Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(21): e2404763121, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38743626

RESUMO

Congenital stationary night blindness (CSNB) is an inherited retinal disease that causes a profound loss of rod sensitivity without severe retinal degeneration. One well-studied rhodopsin point mutant, G90D-Rho, is thought to cause CSNB because of its constitutive activity in darkness causing rod desensitization. However, the nature of this constitutive activity and its precise molecular source have not been resolved for almost 30 y. In this study, we made a knock-in (KI) mouse line with a very low expression of G90D-Rho (equal in amount to ~0.1% of normal rhodopsin, WT-Rho, in WT rods), with the remaining WT-Rho replaced by REY-Rho, a mutant with a very low efficiency of activating transducin due to a charge reversal of the highly conserved ERY motif to REY. We observed two kinds of constitutive noise: one being spontaneous isomerization (R*) of G90D-Rho at a molecular rate (R* s-1) 175-fold higher than WT-Rho and the other being G90D-Rho-generated dark continuous noise comprising low-amplitude unitary events occurring at a very high molecular rate equivalent in effect to ~40,000-fold of R* s-1 from WT-Rho. Neither noise type originated from G90D-Opsin because exogenous 11-cis-retinal had no effect. Extrapolating the above observations at low (0.1%) expression of G90D-Rho to normal disease exhibited by a KI mouse model with RhoG90D/WTand RhoG90D/G90D genotypes predicts the disease condition very well quantitatively. Overall, the continuous noise from G90D-Rho therefore predominates, constituting the major equivalent background light causing rod desensitization in CSNB.


Assuntos
Oftalmopatias Hereditárias , Doenças Genéticas Ligadas ao Cromossomo X , Miopia , Cegueira Noturna , Rodopsina , Animais , Cegueira Noturna/genética , Cegueira Noturna/metabolismo , Oftalmopatias Hereditárias/genética , Oftalmopatias Hereditárias/metabolismo , Camundongos , Rodopsina/genética , Rodopsina/metabolismo , Doenças Genéticas Ligadas ao Cromossomo X/genética , Doenças Genéticas Ligadas ao Cromossomo X/metabolismo , Miopia/genética , Miopia/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/patologia , Escuridão , Transducina/genética , Transducina/metabolismo , Técnicas de Introdução de Genes , Modelos Animais de Doenças
2.
J Biol Chem ; 300(1): 105585, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38141760

RESUMO

Fluorescent protein tags are convenient tools for tracking the aggregation states of amyloidogenic or phase separating proteins, but the effect of the tags is often not well understood. Here, we investigated the impact of a C-terminal red fluorescent protein (RFP) tag on the phase separation of huntingtin exon-1 (Httex1), an N-terminal portion of the huntingtin protein that aggregates in Huntington's disease. We found that the RFP-tagged Httex1 rapidly formed micron-sized, phase separated states in the presence of a crowding agent. The formed structures had a rounded appearance and were highly dynamic according to electron paramagnetic resonance and fluorescence recovery after photobleaching, suggesting that the phase separated state was largely liquid in nature. Remarkably, the untagged protein did not undergo any detectable liquid condensate formation under the same conditions. In addition to strongly promoting liquid-liquid phase separation, the RFP tag also facilitated fibril formation, as the tag-dependent liquid condensates rapidly underwent a liquid-to-solid transition. The rate of fibril formation under these conditions was significantly faster than that of the untagged protein. When expressed in cells, the RFP-tagged Httex1 formed larger aggregates with different antibody staining patterns compared to untagged Httex1. Collectively, these data reveal that the addition of a fluorescent protein tag significantly impacts liquid and solid phase separations of Httex1 in vitro and leads to altered aggregation in cells. Considering that the tagged Httex1 is commonly used to study the mechanisms of Httex1 misfolding and toxicity, our findings highlight the importance to validate the conclusions with untagged protein.


Assuntos
Artefatos , Éxons , Proteína Huntingtina , Doença de Huntington , Medições Luminescentes , Separação de Fases , Agregados Proteicos , Proteína Vermelha Fluorescente , Humanos , Espectroscopia de Ressonância de Spin Eletrônica , Éxons/genética , Fluorescência , Recuperação de Fluorescência Após Fotodegradação , Proteína Huntingtina/química , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Doença de Huntington/genética , Doença de Huntington/metabolismo , Medições Luminescentes/métodos , Proteína Vermelha Fluorescente/genética , Proteína Vermelha Fluorescente/metabolismo , Reprodutibilidade dos Testes
3.
J Biol Chem ; : 107660, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39128727

RESUMO

Protein aggregation is a common feature of many neurodegenerative diseases. In Huntington's disease, mutant huntingtin is the primary aggregating protein, but the aggregation of other proteins, such as TDP43, is likely to further contribute to toxicity. Moreover, mutant huntingtin is also a risk factor for TDP pathology in ALS. Despite this co-pathology of huntingtin and TDP43, it remains unknown whether these amyloidogenic proteins directly interact with each other. Using a combination of biophysical methods, we show that the aggregation prone regions of both proteins, huntingtin exon-1 (Httex1) and the TDP43 low complexity domain (TDP43-LCD), interact in a conformationally specific manner. This interaction significantly slows Httex1 aggregation, while it accelerates TDP43-LCD aggregation. A key intermediate responsible for both effects is a complex formed by liquid TDP43-LCD condensates and Httex1 fibrils. This complex shields seeding competent surfaces of Httex1 fibrils from Httex1 monomers, which are excluded from the condensates. In contrast, TDP43-LCD condensates undergo an accelerated liquid-to-solid transition upon exposure to Httex1 fibrils. Cellular studies show co-aggregation of untagged Httex1 with TDP43. This interaction causes mislocalization of TDP43, which has been linked to TDP43 toxicity. The protection from Httex1 aggregation in lieu of TDP43-LCD aggregation is interesting, as it mirrors what has been found in disease models, namely that TDP43 can protect from huntingtin toxicity, while mutant huntingtin can promote TDP43 pathology. These results suggest that direct protein interaction could, at least in part, be responsible for the linked pathologies of both proteins.

4.
J Biol Chem ; 299(4): 104616, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36931390

RESUMO

Huntington's disease is caused by a polyglutamine (polyQ) expansion in the huntingtin protein. Huntingtin exon 1 (Httex1), as well as other naturally occurring N-terminal huntingtin fragments with expanded polyQ are prone to aggregation, forming potentially cytotoxic oligomers and fibrils. Antibodies and other N-terminal huntingtin binders are widely explored as biomarkers and possible aggregation-inhibiting therapeutics. A monoclonal antibody, MW1, is known to preferentially bind to huntingtin fragments with expanded polyQ lengths, but the molecular basis of the polyQ length specificity remains poorly understood. Using solution NMR, electron paramagnetic resonance, and other biophysical methods, we investigated the structural features of the Httex1-MW1 interaction. Rather than recognizing residual α-helical structure, which is promoted by expanded Q-lengths, MW1 caused the formation of a new, non-native, conformation in which the entire polyQ is largely extended. This non-native polyQ structure allowed the formation of large mixed Httex1-MW1 multimers (600-2900 kD), when Httex1 with pathogenic Q-length (Q46) was used. We propose that these multivalent, entropically favored interactions, are available only to proteins with longer Q-lengths and represent a major factor governing the Q-length preference of MW1. The present study reveals that it is possible to target proteins with longer Q-lengths without having to stabilize a natively favored conformation. Such mechanisms could be exploited in the design of other Q-length specific binders.


Assuntos
Anticorpos Monoclonais , Proteína Huntingtina , Humanos , Anticorpos Monoclonais/metabolismo , Éxons/genética , Proteína Huntingtina/química , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Doença de Huntington/genética , Conformação Proteica em alfa-Hélice/genética , Ligação Proteica , Espectroscopia de Ressonância Magnética , Multimerização Proteica/genética
5.
J Neurosci ; 42(17): 3537-3545, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35332081

RESUMO

Deactivation of G-protein-coupled receptors (GPCRs) involves multiple phosphorylations followed by arrestin binding, which uncouples the GPCR from G-protein activation. Some GPCRs, such as rhodopsin, are reused many times. Arrestin dissociation and GPCR dephosphorylation are key steps in the recycling process. In vitro evidence suggests that visual arrestin (ARR1) binding to light-activated, phosphorylated rhodopsin hinders dephosphorylation. Whether ARR1 binding also affects rhodopsin dephosphorylation in vivo is not known. We investigated this using both male and female mice lacking ARR1. Mice were exposed to bright light and placed in darkness for different periods of time, and differently phosphorylated species of rhodopsin were assayed by isoelectric focusing. For WT mice, rhodopsin dephosphorylation was nearly complete by 1 h in darkness. Surprisingly, we observed that, in the Arr1 KO rods, rhodopsin remained phosphorylated even after 3 h. Delayed dephosphorylation in Arr1 KO rods cannot be explained by cell stress induced by persistent signaling, since it is not prevented by the removal of transducin, the visual G-protein, nor can it be explained by downregulation of protein phosphatase 2A, the putative rhodopsin phosphatase. We further show that cone arrestin (ARR4), which binds light-activated, phosphorylated rhodopsin poorly, had little effect in enhancing rhodopsin dephosphorylation, whereas mice expressing binding-competent mutant ARR1-3A showed a similar time course of rhodopsin dephosphorylation as WT. Together, these results reveal a novel role of ARR1 in facilitating rhodopsin dephosphorylation in vivoSIGNIFICANCE STATEMENT G-protein-coupled receptors (GPCRs) are transmembrane proteins used by cells to receive and respond to a broad range of extracellular signals that include neurotransmitters, hormones, odorants, and light (photons). GPCR signaling is terminated by two sequential steps: phosphorylation and arrestin binding. Both steps must be reversed when GPCRs are recycled and reused. Dephosphorylation, which is required for recycling, is an understudied process. Using rhodopsin as a prototypical GPCR, we discovered that arrestin facilitated rhodopsin dephosphorylation in living mice.


Assuntos
Arrestina , Rodopsina , Animais , Arrestina/metabolismo , Feminino , Proteínas de Ligação ao GTP , Masculino , Camundongos , Fosforilação , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Rodopsina/genética , Rodopsina/metabolismo
6.
Proc Natl Acad Sci U S A ; 117(37): 23033-23043, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32873651

RESUMO

Numerous rhodopsin mutations have been implicated in night blindness and retinal degeneration, often with unclear etiology. D190N-rhodopsin (D190N-Rho) is a well-known inherited human mutation causing retinitis pigmentosa. Both higher-than-normal spontaneous-isomerization activity and misfolding/mistargeting of the mutant protein have been proposed as causes of the disease, but neither explanation has been thoroughly examined. We replaced wild-type rhodopsin (WT-Rho) in RhoD190N/WT mouse rods with a largely "functionally silenced" rhodopsin mutant to isolate electrical responses triggered by D190N-Rho activity, and found that D190N-Rho at the single-molecule level indeed isomerizes more frequently than WT-Rho by over an order of magnitude. Importantly, however, this higher molecular dark activity does not translate into an overall higher cellular dark noise, owing to diminished D190N-Rho content in the rod outer segment. Separately, we found that much of the degeneration and shortened outer-segment length of RhoD190N/WT mouse rods was not averted by ablating rod transducin in phototransduction-also consistent with D190N-Rho's higher isomerization activity not being the primary cause of disease. Instead, the low pigment content, shortened outer-segment length, and a moderate unfolded protein response implicate protein misfolding as the major pathogenic problem. Finally, D190N-Rho also provided some insight into the mechanism of spontaneous pigment excitation.


Assuntos
Degeneração Retiniana/metabolismo , Rodopsina/metabolismo , Animais , Linhagem Celular , Modelos Animais de Doenças , Células HEK293 , Humanos , Transdução de Sinal Luminoso/fisiologia , Camundongos , Mutação/fisiologia , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Retinose Pigmentar/metabolismo , Segmento Externo da Célula Bastonete/metabolismo
7.
Proc Natl Acad Sci U S A ; 116(11): 5144-5153, 2019 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-30796193

RESUMO

G protein-coupled receptor (GPCR) signaling is crucial for many physiological processes. A signature of such pathways is high amplification, a concept originating from retinal rod phototransduction, whereby one photoactivated rhodopsin molecule (Rho*) was long reported to activate several hundred transducins (GT*s), each then activating a cGMP-phosphodiesterase catalytic subunit (GT*·PDE*). This high gain at the Rho*-to-GT* step has been challenged more recently, but estimates remain dispersed and rely on some nonintact rod measurements. With two independent approaches, one with an extremely inefficient mutant rhodopsin and the other with WT bleached rhodopsin, which has exceedingly weak constitutive activity in darkness, we obtained an estimate for the electrical effect from a single GT*·PDE* molecular complex in intact mouse rods. Comparing the single-GT*·PDE* effect to the WT single-photon response, both in Gcaps-/- background, gives an effective gain of only ∼12-14 GT*·PDE*s produced per Rho*. Our findings have finally dispelled the entrenched concept of very high gain at the receptor-to-G protein/effector step in GPCR systems.


Assuntos
Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Transducina/metabolismo , Motivos de Aminoácidos , Animais , GMP Cíclico/metabolismo , Subunidades alfa de Proteínas de Ligação ao GTP/metabolismo , Transdução de Sinal Luminoso , Camundongos Transgênicos , Mutação/genética , Diester Fosfórico Hidrolases/metabolismo , Fótons , Rodopsina/química , Rodopsina/metabolismo
8.
J Neurosci ; 40(42): 8055-8069, 2020 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-32948676

RESUMO

Members of the arrestin superfamily have great propensity of self-association, but the physiological significance of this phenomenon is unclear. To determine the biological role of visual arrestin-1 oligomerization in rod photoreceptors, we expressed mutant arrestin-1 with severely impaired self-association in mouse rods and analyzed mice of both sexes. We show that the oligomerization-deficient mutant is capable of quenching rhodopsin signaling normally, as judged by electroretinography and single-cell recording. Like wild type, mutant arrestin-1 is largely excluded from the outer segments in the dark, proving that the normal intracellular localization is not due the size exclusion of arrestin-1 oligomers. In contrast to wild type, supraphysiological expression of the mutant causes shortening of the outer segments and photoreceptor death. Thus, oligomerization reduces the cytotoxicity of arrestin-1 monomer, ensuring long-term photoreceptor survival.SIGNIFICANCE STATEMENT Visual arrestin-1 forms dimers and tetramers. The biological role of its oligomerization is unclear. To test the role of arrestin-1 self-association, we expressed oligomerization-deficient mutant in arrestin-1 knock-out mice. The mutant quenches light-induced rhodopsin signaling like wild type, demonstrating that in vivo monomeric arrestin-1 is necessary and sufficient for this function. In rods, arrestin-1 moves from the inner segments and cell bodies in the dark to the outer segments in the light. Nonoligomerizing mutant undergoes the same translocation, demonstrating that the size of the oligomers is not the reason for arrestin-1 exclusion from the outer segments in the dark. High expression of oligomerization-deficient arrestin-1 resulted in rod death. Thus, oligomerization reduces the cytotoxicity of high levels of arrestin-1 monomer.


Assuntos
Arrestinas/metabolismo , Arrestinas/fisiologia , Adaptação Ocular , Animais , Arrestinas/genética , Sobrevivência Celular , Eletrorretinografia , Feminino , Transdução de Sinal Luminoso , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Mutação/genética , Retina/anatomia & histologia , Retina/crescimento & desenvolvimento , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Rodopsina/fisiologia
9.
J Neurosci ; 39(34): 6798-6810, 2019 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-31285302

RESUMO

A major cause of human blindness is the death of rod photoreceptors. As rods degenerate, synaptic structures between rod and rod bipolar cells disappear and the rod bipolar cells extend their dendrites and occasionally make aberrant contacts. Such changes are broadly observed in blinding disorders caused by photoreceptor cell death and are thought to occur in response to deafferentation. How the remodeled retinal circuit affects visual processing following rod rescue is not known. To address this question, we generated male and female transgenic mice wherein a disrupted cGMP-gated channel (CNG) gene can be repaired at the endogenous locus and at different stages of degeneration by tamoxifen-inducible cre-mediated recombination. In normal rods, light-induced closure of CNG channels leads to hyperpolarization of the cell, reducing neurotransmitter release at the synapse. Similarly, rods lacking CNG channels exhibit a resting membrane potential that was ~10 mV hyperpolarized compared to WT rods, indicating diminished glutamate release. Retinas from these mice undergo stereotypic retinal remodeling as a consequence of rod malfunction and degeneration. Upon tamoxifen-induced expression of CNG channels, rods recovered their structure and exhibited normal light responses. Moreover, we show that the adult mouse retina displays a surprising degree of plasticity upon activation of rod input. Wayward bipolar cell dendrites establish contact with rods to support normal synaptic transmission, which is propagated to the retinal ganglion cells. These findings demonstrate remarkable plasticity extending beyond the developmental period and support efforts to repair or replace defective rods in patients blinded by rod degeneration.SIGNIFICANCE STATEMENT Current strategies for treatment of neurodegenerative disorders are focused on the repair of the primary affected cell type. However, the defective neurons function within a complex neural circuitry, which also becomes degraded during disease. It is not known whether rescued neurons and the remodeled circuit will establish communication to regain normal function. We show that the adult mammalian neural retina exhibits a surprising degree of plasticity following rescue of rod photoreceptors. The wayward dendrites of rod bipolar cells re-establish contact with rods to support normal synaptic transmission, which is propagated to the retinal ganglion cells. These findings support efforts to repair or replace defective rods in patients blinded by rod cell loss.


Assuntos
Retina/patologia , Degeneração Retiniana/patologia , Células Fotorreceptoras Retinianas Bastonetes , Transdução de Sinais/fisiologia , Sinapses/fisiologia , Animais , Canais de Cátion Regulados por Nucleotídeos Cíclicos/fisiologia , Eletrorretinografia , Humanos , Camundongos , Camundongos Transgênicos , Plasticidade Neuronal/fisiologia , Estimulação Luminosa , Células Fotorreceptoras de Vertebrados/fisiologia , Células Bipolares da Retina/fisiologia , Degeneração Retiniana/induzido quimicamente , Transmissão Sináptica , Tamoxifeno
10.
J Biol Chem ; 293(19): 7457-7465, 2018 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-29549122

RESUMO

Light adaptation of photoreceptor cells is mediated by Ca2+-dependent mechanisms. In darkness, Ca2+ influx through cGMP-gated channels into the outer segment of photoreceptors is balanced by Ca2+ extrusion via Na+/Ca2+, K+ exchangers (NCKXs). Light activates a G protein signaling cascade, which closes cGMP-gated channels and decreases Ca2+ levels in photoreceptor outer segment because of continuing Ca2+ extrusion by NCKXs. Guanylate cyclase-activating proteins (GCAPs) then up-regulate cGMP synthesis by activating retinal membrane guanylate cyclases (RetGCs) in low Ca2+ This activation of RetGC accelerates photoresponse recovery and critically contributes to light adaptation of the nighttime rod and daytime cone photoreceptors. In mouse rod photoreceptors, GCAP1 and GCAP2 both contribute to the Ca2+-feedback mechanism. In contrast, only GCAP1 appears to modulate RetGC activity in mouse cones because evidence of GCAP2 expression in cones is lacking. Surprisingly, we found that GCAP2 is expressed in cones and can regulate light sensitivity and response kinetics as well as light adaptation of GCAP1-deficient mouse cones. Furthermore, we show that GCAP2 promotes cGMP synthesis and cGMP-gated channel opening in mouse cones exposed to low Ca2+ Our biochemical model and experiments indicate that GCAP2 significantly contributes to the activation of RetGC1 at low Ca2+ when GCAP1 is not present. Of note, in WT mouse cones, GCAP1 dominates the regulation of cGMP synthesis. We conclude that, under normal physiological conditions, GCAP1 dominates the regulation of cGMP synthesis in mouse cones, but if its function becomes compromised, GCAP2 contributes to the regulation of phototransduction and light adaptation of cones.


Assuntos
Adaptação Ocular , Proteínas Ativadoras de Guanilato Ciclase/fisiologia , Transdução de Sinal Luminoso/fisiologia , Células Fotorreceptoras Retinianas Cones/fisiologia , Animais , Cálcio/metabolismo , GMP Cíclico/biossíntese , Proteínas Ativadoras de Guanilato Ciclase/genética , Proteínas Ativadoras de Guanilato Ciclase/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Trocador de Sódio e Cálcio/metabolismo
11.
J Biol Chem ; 293(40): 15332-15346, 2018 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-30126843

RESUMO

The retinal degeneration model rd10 contains a missense mutation of the catalytic PDE6 ß subunit, which hydrolyzes cGMP in response to light. This model produces cell death more slowly than others caused by PDE6 loss of function, making it of particular interest for studying potential therapeutics. We used morphology, biochemistry, and single-cell physiology to examine the mechanism of rd10 degeneration. Our results show that the mutation produces no alteration of Pde6b RNA but does dramatically decrease maximal and basal PDE6 activity, apparently caused by a decrease in protein stability and transport. The enzymatic properties of the remaining mutant PDE6 appear to be nearly normal. We demonstrate that an increase in free cGMP, which would result from decreased PDE6 activity and serve to increase opening of the cGMP-gated channels and calcium influx, is an underlying cause of cell death: degeneration of rd10/Cngb1-/- double mutants is slower than the parent rd10 line. Paradoxically, degeneration in rd10/Cngb1-/- is also slower than in Cngb1-/- This rescue is correlated with a lowering of cGMP content in Cngb1-/- retinas and suggests that it may be caused by mislocalization of active PDE6. Single-cell recordings from rd10 rods show that the rates of rise and decay of the response are significantly slower; simulations indicate that these changes are primarily the result of the decrease in PDE6 concentration and rod collecting area. Together, these results provide insights into the complex mechanisms that underlie rd10-mediated retinal degeneration and a cautionary note for analysis of therapeutic interventions.


Assuntos
Cálcio/metabolismo , GMP Cíclico/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 6/genética , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Proteínas do Tecido Nervoso/genética , Degeneração Retiniana/genética , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Animais , Morte Celular , Nucleotídeo Cíclico Fosfodiesterase do Tipo 6/deficiência , Canais de Cátion Regulados por Nucleotídeos Cíclicos/deficiência , Modelos Animais de Doenças , Regulação da Expressão Gênica , Transporte de Íons , Potenciais da Membrana/fisiologia , Camundongos , Camundongos Knockout , Mutação de Sentido Incorreto , Proteínas do Tecido Nervoso/deficiência , Estabilidade Proteica , Transporte Proteico , Degeneração Retiniana/metabolismo , Degeneração Retiniana/patologia , Células Fotorreceptoras Retinianas Bastonetes/patologia , Transdução de Sinais , Análise de Célula Única , Fatores de Tempo
12.
Hum Mol Genet ; 26(12): 2299-2306, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28379353

RESUMO

Cyclic-GMP is a second messenger in phototransduction, a G-protein signaling cascade that conveys photon absorption by rhodopsin to a change in current at the rod photoreceptor outer segment plasma membrane. Basal cGMP level is strictly controlled by the opposing actions of phosphodiesterase (PDE6) and retinal guanylyl cyclases (GCs), and mutations in genes that disrupt cGMP homeostasis leads to retinal degeneration in humans through mechanisms that are incompletely understood. The purpose of this study is to examine two distinct cellular targets of cGMP: the cGMP-gated (CNG) channels and protein kinase G (PRKG), and how each may contribute to rod cell death. Using a mouse genetic approach, we found that abolishing expression of CNG channels prolongs rod survival caused by elevated cGMP in a PDE6 mutant mouse model. This observation supports the use of channel blockers to delay rod death, which is expected to prolong useful vision through enhanced cone survival. However, the absence of CNG channel alone also caused abnormal cGMP accumulation. In a mouse model of CNG channel loss-of-function, abolishing PRKG1 expression had a long-lasting effect in promoting rod cell survival. Our data strongly implicate two distinct cGMP-mediated cell death pathways, and suggest that therapeutic designs targeting both pathways will be more effective at slowing photoreceptor cell death caused by elevated cGMP.


Assuntos
Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/fisiologia , Animais , Morte Celular , GMP Cíclico/metabolismo , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Guanilato Ciclase/metabolismo , Canais Iônicos/metabolismo , Camundongos , Camundongos Knockout , Retina/metabolismo , Células Fotorreceptoras Retinianas Cones/metabolismo , Degeneração Retiniana/metabolismo , Rodopsina/metabolismo , Segmento Externo da Célula Bastonete/metabolismo , Transdução de Sinais/efeitos dos fármacos
13.
Exp Eye Res ; 167: 56-90, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29122605

RESUMO

We produced 8 lines of transgenic (Tg) rats expressing one of two different rhodopsin mutations in albino Sprague-Dawley (SD) rats. Three lines were generated with a proline to histidine substitution at codon 23 (P23H), the most common autosomal dominant form of retinitis pigmentosa in the United States. Five lines were generated with a termination codon at position 334 (S334ter), resulting in a C-terminal truncated opsin protein lacking the last 15 amino acid residues and containing all of the phosphorylation sites involved in rhodopsin deactivation, as well as the terminal QVAPA residues important for rhodopsin deactivation and trafficking. The rates of photoreceptor (PR) degeneration in these models vary in proportion to the ratio of mutant to wild-type rhodopsin. The models have been widely studied, but many aspects of their phenotypes have not been described. Here we present a comprehensive study of the 8 Tg lines, including the time course of PR degeneration from the onset to one year of age, retinal structure by light and electron microscopy (EM), hemispheric asymmetry and gradients of rod and cone degeneration, rhodopsin content, gene dosage effect, rapid activation and invasion of the outer retina by presumptive microglia, rod outer segment disc shedding and phagocytosis by the retinal pigmented epithelium (RPE), and retinal function by the electroretinogram (ERG). The biphasic nature of PR cell death was noted, as was the lack of an injury-induced protective response in the rat models. EM analysis revealed the accumulation of submicron vesicular structures in the interphotoreceptor space during the peak period of PR outer segment degeneration in the S334ter lines. This is likely due to the elimination of the trafficking consensus domain as seen before as with other rhodopsin mutants lacking the C-terminal QVAPA. The 8 rhodopsin Tg lines have been, and will continue to be, extremely useful models for the experimental study of inherited retinal degenerations.


Assuntos
Modelos Animais de Doenças , Células Fotorreceptoras de Vertebrados/patologia , Mutação Puntual , Retina/fisiologia , Degeneração Retiniana/genética , Degeneração Retiniana/patologia , Rodopsina/genética , Animais , Eletrorretinografia , Microscopia , Microscopia Eletrônica , Fenótipo , Reação em Cadeia da Polimerase , Ratos , Ratos Sprague-Dawley , Ratos Transgênicos , Degeneração Retiniana/fisiopatologia
14.
J Neurosci ; 36(26): 6973-87, 2016 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-27358455

RESUMO

UNLABELLED: Rhodopsin is a prototypical G-protein-coupled receptor (GPCR) that is activated when its 11-cis-retinal moiety is photoisomerized to all-trans retinal. This step initiates a cascade of reactions by which rods signal changes in light intensity. Like other GPCRs, rhodopsin is deactivated through receptor phosphorylation and arrestin binding. Full recovery of receptor sensitivity is then achieved when rhodopsin is regenerated through a series of steps that return the receptor to its ground state. Here, we show that dephosphorylation of the opsin moiety of rhodopsin is an extremely slow but requisite step in the restoration of the visual pigment to its ground state. We make use of a novel observation: isolated mouse retinae kept in standard media for routine physiologic recordings display blunted dephosphorylation of rhodopsin. Isoelectric focusing followed by Western blot analysis of bleached isolated retinae showed little dephosphorylation of rhodopsin for up to 4 h in darkness, even under conditions when rhodopsin was completely regenerated. Microspectrophotometeric determinations of rhodopsin spectra show that regenerated phospho-rhodopsin has the same molecular photosensitivity as unphosphorylated rhodopsin and that flash responses measured by trans-retinal electroretinogram or single-cell suction electrode recording displayed dark-adapted kinetics. Single quantal responses displayed normal dark-adapted kinetics, but rods were only half as sensitive as those containing exclusively unphosphorylated rhodopsin. We propose a model in which light-exposed retinae contain a mixed population of phosphorylated and unphosphorylated rhodopsin. Moreover, complete dark adaptation can only occur when all rhodopsin has been dephosphorylated, a process that requires >3 h in complete darkness. SIGNIFICANCE STATEMENT: G-protein-coupled receptors (GPCRs) constitute the largest superfamily of proteins that compose ∼4% of the mammalian genome whose members share a common membrane topology. Signaling by GPCRs regulate a wide variety of physiological processes, including taste, smell, hearing, vision, and cardiovascular, endocrine, and reproductive homeostasis. An important feature of GPCR signaling is its timely termination. This normally occurs when, after their activation, GPCRs are rapidly phosphorylated by specific receptor kinases and subsequently bound by cognate arrestins. Recovery of receptor sensitivity to the ground state then requires dephosphorylation of the receptor and unbinding of arrestin, processes that are poorly understood. Here we investigate in mouse rod photoreceptors the relationship between rhodopsin dephosphorylation and recovery of visual sensitivity.


Assuntos
Adaptação à Escuridão/genética , Células Fotorreceptoras Retinianas Bastonetes/fisiologia , Rodopsina/metabolismo , Animais , Biofísica , Adaptação à Escuridão/efeitos dos fármacos , Eletrorretinografia , Receptor Quinase 1 Acoplada a Proteína G/genética , Receptor Quinase 1 Acoplada a Proteína G/metabolismo , Proteínas Heterotriméricas de Ligação ao GTP/genética , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Técnicas In Vitro , Focalização Isoelétrica , Luz , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microespectrofotometria , Mutação/genética , Opsinas/metabolismo , Fosforilação/efeitos dos fármacos , Fosforilação/genética , Retina/citologia , Retina/efeitos dos fármacos , Retinaldeído/farmacologia
15.
Hum Mol Genet ; 24(20): 5915-29, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26246500

RESUMO

Mutations that affect calcium homeostasis (Ca(2+)) in rod photoreceptors are linked to retinal degeneration and visual disorders such as retinitis pigmentosa and congenital stationary night blindness (CSNB). It is thought that the concentration of Ca(2+) in rod outer segments is controlled by a dynamic balance between influx via cGMP-gated (CNG) channels and extrusion via Na(+)/Ca(2+), K(+) exchangers (NCKX1). The extrusion-driven lowering of rod [Ca(2+)]i following light exposure controls their light adaptation and response termination. Mutant NCKX1 has been linked to autosomal-recessive stationary night blindness. However, whether NCKX1 contributes to light adaptation has not been directly tested and the mechanisms by which human NCKX1 mutations cause night blindness are not understood. Here, we report that the deletion of NCKX1 in mice results in malformed outer segment disks, suppressed expression and function of rod CNG channels and a subsequent 100-fold reduction in rod responses, while preserving normal cone responses. The compensating loss of CNG channel function in the absence of NCKX1-mediated Ca(2+) extrusion may prevent toxic Ca(2+) buildup and provides an explanation for the stationary nature of the associated disorder in humans. Surprisingly, the lack of NCKX1 did not compromise rod background light adaptation, suggesting additional Ca(2+)-extruding mechanisms exist in these cells.


Assuntos
Modelos Animais de Doenças , Oftalmopatias Hereditárias/metabolismo , Doenças Genéticas Ligadas ao Cromossomo X/metabolismo , Miopia/metabolismo , Cegueira Noturna/metabolismo , Segmento Externo da Célula Bastonete/metabolismo , Trocador de Sódio e Cálcio/genética , Animais , Cálcio/metabolismo , Oftalmopatias Hereditárias/genética , Oftalmopatias Hereditárias/fisiopatologia , Deleção de Genes , Doenças Genéticas Ligadas ao Cromossomo X/genética , Doenças Genéticas Ligadas ao Cromossomo X/fisiopatologia , Camundongos , Miopia/genética , Miopia/fisiopatologia , Cegueira Noturna/genética , Cegueira Noturna/fisiopatologia , Segmento Externo da Célula Bastonete/fisiologia
16.
PLoS Genet ; 10(7): e1004480, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25058152

RESUMO

The neuronal calcium sensor proteins GCAPs (guanylate cyclase activating proteins) switch between Ca2+-free and Ca2+-bound conformational states and confer calcium sensitivity to guanylate cyclase at retinal photoreceptor cells. They play a fundamental role in light adaptation by coupling the rate of cGMP synthesis to the intracellular concentration of calcium. Mutations in GCAPs lead to blindness. The importance of functional EF-hands in GCAP1 for photoreceptor cell integrity has been well established. Mutations in GCAP1 that diminish its Ca2+ binding affinity lead to cell damage by causing unabated cGMP synthesis and accumulation of toxic levels of free cGMP and Ca2+. We here investigate the relevance of GCAP2 functional EF-hands for photoreceptor cell integrity. By characterizing transgenic mice expressing a mutant form of GCAP2 with all EF-hands inactivated (EF-GCAP2), we show that GCAP2 locked in its Ca2+-free conformation leads to a rapid retinal degeneration that is not due to unabated cGMP synthesis. We unveil that when locked in its Ca2+-free conformation in vivo, GCAP2 is phosphorylated at Ser201 and results in phospho-dependent binding to the chaperone 14-3-3 and retention at the inner segment and proximal cell compartments. Accumulation of phosphorylated EF-GCAP2 at the inner segment results in severe toxicity. We show that in wildtype mice under physiological conditions, 50% of GCAP2 is phosphorylated correlating with the 50% of the protein being retained at the inner segment. Raising mice under constant light exposure, however, drastically increases the retention of GCAP2 in its Ca2+-free form at the inner segment. This study identifies a new mechanism governing GCAP2 subcellular distribution in vivo, closely related to disease. It also identifies a pathway by which a sustained reduction in intracellular free Ca2+ could result in photoreceptor damage, relevant for light damage and for those genetic disorders resulting in "equivalent-light" scenarios.


Assuntos
Sinalização do Cálcio , Cálcio/metabolismo , Proteínas Ativadoras de Guanilato Ciclase/metabolismo , Neurônios/metabolismo , Animais , Proteínas de Ligação ao Cálcio/metabolismo , GMP Cíclico/metabolismo , Motivos EF Hand/genética , Proteínas Ativadoras de Guanilato Ciclase/genética , Humanos , Camundongos , Fosforilação , Células Fotorreceptoras/metabolismo , Retina/metabolismo , Retina/patologia , Degeneração Retiniana/genética , Degeneração Retiniana/metabolismo
17.
J Biol Chem ; 290(14): 9239-50, 2015 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-25673692

RESUMO

Cone photoreceptors function under daylight conditions and are essential for color perception and vision with high temporal and spatial resolution. A remarkable feature of cones is that, unlike rods, they remain responsive in bright light. In rods, light triggers a decline in intracellular calcium, which exerts a well studied negative feedback on phototransduction that includes calcium-dependent inhibition of rhodopsin kinase (GRK1) by recoverin. Rods and cones share the same isoforms of recoverin and GRK1, and photoactivation also triggers a calcium decline in cones. However, the molecular mechanisms by which calcium exerts negative feedback on cone phototransduction through recoverin and GRK1 are not well understood. Here, we examined this question using mice expressing various levels of GRK1 or lacking recoverin. We show that although GRK1 is required for the timely inactivation of mouse cone photoresponse, gradually increasing its expression progressively delays the cone response recovery. This surprising result is in contrast with the known effect of increasing GRK1 expression in rods. Notably, the kinetics of cone responses converge and become independent of GRK1 levels for flashes activating more than ∼1% of cone pigment. Thus, mouse cone response recovery in bright light is independent of pigment phosphorylation and likely reflects the spontaneous decay of photoactivated visual pigment. We also find that recoverin potentiates the sensitivity of cones in dim light conditions but does not contribute to their capacity to function in bright light.


Assuntos
Receptor Quinase 1 Acoplada a Proteína G/fisiologia , Transdução de Sinal Luminoso , Recoverina/fisiologia , Células Fotorreceptoras Retinianas Cones/fisiologia , Animais , Camundongos , Camundongos Knockout
18.
Proc Natl Acad Sci U S A ; 110(23): 9463-8, 2013 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-23690606

RESUMO

Arrestins bind ligand-activated, phosphorylated G protein-coupled receptors (GPCRs) and terminate the activation of G proteins. Additionally, nonvisual arrestin/GPCR complex can initiate G protein-independent intracellular signals through their ability to act as scaffolds that bring other signaling molecules to the internalized GPCR. Like nonvisual arrestins, vertebrate visual arrestin (ARR1) terminates G protein signaling from light-activated, phosphorylated GPCR, rhodopsin. Unlike nonvisual arrestins, its role as a transducer of signaling from internalized rhodopsin has not been reported in the vertebrate retina. Formation of signaling complexes with arrestins often requires recruitment of the endocytic adaptor protein, AP-2. We have previously shown that Lys296 → Glu (K296E), which is a naturally occurring rhodopsin mutation in certain humans diagnosed with autosomal dominant retinitis pigmentosa, causes toxicity through forming a stable complex with ARR1. Here we investigated whether recruitment of AP-2 by the K296E/ARR1 complex plays a role in generating the cell death signal in a transgenic mouse model of retinal degeneration. We measured the binding affinity of ARR1 for AP-2 and found that, although the affinity is much lower than that of the other arrestins, the unusually high concentration of ARR1 in rods would favor this interaction. We further demonstrate that p44, a splice variant of ARR1 that binds light-activated, phosphorylated rhodopsin but lacks the AP-2 binding motif, prevents retinal degeneration and rescues visual function in K296E mice. These results reveal a unique role of ARR1 in a G protein-independent signaling cascade in the vertebrate retina.


Assuntos
Complexo 2 de Proteínas Adaptadoras/metabolismo , Arrestinas/metabolismo , Sobrevivência Celular/fisiologia , Células Fotorreceptoras de Vertebrados/fisiologia , Degeneração Retiniana/metabolismo , Transdução de Sinais/fisiologia , Análise de Variância , Animais , Arrestinas/genética , Western Blotting , Espectroscopia de Ressonância de Spin Eletrônica , Eletrorretinografia , Proteínas de Ligação ao GTP/metabolismo , Imuno-Histoquímica , Camundongos , Camundongos Transgênicos , Mutação de Sentido Incorreto/genética , Células Fotorreceptoras de Vertebrados/metabolismo , Degeneração Retiniana/patologia , Rodopsina/metabolismo , beta-Arrestina 1 , beta-Arrestinas
19.
J Biol Chem ; 289(42): 29310-21, 2014 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-25183010

RESUMO

Phototransduction is a G-protein signal transduction cascade that converts photon absorption to a change in current at the plasma membrane. Certain genetic mutations affecting the proteins in the phototransduction cascade cause blinding disorders in humans. Some of these mutations serve as a genetic source of "equivalent light" that activates the cascade, whereas other mutations lead to amplification of the light response. How constitutive phototransduction causes photoreceptor cell death is poorly understood. We showed that persistent G-protein signaling, which occurs in rod arrestin and rhodopsin kinase knock-out mice, caused a rapid and specific induction of the PERK pathway of the unfolded protein response. These changes were not observed in the cGMP-gated channel knock-out rods, an equivalent light condition that mimics light-stimulated channel closure. Thus transducin signaling, but not channel closure, triggers rapid cell death in light damage caused by constitutive phototransduction. Additionally, we show that in the albino light damage model cell death was not associated with increase in global protein ubiquitination or unfolded protein response induction. Taken together, these observations provide novel mechanistic insights into the cell death pathway caused by constitutive phototransduction and identify the unfolded protein response as a potential target for therapeutic intervention.


Assuntos
Proteínas de Ligação ao GTP/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Resposta a Proteínas não Dobradas , Animais , Arrestinas/genética , Morte Celular , Sobrevivência Celular , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Estresse do Retículo Endoplasmático , Receptor Quinase 1 Acoplada a Proteína G/genética , Subunidades alfa de Proteínas de Ligação ao GTP/genética , Luz , Transdução de Sinal Luminoso , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação , Proteínas do Tecido Nervoso/genética , Células Fotorreceptoras Retinianas Bastonetes/efeitos da radiação , Rodopsina/genética , Transdução de Sinais , Transducina/genética , beta-Arrestinas
20.
Proc Natl Acad Sci U S A ; 109(21): 8145-8, 2012 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-22566632

RESUMO

In the mammalian retina, life-long renewal of light-sensitive photoreceptor outer segments (POS) involves circadian shedding of distal rod POS tips and their subsequent phagocytosis by the adjacent retinal pigment epithelium (RPE) every morning after light onset. Molecular mechanisms that promote or synchronize POS tip shedding have thus far remained unknown. Here we examined plasma membrane asymmetry of living POS by quantifying surface exposure of the membrane phospholipid phosphatidylserine (PS) using antibodies, annexin V, and pSIVA (polarity-sensitive indicator of viability and apoptosis), an annexin-based biosensor with switchable states of fluorescence. We found that isolated POS particles possess externalized PS, whose blockade or removal reduces their binding and engulfment by RPE in culture. Imaging of live photoreceptors in freshly dissected mouse retina detected PS externalization restricted to POS tips with discrete boundaries. In wild-type mice, frequency of rod tips exposing PS and length of tips with exposed PS peak shortly after light onset. In contrast, PS-marked POS tips do not vary in mice lacking the diurnal phagocytic rhythm of the RPE due to loss of either the phagocytosis receptor αvß5 integrin, expressed by the RPE but not by photoreceptors, or its extracellular ligand milk fat globule-EGF factor 8 (MFG-E8). These data identify a molecular distinction, localized PS exposure, that is specific to the surface of rod POS tips. Enhanced PS exposure preceding rod shedding and phagocytosis suggests that surface PS promotes these processes. Moreover, our results demonstrate that the diurnal rhythm of PS demarcation of POS tips is not intrinsic to rod photoreceptors but requires activities of the RPE as well.


Assuntos
Antígenos de Superfície/genética , Ritmo Circadiano/fisiologia , Cadeias beta de Integrinas/genética , Proteínas do Leite/genética , Fosfatidilserinas/metabolismo , Epitélio Pigmentado da Retina/fisiologia , Segmento Externo da Célula Bastonete/fisiologia , Animais , Antígenos de Superfície/metabolismo , Apoptose/fisiologia , Membrana Celular/fisiologia , Células Cultivadas , Cadeias beta de Integrinas/metabolismo , Luz , Camundongos , Camundongos da Linhagem 129 , Camundongos Mutantes , Proteínas do Leite/metabolismo , Fagocitose/fisiologia , Epitélio Pigmentado da Retina/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA