Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
BMC Cancer ; 24(1): 41, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38183079

RESUMO

BACKGROUND: Obstructive sleep apnea (OSA) is associated with increased risk of lung cancer mortality. Nevertheless, little is known about the underlying molecular mechanisms. This research aimed to investigate differentially expressed genes (DEGs) and explore their function in Lewis lung carcinoma (LLC)-bearing mice exposed to chronic intermittent hypoxia (CIH) by transcriptome sequencing. METHODS: Lung cancer tissues in LLC-bearing mice exposed to CIH or normoxia were subjected for transcriptome sequencing to examine DEGs. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses were employed to explore the function of DEGs. To evaluate the prognostic value of DEGs, the Kaplan-Meier survival analysis in combination with Cox proportional hazard model were applied based on The Cancer Genome Atlas. RESULTS: A total of 388 genes with 207 up-regulated and 181 down-regulated genes were differentially expressed between the CIH and normoxia control groups. Bioinformatics analysis revealed that the DEGs were related to various signaling pathways such as chemokine signaling pathway, IL-17 signaling pathway, TGF-ß signaling pathway, transcriptional misregulation in cancer, natural killer cell mediated cytotoxicity, PPAR signaling pathway. In addition, the DEGs including APOL1, ETFB, KLK8, PPP1R3G, PRL, SPTA1, PLA2G3, PCP4L1, NINJ2, MIR186, and KLRG1 were proven to be significantly correlated with poorer overall survival in lung adenocarcinoma. CONCLUSIONS: CIH caused a significant change of gene expression profiling in LLC-bearing mice. The DEGs were found to be involved in various physiological and pathological processes and correlated with poorer prognosis in lung cancer.


Assuntos
Adenocarcinoma de Pulmão , Carcinoma Pulmonar de Lewis , Neoplasias Pulmonares , Animais , Camundongos , Neoplasias Pulmonares/genética , Transcriptoma , Processos Neoplásicos , Hipóxia/genética
2.
Sleep Breath ; 27(5): 2069-2076, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-36856923

RESUMO

PURPOSE: Ferroptosis is reported to be involved in the chronic intermittent hypoxia (CIH)-related liver damage in vivo. Nuclear factor E2-related factor 2 (Nrf2) has an essential role in the regulation of ferroptosis. This study tested the hypothesis that intermittent hypoxia (IH) could lead to hepatocyte ferroptosis in vitro and the function of Nrf2 in IH-induced hepatocyte ferroptosis. METHODS: BRL-3A cells (rat liver cells) were exposed to normoxia or IH. The protocol of IH consisted of 32 cycles of 60-min hypoxic exposure with 30-min reoxygenation phase (nadir of 1% oxygen to peak of 20% oxygen). Ferroptosis was evaluated by cell viability, iron concentration, lipid reactive oxygen species (ROS), protein content of ferritin heavy chain (FTH1), and glutathione peroxidase 4 (GPX4). Both ferrostatin-1 (a ferroptosis inhibitor) and Nrf2 interfering RNA were applied to treat BRL-3A cells, respectively. RESULTS: IH exposure induced ferroptosis in BRL-3A cells with decreased cell viability and increased total iron content and lipid ROS levels. The protein contents of GPX4 and FTH1 in IH group were markedly lower than that in normoxic control. Ferroptosis inhibitor ferrostatin-1 alleviated IH-induced ferroptosis in BRL-3A cells. IH treatment enhanced expression of Nrf2, and Nrf2 knockdown augmented IH-induced ferroptosis in BRL-3A cells. CONCLUSIONS: The results revealed that Nrf2 played a protective role during IH-induced ferroptosis in BRL-3A cells. The finding provides a therapeutic target for obstructive sleep apnea-related liver injury.


Assuntos
Ferroptose , Animais , Ratos , Hipóxia/metabolismo , Ferro/metabolismo , Lipídeos , Fígado/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Oxigênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA