nucleotide-exchange promoter that allows it to exchange GDP for GTP. Previously, we performed molecular dynamics calculations on oncogenic (Val 12-) and wild-type ras-p21 bound to SOS. By superimposing the average structures of these two complexes, we identified four domains (residues 631-641, 676-691, 718-729, and 994-1004) in SOS that change conformation and were candidates for being effector domains. These calculations were performed in the absence of three crystallographically undefined loops (i.e., residues 591-596, 654-675, and 742-751). We have now modeled these loops into the SOS structure and have re-performed the dynamics calculations. We find that all three loop domains undergo large changes in conformation that involve mostly changes in their positioning and not their individual conformations. We have also identified another potential effector domain (i.e., residues 980-989). Overall, our current results suggest that SOS interactions with oncogenic ras-p21 may enhance ras-p21 mitogenic signaling through prolonging its activation by maintaining its binding to GTP and by allowing its effector domains to interact with intracellular targets.


Assuntos
Proteína Oncogênica p21(ras)/química , Proteínas Son Of Sevenless/química , Animais , Sítios de Ligação , Humanos , Proteína Oncogênica p21(ras)/metabolismo , Estrutura Terciária de Proteína/fisiologia , Transdução de Sinais/fisiologia , Proteínas Son Of Sevenless/metabolismo
12.
Protein J ; 23(3): 229-34, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15200054

RESUMO

In the accompanying paper, we found, using molecular dynamics calculations, four domains of the ras-specific SOS guanine nucleotide exchange protein (residues 589-601, 654-675, 746-761, and 980-989) that differ markedly in conformation when SOS is complexed with either oncogenic (Val 12-) ras-p21 or wild-type ras-p21. Three of these domains contain three crystallographically undefined loops that we modeled in these calculations, and one is a newly identified non-loop domain containing SOS residues 980-989. We have now synthesized peptides corresponding to these four domains and find that all of them block Val 12-ras-p21-induced oocyte maturation. All of them also block insulin-induced oocyte maturation, but two of these peptides, corresponding to SOS residues 589-601 and 980-989, block oncogenic ras to a significantly greater extent. These results suggest that SOS contains domains, including the three loop domains, that are important for ras signaling and that several of these domains can activate different pathways specific to oncogenic or wild-type ras-p21.


Assuntos
Biologia Computacional , Fragmentos de Peptídeos/metabolismo , Transdução de Sinais/fisiologia , Proteínas Son Of Sevenless/metabolismo , Proteínas ras/metabolismo , Animais , Feminino , Oócitos/metabolismo , Fragmentos de Peptídeos/química , Estrutura Terciária de Proteína , Proteínas Son Of Sevenless/química , Xenopus , Proteínas ras/química
13.
Bioorg Med Chem Lett ; 16(15): 3989-92, 2006 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-16723225

RESUMO

A novel class of tri-cyclic HIV integrase inhibitors were designed based on conformational analysis of 1,6-naphthyridine carboxamide compound L-870810 and docking the designed inhibitor into the active site of our integrase enzyme model. The efficient syntheses of pyrroloquinoline tri-cyclic analogs are described. The SAR studies resulted in the identification of a lead compound that is more potent and more soluble than L-870810.


Assuntos
Inibidores de Integrase de HIV/síntese química , Inibidores de Integrase de HIV/farmacologia , Desenho de Fármacos , Naftiridinas/química , Relação Estrutura-Atividade
15.
Proc Natl Acad Sci U S A ; 102(13): 4919-24, 2005 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-15781874

RESUMO

We examined whether the performance of the National Institute of Aging's Consortium to Establish a Registry for Alzheimer's Disease's 10-word list (CWL), part of the consortium's neuropsychological battery, can be improved for detecting Alzheimer's disease and related disorders early. We focused on mild cognitive impairment (MCI) and mild dementia because these stages often go undetected, and their detection is important for treatment. Using standardized diagnostic criteria combined with history, physical examination, and cognitive, laboratory, and neuroimaging studies, we staged 471 community-dwelling subjects for dementia severity by using the Clinical Dementia Rating Scale. We then used correspondence analysis (CA) to derive a weighted score for each subject from their item responses over the three immediate- and one delayed-recall trials of the CWL. These CA-weighted scores were used with logistic regression to predict each subject's probability of impairment, and receiver operating characteristic analysis was used to measure accuracy. For MCI vs. normal, accuracy was 97% [confidence interval (C.I.) 97-98%], sensitivity was 94% (C.I. 93-95%), and specificity was 89% (C.I. 88-91%). For MCI/mild dementia vs. normal, accuracy was 98% (C.I. 98-99%), sensitivity was 96% (C.I. 95-97%), and specificity was 91% (C.I. 89-93%). MCI sensitivity was 12% higher (without lowering specificity) than that obtained with the delayed-recall total score (the standard method for CWL interpretation). Optimal positive and negative predictive values were 100% and at least 96.6%. These results show that CA-weighted scores can significantly improve early detection of Alzheimer's disease and related disorders.


Assuntos
Doença de Alzheimer/diagnóstico , Transtornos Cognitivos/diagnóstico , Rememoração Mental/fisiologia , Idoso , Estudos de Casos e Controles , Interpretação Estatística de Dados , Diagnóstico Diferencial , Feminino , Humanos , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Testes Neuropsicológicos , Curva ROC , Sensibilidade e Especificidade , Índice de Gravidade de Doença , Estados Unidos
17.
J Protein Chem ; 21(5): 349-59, 2002 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12206509

RESUMO

GTPase activating protein (GAP) is a known regulator of ras-p21 activity and is a likely target of ras-induced mitogenic signaling. The domains of GAP that may be involved in this signaling are unknown. In order to infer which domains of GAP may be involved, we have performed molecular dynamics calculations of GAP complexed to wild-type and oncogenic (Val 12-containing) ras-p21, both bound to GTP. We have computed and superimposed the average structures for both complexes and find that there are four domains of GAP that undergo major changes in conformation: residues 821-851, 917-924, 943-953, and 1003-1020. With the exception of the 943-953 domain, none of these domains is involved in making contacts with ras-p21, and all of them occur on the surface of the protein, making them good candidates for effector domains. In addition, three ras-p21 domains undergo major structural changes in the oncogenic p21-GAP complex: 71-76 from the switch 2 domain; 100-108, which interacts with SOS, jun and jun kinase (JNK); and residues 122-138. The change in conformation of the 71-76 domain appears to be induced by changes in conformation in the switch 1 domain (residues 32-40) and in the adjacent domain involving residues 21-31. In an accompanying paper, we present results from microinjection of peptides corresponding to each of these domains into oocytes induced to undergo maturation by oncogenic ras-p21 and by insulin-activated wild-type cellular p21 to determine whether these domain peptides may be involved in ras signaling through GAP.


Assuntos
Proteínas Ativadoras de GTPase/química , Proteínas Ativadoras de GTPase/metabolismo , Proteína Oncogênica p21(ras)/química , Proteína Oncogênica p21(ras)/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/química , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Substituição de Aminoácidos/genética , Sítios de Ligação , Cristalografia por Raios X , Guanosina Trifosfato/metabolismo , Proteína Oncogênica p21(ras)/genética , Fosfatos/metabolismo , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas p21(ras)/genética , Termodinâmica
18.
Antimicrob Agents Chemother ; 48(3): 992-1003, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-14982794

RESUMO

Two amino acids inserted between residues 69 and 70 of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) are rare mutations that may develop in viruses containing multiple thymidine analog (zidovudine [AZT], stavudine)-associated mutations and that confer high-level resistance to all currently approved chain-terminating nucleoside and nucleotide RT inhibitors (NRTIs). The two known mechanisms of resistance to NRTIs are decreased incorporation and increased excision. The mechanism used by RT insertion mutants has not been described for tenofovir (TFV), a recently approved agent in this class. A patient-derived HIV-1 strain (strain FS-SSS) that contained an insertion mutation in a background of additional resistance mutations M41L, L74V, L210W, and T215Y was obtained. A second virus (strain FS) was derived from FS-SSS. In strain FS the insertion and T69S were reverted but the other resistance mutations were retained. The FS virus showed strong resistance to AZT but low-level changes in susceptibilities to other NRTIs and TFV. The FS-SSS virus showed reduced susceptibilities to all NRTIs including TFV. Steady-state kinetics demonstrated that the relative binding or incorporation of TFV was slightly decreased for FS-SSS RT compared to those for wild-type RT. However, significant ATP-mediated excision of TFV was detected for both mutant RT enzymes and followed the order FS-SSS RT > FS RT > wild-type RT. The presence of physiological concentrations of the +1 nucleotide inhibited TFV excision by the wild-type RT and slightly inhibited excision by the FS RT, whereas the level of excision by the FS-SSS RT remained high. Computer modeling suggests that the increased mobility of the beta3-beta4 loop may contribute to the high-level and broad NRTI resistance caused by the T69 insertion mutation.


Assuntos
Adenina/análogos & derivados , Adenina/farmacologia , Transcriptase Reversa do HIV/genética , HIV-1/efeitos dos fármacos , HIV-1/enzimologia , Mutação/genética , Organofosfonatos , Compostos Organofosforados/farmacologia , Inibidores da Transcriptase Reversa/farmacologia , Serina/metabolismo , Timidina/análogos & derivados , Timidina/farmacologia , Trifosfato de Adenosina/farmacologia , Células Cultivadas , Primers do DNA , Elementos de DNA Transponíveis , Farmacorresistência Viral , Infecções por HIV/virologia , Humanos , Cinética , Modelos Moleculares , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Tenofovir
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA