Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Biotechnol Bioeng ; 114(12): 2907-2919, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28853155

RESUMO

The present study reveals that supplementing sodium acetate (NaAc) strongly stimulates riboflavin production in acetone-butanol-ethanol (ABE) fermentation by Clostridium acetobutylicum ATCC 824 with xylose as carbon source. Riboflavin production increased from undetectable concentrations to ∼0.2 g L-1 (0.53 mM) when supplementing 60 mM NaAc. Of interest, solvents production and biomass yield were also promoted with fivefold acetone, 2.6-fold butanol, and 2.4-fold biomass adding NaAc. A kinetic metabolic model, developed to simulate ABE biosystem, with riboflavin production, revealed from a dynamic metabolic flux analysis (dMFA) simultaneous increase of riboflavin (ribA) and GTP (precursor of riboflavin) (PurM) synthesis flux rates under NaAc supplementation. The model includes 23 fluxes, 24 metabolites, and 72 kinetic parameters. It also suggested that NaAc condition has first stimulated the accumulation of intracellular metabolite intermediates during the acidogenic phase, which have then fed the solventogenic phase leading to increased ABE production. In addition, NaAc resulted in higher intracellular levels of NADH during the whole culture. Moreover, lower GTP-to-adenosine phosphates (ATP, ADP, AMP) ratio under NaAc supplemented condition suggests that GTP may have a minor role in the cell energetic metabolism compared to its contribution to riboflavin synthesis.


Assuntos
Acetona/metabolismo , Butanóis/metabolismo , Clostridium acetobutylicum/metabolismo , Etanol/metabolismo , Análise do Fluxo Metabólico/métodos , Riboflavina/biossíntese , Acetato de Sódio/metabolismo , Acetona/isolamento & purificação , Reatores Biológicos/microbiologia , Butanóis/isolamento & purificação , Clostridium acetobutylicum/crescimento & desenvolvimento , Simulação por Computador , Meios de Cultura/metabolismo , Etanol/isolamento & purificação , Fermentação , Modelos Biológicos , Riboflavina/isolamento & purificação
2.
BMC Cell Biol ; 13: 18, 2012 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-22762146

RESUMO

BACKGROUND: The tumor microenvironment contains a vast array of pro- and anti-inflammatory cytokines that alter myelopoiesis and lead to the maturation of immunosuppressive cells known as myeloid-derived suppressor cells (MDSCs). Incubating bone marrow (BM) precursors with a combination of granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin-6 (IL-6) generated a tumor-infiltrating MDSC-like population that impaired anti-tumor specific T-cell functions. This in vitro experimental approach was used to simulate MDSC maturation, and the cellular metabolic response was then monitored. A complementary experimental model that inhibited L-arginine (L-Arg) metabolizing enzymes in MSC-1 cells, an immortalized cell line derived from primary MDSCs, was used to study the metabolic events related to immunosuppression. RESULTS: Exposure of BM cells to GM-CSF and IL-6 activated, within 24 h, L-Arg metabolizing enzymes which are responsible for the MDSCs immunosuppressive potential. This was accompanied by an increased uptake of L-glutamine (L-Gln) and glucose, the latter being metabolized by anaerobic glycolysis. The up-regulation of nutrient uptake lead to the accumulation of TCA cycle intermediates and lactate as well as the endogenous synthesis of L-Arg and the production of energy-rich nucleotides. Moreover, inhibition of L-Arg metabolism in MSC-1 cells down-regulated central carbon metabolism activity, including glycolysis, glutaminolysis and TCA cycle activity, and led to a deterioration of cell bioenergetic status. The simultaneous increase of cell specific concentrations of ATP and a decrease in ATP-to-ADP ratio in BM-derived MDSCs suggested cells were metabolically active during maturation. Moreover, AMP-activated protein kinase (AMPK) was activated during MDSC maturation in GM-CSF and IL-6-treated cultures, as revealed by the continuous increase of AMP-to-ATP ratios and the phosphorylation of AMPK. Likewise, AMPK activity was decreased in MSC-1 cells when L-Arg metabolizing enzymes were inhibited. Finally, inhibition of AMPK activity by the specific inhibitor Compound C (Comp-C) resulted in the inhibition of L-Arg metabolizing enzyme activity and abolished MDSCs immunosuppressive activity. CONCLUSIONS: We anticipate that the inhibition of AMPK and the control of metabolic fluxes may be considered as a novel therapeutic target for the recovery of the immunosurveillance process in cancer-bearing hosts.


Assuntos
Metabolismo Energético/efeitos dos fármacos , Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Interleucina-6/farmacologia , Células Mieloides/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/metabolismo , Trifosfato de Adenosina/metabolismo , Arginina/metabolismo , Células da Medula Óssea/citologia , Células Cultivadas , Glucose/metabolismo , Glutamina/metabolismo , Glicólise , Humanos , Terapia de Imunossupressão , Células Mieloides/citologia , Células Mieloides/metabolismo
3.
Biochem Biophys Res Commun ; 425(4): 724-9, 2012 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-22885179

RESUMO

Suppression of tumour-specific T-cell functions by myeloid-derived suppressor cells (MDSCs) is a dominant mechanism of tumour escape. MDSCs express two enzymes, i.e. inducible nitric oxide synthase (iNOS) and arginase (ARG1), which metabolize the semi-essential amino acid L-arginine (L-Arg) whose bioavailability is crucial for T-cell proliferation and functions. Recently, we showed that glutaminolysis supports MDSC maturation process by ensuring the supply of intermediates and energy. In this work, we used an immortalized cell line derived from mouse MDSCs (MSC-1 cell line) to further investigate the role of L-glutamine (L-Gln) in the maintenance of MDSC immunosuppressive activity. Culturing MSC-1 cells in L-Gln-limited medium inhibited iNOS activity, while ARG1 was not affected. MSC-1 cells inhibited Jukat cell growth without any noticeable effect on their viability. The characterization of MSC-1 cell metabolic profile revealed that L-Gln is an important precursor of lactate production via the NADP(+)-dependent malic enzyme, which co-produces NADPH. Moreover, the TCA cycle activity was down-regulated in the absence of L-Gln and the cell bioenergetic status was deteriorated accordingly. This strongly suggests that iNOS activity, but not that of ARG1, is related to an enhanced central carbon metabolism and a high bioenergetic status. Taken altogether, our results suggest that the control of glutaminolysis fluxes may represent a valuable target for immunotherapy.


Assuntos
Ciclo do Ácido Cítrico , Glutamina/metabolismo , Tolerância Imunológica , Células Mieloides/imunologia , Evasão Tumoral , Animais , Arginase/metabolismo , Linhagem Celular , Metabolismo Energético , Humanos , Terapia de Imunossupressão , Células Jurkat , Camundongos , Óxido Nítrico Sintase Tipo II/metabolismo
4.
Cell Rep Med ; 2(12): 100455, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-35028603

RESUMO

Dendritic cells (DCs) excel at cross-presenting antigens, but their effectiveness as cancer vaccine is limited. Here, we describe a vaccination approach using mesenchymal stromal cells (MSCs) engineered to express the immunoproteasome complex (MSC-IPr). Such modification instills efficient antigen cross-presentation abilities associated with enhanced major histocompatibility complex class I and CD80 expression, de novo production of interleukin-12, and higher chemokine secretion. This cross-presentation capacity of MSC-IPr is highly dependent on their metabolic activity. Compared with DCs, MSC-IPr hold the ability to cross-present a vastly different epitope repertoire, which translates into potent re-activation of T cell immunity against EL4 and A20 lymphomas and B16 melanoma tumors. Moreover, therapeutic vaccination of mice with pre-established tumors efficiently controls cancer growth, an effect further enhanced when combined with antibodies targeting PD-1, CTLA4, LAG3, or 4-1BB under both autologous and allogeneic settings. Therefore, MSC-IPr constitute a promising subset of non-hematopoietic antigen-presenting cells suitable for designing universal cell-based cancer vaccines.


Assuntos
Vacinas Anticâncer/imunologia , Linfoma/imunologia , Melanoma Experimental/imunologia , Células-Tronco Mesenquimais/imunologia , Complexo de Endopeptidases do Proteassoma/imunologia , Engenharia de Proteínas , Animais , Apresentação de Antígeno/imunologia , Células Apresentadoras de Antígenos/imunologia , Reprogramação Celular , Células Dendríticas/imunologia , Feminino , Inibidores de Checkpoint Imunológico/farmacologia , Imunidade , Camundongos Endogâmicos C57BL , Fosforilação Oxidativa , Fenótipo , Vacinação
5.
Bioconjug Chem ; 21(12): 2257-66, 2010 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-21058714

RESUMO

In an effort to evaluate the impact of various epidermal growth factor (EGF) grafting strategies upon cell surface receptor activation and cell adhesion, we generated low-fouling surfaces by homogeneously grafting carboxymethylated dextran (CMD) on amino-coated glass substrate. By preventing nonspecific cell adhesion while providing reactive groups facilitating subsequent protein grafting, CMD allowed achieving specific cell/tethered EGF interactions and therefore deriving unambiguous conclusions about various EGF grafting strategies. We demonstrate here that A-431 cell response to immobilized EGF is highly dependent on the bioactivity of the tagged protein being tethered, its proper orientation, and its surface density. Among all the approaches we tested, the oriented tethering of fully bioactive EGF via a de novo-designed coiled-coil capture system was shown to be the most efficient. That is, it led to the most intense and sustained phosphorylation of EGF receptors as well as to strong A-431 cell adhesion, the latter being comparable to that observed with amino-coated surfaces in the absence of CMD.


Assuntos
Fator de Crescimento Epidérmico/metabolismo , Receptores ErbB/metabolismo , Proteínas Imobilizadas/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Aminas/química , Adesão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Dextranos/química , Fator de Crescimento Epidérmico/química , Fator de Crescimento Epidérmico/genética , Fator de Crescimento Epidérmico/farmacologia , Expressão Gênica , Vidro/química , Células HEK293 , Humanos , Proteínas Imobilizadas/química , Proteínas Imobilizadas/genética , Proteínas Imobilizadas/farmacologia , Fosforilação/efeitos dos fármacos , Ligação Proteica , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/farmacologia , Propriedades de Superfície/efeitos dos fármacos , Engenharia Tecidual/métodos
6.
Metabolites ; 10(6)2020 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-32486030

RESUMO

After blood donation, the red blood cells (RBCs) for transfusion are generally isolated by centrifugation and then filtrated and supplemented with additive solution. The consecutive changes of the extracellular environment participate to the occurrence of storage lesions. In this study, the hypothesis is that restoring physiological levels of uric and ascorbic acids (major plasmatic antioxidants) might correct metabolism defects and protect RBCs from the very beginning of the storage period, to maintain their quality. Leukoreduced CPD-SAGM RBC concentrates were supplemented with 416 µM uric acid and 114 µM ascorbic acid and stored during six weeks at 4 °C. Different markers, i.e., haematological parameters, metabolism, sensitivity to oxidative stress, morphology and haemolysis were analyzed. Quantitative metabolomic analysis of targeted intracellular metabolites demonstrated a direct modification of several metabolite levels following antioxidant supplementation. No significant differences were observed for the other markers. In conclusion, the results obtained show that uric and ascorbic acids supplementation partially prevented the metabolic shift triggered by plasma depletion that occurs during the RBC concentrate preparation. The treatment directly and indirectly sustains the antioxidant protective system of the stored RBCs.

7.
Plant Biotechnol J ; 7(9): 939-51, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19843248

RESUMO

A dynamic model for plant cell metabolism was used as a basis for a rational analysis of plant production potential in in vitro cultures. The model was calibrated with data from 3-L bioreactor cultures. A dynamic sensitivity analysis framework was developed to analyse the response curves of secondary metabolite production to metabolic and medium perturbations. Simulation results suggest that a straightforward engineering of cell metabolism or medium composition might only have a limited effect on productivity. To circumvent the problem of the dynamic allocation of resources between growth and production pathways, the sensitivity analysis framework was used to assess the effect of stabilizing intracellular nutrient concentrations. Simulations showed that a stabilization of intracellular glucose and nitrogen reserves could lead to a 116% increase in the specific production of secondary metabolites compared with standard culture protocol. This culture strategy was implemented experimentally using a perfusion bioreactor. To stabilize intracellular concentrations, adaptive medium feeding was performed using model mass balances and estimations. This allowed for a completely automated culture, with controlled conditions and pre-defined decision making algorithm. The proposed culture strategy leads to a 73% increase in specific production and a 129% increase in total production, as compared with a standard batch culture protocol. The sensitivity analysis on a mathematical model of plant metabolism thus allowed producing new insights on the links between intracellular nutritional management and cell productivity. The experimental implementation was also a significant improvement on current plant bioprocess strategies.


Assuntos
Reatores Biológicos , Biotecnologia/métodos , Técnicas de Cultura de Células/métodos , Modelos Biológicos , Plantas/metabolismo , Algoritmos , Simulação por Computador , Meios de Cultura
8.
J Theor Biol ; 259(1): 118-31, 2009 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-19281825

RESUMO

A previously developed kinetic metabolic model for plant metabolism was used in a context of identification and control of intracellular phosphate (Pi) dynamics. Experimental data from batch flask cultures of Eschscholtiza californica cells was used to calibrate the model parameters for the slow dynamics (growth, nutrition, anabolic pathways, etc.). Perturbation experiments were performed using a perfusion small-scale bioreactor monitored by in vivo(31)P NMR. Parameter identification for Pi metabolism was done by measuring the cells dynamic response to different inputs for extracellular Pi (two pulse-response experiments and a step-response experiment). The calibrated model can describe Pi translocation between the cellular pools (vacuole and cytoplasm). The effect of intracellular Pi management on ATP/ADP and phosphomonoesters concentrations is also described by the model. The calibrated model is then used to develop a control strategy on the cytoplasmic Pi pool. From the identification of the systems dynamics, a proportional-integral controller was designed and tuned. The closed-loop control was implemented in the small-scale NMR bioreactor and experimental results were in accordance with model predictions. Thus, the calibrated model is able to predict cellular behaviour for phosphate metabolism and it was demonstrated that it is possible to control the intracellular level of cytoplasmic Pi in plant cells.


Assuntos
Simulação por Computador , Citoplasma/metabolismo , Fosfatos/metabolismo , Plantas/metabolismo , Reatores Biológicos , Cinética , Imageamento por Ressonância Magnética
9.
Metabolites ; 8(1)2018 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-29495309

RESUMO

Because of their unique ability to modulate the immune system, mesenchymal stromal cells (MSCs) are widely studied to develop cell therapies for detrimental immune and inflammatory disorders. However, controlling the final cell phenotype and determining immunosuppressive function following cell amplification in vitro often requires prolonged cell culture assays, all of which contribute to major bottlenecks, limiting the clinical emergence of cell therapies. For instance, the multipotent Wharton's Jelly mesenchymal stem/stromal cells (WJMSC), extracted from human umbilical cord, exhibit immunosuppressive traits under pro-inflammatory conditions, in the presence of interferon-γ (IFNγ), and tumor necrosis factor-α (TNFα). However, WJMSCs require co-culture bioassays with immune cells, which can take days, to confirm their immunomodulatory function. Therefore, the establishment of robust cell therapies would benefit from fast and reliable characterization assays. To this end, we have explored the metabolic behaviour of WJMSCs in in vitro culture, to identify biomarkers that are specific to the cell passage effect and the loss of their immunosuppressive phenotype. We clearly show distinct metabolic behaviours comparing WJMSCs at the fourth (P4) and the late ninth (P9) passages, although both P4 and P9 cells do not exhibit significant differences in their low immunosuppressive capacity. Metabolomics data were analysed using an in silico modelling platform specifically adapted to WJMSCs. Of interest, P4 cells exhibit a glycolytic metabolism compared to late passage (P9) cells, which show a phosphorylation oxidative metabolism, while P4 cells show a doubling time of 29 h representing almost half of that for P9 cells (46 h). We also clearly show that fourth passage WJMSCs still express known immunosuppressive biomarkers, although, this behaviour shows overlapping with a senescence phenotype.

10.
Microb Cell Fact ; 5: 27, 2006 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-16911799

RESUMO

BACKGROUND: In the interest of generating large amounts of recombinant protein, inducible systems have been studied to maximize both the growth of the culture and the production of foreign proteins. Even though thermo-inducible systems were developed in the late 1970's, the number of studies that focus on strategies for the implementation at bioreactor scale is limited. In this work, the bacteriophage lambda PL promoter is once again investigated as an inducible element but for the production of green fluorescent protein (GFP). Culture temperature, induction point, induction duration and number of inductions were considered as factors to maximize GFP production in a 20-L bioreactor. RESULTS: It was found that cultures carried out at 37 degrees C resulted in a growth-associated production of GFP without the need of an induction at 42 degrees C. Specific production was similar to what was achieved when separating the growth and production phases. Shake flask cultures were used to screen for desirable operating conditions. It was found that multiple inductions increased the production of GFP. Induction decreased the growth rate and substrate yield coefficients; therefore, two time domains (before and after induction) having different kinetic parameters were created to fit a model to the data collected. CONCLUSION: Based on two batch runs and the simulation of culture dynamics, a pre-defined feeding and induction strategy was developed to increase the volumetric yield of a temperature regulated expression system and was successfully implemented in a 20-L bioreactor. An overall cell density of 5.95 g DW l(-1) was achieved without detriment to the cell specific production of GFP; however, the production of GFP was underestimated in the simulations due to a significant contribution of non-growth associated product formation under limiting nutrient conditions.

11.
Sci Rep ; 6: 28307, 2016 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-27321153

RESUMO

Hemicellulose hydrolysates, sugar-rich feedstocks used in biobutanol refinery, are normally obtained by adding sodium hydroxide in the hydrolyze process. However, the resulting high sodium concentration in the hydrolysate inhibits ABE (acetone-butanol-ethanol) fermentation, and thus limits the use of these low-cost feedstocks. We have thus studied the effect of high sodium on the metabolic behavior of Clostridium acetobutyricum ATCC 824, with xylose as the carbon source. At a threshold sodium concentration of 200 mM, a decrease of the maximum cell dry weight (-19.50 ± 0.85%) and of ABE yield (-35.14 ± 3.50% acetone, -33.37 ± 0.74% butanol, -22.95 ± 1.81% ethanol) were observed compared to control culture. However, solvents specific productivities were not affected by supplementing sodium. The main effects of high sodium on cell metabolism were observed in acidogenesis, during which we observed the accumulation of ATP and NADH, and the inhibition of the pentose phosphate (PPP) and the glycolytic pathways with up to 80.73 ± 1.47% and 68.84 ± 3.42% decrease of the associated metabolic intermediates, respectively. However, the NADP(+)-to-NADPH ratio was constant for the whole culture duration, a phenomenon explaining the robustness of solvents specific productivities. Therefore, high sodium, which inhibited biomass growth through coordinated metabolic effects, interestingly triggered cell robustness on solvents specific productivity.


Assuntos
Acetona/metabolismo , Butanóis/metabolismo , Clostridium acetobutylicum/metabolismo , Etanol/metabolismo , Metaboloma/efeitos dos fármacos , Metabolômica , Sódio/farmacologia , Sódio/metabolismo
12.
PLoS One ; 10(9): e0136815, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26331955

RESUMO

CHO cell culture high productivity relies on optimized culture medium management under fed-batch or perfused chemostat strategies enabling high cell densities. In this work, a dynamic metabolic model for CHO cells was further developed, calibrated and challenged using datasets obtained under four different culture conditions, including two batch and two fed-batch cultures comparing two different culture media. The recombinant CHO-DXB11 cell line producing the EG2-hFc monoclonal antibody was studied. Quantification of extracellular substrates and metabolites concentration, viable cell density, monoclonal antibody concentration and intracellular concentration of metabolite intermediates of glycolysis, pentose-phosphate and TCA cycle, as well as of energetic nucleotides, were obtained for model calibration. Results suggest that a single model structure with a single set of kinetic parameter values is efficient at simulating viable cell behavior in all cases under study, estimating the time course of measured and non-measured intracellular and extracellular metabolites. Model simulations also allowed performing dynamic metabolic flux analysis, showing that the culture media and the fed-batch strategies tested had little impact on flux distribution. This work thus paves the way to an in silico platform allowing to assess the performance of different culture media and fed-batch strategies.


Assuntos
Anticorpos Monoclonais/metabolismo , Técnicas de Cultura Celular por Lotes/métodos , Células CHO/metabolismo , Meios de Cultura/metabolismo , Redes e Vias Metabólicas , Aminoácidos/metabolismo , Animais , Biotecnologia/métodos , Células CHO/citologia , Cricetulus , Metabolismo Energético , Glicólise , Modelos Biológicos
13.
PLoS One ; 9(3): e90832, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24632968

RESUMO

Monoclonal antibody producing Chinese hamster ovary (CHO) cells have been shown to undergo metabolic changes when engineered to produce high titers of recombinant proteins. In this work, we have studied the distinct metabolism of CHO cell clones harboring an efficient inducible expression system, based on the cumate gene switch, and displaying different expression levels, high and low productivities, compared to that of the parental cells from which they were derived. A kinetic model for CHO cell metabolism was further developed to include metabolic regulation. Model calibration was performed using intracellular and extracellular metabolite profiles obtained from shake flask batch cultures. Model simulations of intracellular fluxes and ratios known as biomarkers revealed significant changes correlated with clonal variation but not to the recombinant protein expression level. Metabolic flux distribution mostly differs in the reactions involving pyruvate metabolism, with an increased net flux of pyruvate into the tricarboxylic acid (TCA) cycle in the high-producer clone, either being induced or non-induced with cumate. More specifically, CHO cell metabolism in this clone was characterized by an efficient utilization of glucose and a high pyruvate dehydrogenase flux. Moreover, the high-producer clone shows a high rate of anaplerosis from pyruvate to oxaloacetate, through pyruvate carboxylase and from glutamate to α-ketoglutarate, through glutamate dehydrogenase, and a reduced rate of cataplerosis from malate to pyruvate, through malic enzyme. Indeed, the increase of flux through pyruvate carboxylase was not driven by an increased anabolic demand. It is in fact linked to an increase of the TCA cycle global flux, which allows better regulation of higher redox and more efficient metabolic states. To the best of our knowledge, this is the first time a dynamic in silico platform is proposed to analyze and compare the metabolomic behavior of different CHO clones.


Assuntos
Anticorpos Monoclonais/metabolismo , Metabolômica/métodos , Animais , Células CHO , Ciclo do Ácido Cítrico/fisiologia , Cricetulus , Ácidos Cetoglutáricos/metabolismo , Modelos Teóricos , Piruvato Descarboxilase/metabolismo , Ácido Pirúvico/metabolismo
14.
PLoS One ; 8(7): e69146, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23935941

RESUMO

Parkinson's disease (PD) is a multifactorial disease known to result from a variety of factors. Although age is the principal risk factor, other etiological mechanisms have been identified, including gene mutations and exposure to toxins. Deregulation of energy metabolism, mostly through the loss of complex I efficiency, is involved in disease progression in both the genetic and sporadic forms of the disease. In this study, we investigated energy deregulation in the cerebral tissue of animal models (genetic and toxin induced) of PD using an approach that combines metabolomics and mathematical modelling. In a first step, quantitative measurements of energy-related metabolites in mouse brain slices revealed most affected pathways. A genetic model of PD, the Park2 knockout, was compared to the effect of CCCP, a mitochondrial uncoupler [corrected]. Model simulated and experimental results revealed a significant and sustained decrease in ATP after CCCP exposure, but not in the genetic mice model. In support to data analysis, a mathematical model of the relevant metabolic pathways was developed and calibrated onto experimental data. In this work, we show that a short-term stress response in nucleotide scavenging is most probably induced by the toxin exposure. In turn, the robustness of energy-related pathways in the model explains how genetic perturbations, at least in young animals, are not sufficient to induce significant changes at the metabolite level.


Assuntos
Simulação por Computador , Metabolismo Energético , Metabolômica , Doença de Parkinson/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Carbonil Cianeto m-Clorofenil Hidrazona/toxicidade , Modelos Animais de Doenças , Metabolismo Energético/efeitos dos fármacos , Camundongos , Camundongos Knockout , Doença de Parkinson/patologia , Estresse Fisiológico/efeitos dos fármacos , Ubiquitina-Proteína Ligases/deficiência , Ubiquitina-Proteína Ligases/genética
15.
PLoS One ; 8(1): e53898, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23382859

RESUMO

The metabolism of potato (Solanum tuberosum) roots constitutively over- and underexpressing hexokinase (HK, EC 2.7.1.1) was examined. An 11-fold variation in HK activity resulted in altered root growth, with antisense roots growing better than sense roots. Quantification of sugars, organic acids and amino acids in transgenic roots demonstrated that the manipulation of HK activity had very little effect on the intracellular pools of these metabolites. However, adenylate and free Pi levels were negatively affected by an increase in HK activity. The flux control coefficient of HK over the phosphorylation of glucose was measured for the first time in plants. Its value varied with HK level. It reached 1.71 at or below normal HK activity value and was much lower (0.32) at very high HK levels. Measurements of glycolytic flux and O(2) uptake rates demonstrated that the differences in glucose phosphorylation did not affect significantly glycolytic and respiratory metabolism. We hypothesized that these results could be explained by the existence of a futile cycle between the pools of hexose-Ps and carbohydrates. This view is supported by several lines of evidence. Firstly, activities of enzymes capable of catalyzing these reactions were detected in roots, including a hexose-P phosphatase. Secondly, metabolic tracer experiments using (14)C-glucose as precursor showed the formation of (14)C-fructose and (14)C-sucrose. We conclude that futile cycling of hexose-P could be partially responsible for the differences in energetic status in roots with high and low HK activity and possibly cause the observed alterations in growth in transgenic roots. The involvement of HK and futile cycles in the control of glucose-6P metabolism is discussed.


Assuntos
Glucose/metabolismo , Hexoquinase/metabolismo , Plantas Geneticamente Modificadas , Solanum tuberosum , Metabolismo Energético , Hexosefosfatos/metabolismo , Fosforilação , Raízes de Plantas/enzimologia , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/metabolismo , Solanum tuberosum/enzimologia , Solanum tuberosum/metabolismo , Ciclização de Substratos
16.
Immunobiology ; 217(8): 808-15, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22656888

RESUMO

Major advances in dissecting mechanisms of NO-induced down-regulation of the anti-tumour specific T-cell function have been accomplished during the last decade. In this work, we studied the effects of a NO donor (AT38) on leukaemic Jurkat cell bioenergetics. Culturing Jurkat cells in the presence of AT38 triggered irreversible inhibition of cell respiration, led to the depletion of 50% of the intracellular ATP content and induced the arrest of cell proliferation and the loss of cell viability. Although a deterioration of the overall metabolic activity has been observed, glycolysis was stimulated, as revealed by the increase of glucose uptake and lactate accumulation rates as well as by the up-regulation of GLUT-1 and PFK-1 mRNA levels. In the presence of NO, cell ATP was rapidly consumed by energy-requiring apoptosis mechanisms; under a glucose concentration of about 12.7mM, cell death was switched from apoptosis into necrosis. Exposure of Jurkat cells to DMSO (1%, v/v), SA and AT55, the non-NO releasing moiety of AT38, failed to modulate neither cell proliferation nor bioenergetics. Thus, as for all NSAIDs, beneficial effects of AT38 on tumour regression are accompanied by the suppression of the immune system. We then showed that pre-treating Jurkat cells with low concentration of cyclosporine A, a blocker of the mitochondrial transition pore, attenuates AT38-induced inhibition of cell proliferation and suppresses cell death. Finally, we have studied and compared the effects of nitrite and nitrate on Jurkat cells to those of NO and we are providing evidence that nitrate, which is considered as a biologically inert anion, has a concentration and time-dependent immunosuppressive potential.


Assuntos
Metabolismo Energético/imunologia , Óxido Nítrico/imunologia , Trifosfato de Adenosina/imunologia , Trifosfato de Adenosina/metabolismo , Apoptose/efeitos dos fármacos , Apoptose/imunologia , Proliferação de Células/efeitos dos fármacos , Respiração Celular/efeitos dos fármacos , Respiração Celular/imunologia , Relação Dose-Resposta a Droga , Metabolismo Energético/efeitos dos fármacos , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Glucose/imunologia , Glucose/metabolismo , Transportador de Glucose Tipo 1/genética , Glicólise/efeitos dos fármacos , Glicólise/imunologia , Humanos , Células Jurkat , Lactatos/imunologia , Lactatos/metabolismo , Leucemia de Células T/genética , Leucemia de Células T/imunologia , Leucemia de Células T/metabolismo , Necrose/imunologia , Nitratos/farmacologia , Óxido Nítrico/metabolismo , Doadores de Óxido Nítrico/metabolismo , Doadores de Óxido Nítrico/farmacologia , Fosfofrutoquinase-1/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Nitrito de Sódio/farmacologia , Fatores de Tempo
17.
J Biotechnol ; 152(1-2): 43-8, 2011 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-21262283

RESUMO

Growing tumours have acquired several mechanisms to resist to immune recognition. Among these strategies, myeloid-derived suppressor cells (MDSCs) contribute to tumour escape by suppressing T-cell specific anti-tumoural functions. The development of therapies that could specifically inhibit MDSC maturation, recruitment, accumulation and immunosuppressive functions is thus of great interest. This requires the identification of valuable biomarkers of MDSC behaviour in vitro. As for immune cells, whose energetic state is known as a biomarker of their functionality, we have characterized in vitro the metabolic and energetic behaviour of MSC-1 cells, an immortalized cell line derived from mouse MDSCs and used as model cell line. Combined results from in vitro(31)P-NMR with living cells and HPLC-MS analyses from cell extracts allowed to identify two distinct bioenergetic steady-states that coincided with exponential and stationary growth phases. While the adenylate energy charge remained constant throughout the culture duration, both the percentage of total pyrimidines, the UTP-to-ATP and PME (phosphomonoesters)-to-NTP ratios were higher at the exponential growth phase compared to the plateau phase, suggesting metabolically active cells and the production of growth-related molecules. Conversely, the NTP ratio increased at the entry of the stationary phase revealing the deterioration of the global bioenergetic status and the arrest of anabolic processes.


Assuntos
Células Mieloides/citologia , Células Mieloides/metabolismo , Animais , Reatores Biológicos , Linhagem Celular , Proliferação de Células , Cromatografia Líquida de Alta Pressão , Metabolismo Energético , Humanos , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Camundongos , Microscopia Eletrônica de Varredura , Células Mieloides/ultraestrutura , Óxidos de Nitrogênio/metabolismo , Fosfolipídeos/metabolismo
18.
Phytochem Anal ; 17(4): 236-42, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16910039

RESUMO

A rapid and precise analytical HPLC method has been developed for screening the major benzophenanthridine alkaloids produced by cell cultures of Eschscholtzia califomica, namely, sanguinarine, chelirubine, macarpine, chelerythrine and chelilutine. Separation was achieved on a C18, reversed-phase column with gradient elution using acetonitrile and 50 mM phosphoric acid. Detection was performed by both fluorescence (lambda(ex) 330 nm, lambda(em) 570 nm) and photodiode array, leading to good selectivity and precision in determining peak purity. A simple and quick sample preparation protocol was elaborated involving a methanolic extraction for the measurement of intracellular concentrations of the alkaloids and a solid phase extraction for their quantification in culture medium. Owing to the non-availability of commercially standards, a method for the purification of chelirubine, macar pine and chelilutine by semi-preparative HPLC was developed. Coupled together, the isolation method and the analytical method were highly reliable for screening the alkaloids of interest produced by E. califomica.


Assuntos
Alcaloides/análise , Eschscholzia/química , Fenantridinas/análise , Alcaloides/química , Alcaloides/isolamento & purificação , Alcaloides/metabolismo , Benzofenantridinas , Cromatografia Líquida de Alta Pressão , Eschscholzia/metabolismo , Fluorometria , Isoquinolinas , Fenantridinas/química , Fenantridinas/metabolismo , Espectrometria de Massas por Ionização por Electrospray , Espectrofotometria Ultravioleta
19.
Biotechnol Bioeng ; 89(2): 138-47, 2005 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-15584028

RESUMO

A perfused bioreactor allowing in vivo NMR measurement was developed and validated for Eschscholtzia californica cells. The bioreactor was made of a 10-mm NMR tube. NMR measurement of the signal-to-noise ratio was optimized using a sedimented compact bed of cells that were retained in the bioreactor by a supporting filter. Liquid medium flow through the cell bed was characterized from a mass balance on oxygen and a dispersive hydrodynamic model. Cell bed oxygen demand for 4 h perfusion required a minimal medium flow rate of 0.8 mL/min. Residence time distribution assays at 0.8-2.6 mL/min suggest that the cells are subjected to a uniform nutrient environment along the cell bed. Cell integrity was maintained for all culture conditions since the release of intracellular esterases was not significant even after 4 h of perfusion. In vivo NMR was performed for (31)P NMR and the spectrum can be recorded after only 10 min of spectral accumulation (500 scans) with peaks identified as G-6P, F-6P, cytoplasmic Pi, vacuolar Pi, ATP(gamma) and ADP(beta), ATP(alpha) and ADP(alpha), NADP and NDPG, NDPG and ATP(beta). Cell viability was shown to be maintained as (31)P chemical shifts were constant with time for all the identified nuclei, thus suggesting constant intracellular pH.


Assuntos
Proteínas de Bactérias/análise , Proteínas de Bactérias/metabolismo , Reatores Biológicos , Técnicas de Cultura de Células/instrumentação , Eschscholzia/metabolismo , Espectroscopia de Ressonância Magnética/instrumentação , Técnicas de Cultura de Células/métodos , Proliferação de Células , Desenho de Equipamento , Análise de Falha de Equipamento , Espectroscopia de Ressonância Magnética/métodos , Oxigênio/metabolismo , Projetos Piloto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA