Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Small ; 18(51): e2205306, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36328712

RESUMO

Recently, perovskite (PV) oxides with ABO3 structures have attracted considerable interest from scientists owing to their functionality. In this study, CaFeOx is introduced to reveal the resistive switching properties and mechanism of oxygen vacancy transition in PV and brownmillerite (BM) structures. BM-CaFeO2.5 is grown on an Nb-STO conductive substrate epitaxially. CaFeOx exhibits excellent endurance and reliability. In addition, the CaFeOx also demonstrates an electroforming-free characteristic and multilevel resistance properties. To construct the switching mechanism, high-resolution transmission electron microscopy is used to observe the topotactic phase change in CaFeOx . In addition, scanning TEM and electron energy loss spectroscopy show the structural evolution and valence state variation of CaFeOx after the switching behavior. This study not only reveals the switching mechanism of CaFeOx , but also provides a PV oxide option for the dielectric material in resistive random-access memory (RRAM) devices.

2.
Nano Lett ; 20(3): 1510-1516, 2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-31725308

RESUMO

Crystalline Mo5O14 exhibits distinctive structural features such as tunnel structure and pseudolamellar arrangement according to the ideal model. However, the spatial resolution of the conventional technique of transmission electron microscopy (TEM) is insufficient to distinguish the actual positions of atoms. In this work, we aimed to systematically analyze and identify the Mo5O14 nanowires fabricated by the chemical vapor deposition (CVD) process. Utilizing high-angle annular dark-field (HAADF), annular bright-field (ABF), and enhanced annular bright-field (E-ABF) within the scanning transmission electron microscope (STEM) mode reveals the structural features at the atomic scale. In addition, the ultrahigh resolution images have confirmed the crystallographic insights in [001] growth direction for the Mo5O14 nanowires with a tunnel structure throughout the nanowire. The cross-sectional images show the unique close-packed plane and atomic arrangement with a network of MoO6 octahedra and MoO7 pentagonal bipyramids. These results are consistent with the theoretical atomic arrangement, supporting the realization of Mo5O14-type catalysts used in the selective oxidation process and battery applications.

3.
Anal Chem ; 91(15): 9665-9672, 2019 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-31243950

RESUMO

Metal oxides have attracted substantial attention over the years and are commonly used in the semiconductor industry because of their excellent physical and chemical properties. Among the various metal oxides, cuprous oxide (Cu2O) is regarded as a promising material. It is inexpensive, earth-abundant, and nontoxic; therefore, it can be used in catalysis, sensors, solar cells, and p-type semiconductors. However, the redox reaction of Cu2O is still uncertain. The size, morphology, and structure of Cu2O strongly influence its properties. In this work, we developed a new synthesis method of Cu2O that involves reducing the precursor by an electron beam without reducing agent. The growth process of Cu2O nanocubes was observed via in situ liquid cell transmission electron microscopy (in situ LCTEM). The nucleation kinetics, oscillating growth behavior, and redox reaction of the Cu2O nanocubes in the liquid phase were systematically studied. Cu2O exhibited a round shape at the beginning and transformed into a cubic shape afterward. Interestingly, the Cu2O nanocubes grew clearly under long-term observation; however, their diameters increased and fluctuated during the short-term observation. The electron beam not only stimulated the solution to reduce the nanocubes but also caused electron radiation effect to the nanocubes. During the Cu2O growth and dissolution, the cubic shape evolved with specific planes in the {100} family. Our direct observation sheds light on the preparation of Cu2O by a reduction method, extending the study of reaction kinetics and providing a new way to synthesize metal oxides.

4.
Nano Lett ; 18(9): 6064-6070, 2018 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-30130112

RESUMO

Transition metal oxide nanowires have attracted extensive attention because of their physical characteristics. Among them, ZnO nanowires have great potential. Due to the multifunctional properties of ZnO, devices built using ZnO-based heterostructures always perform well. In this study, interesting diffusion behavior between ZnO nanowires and Fe metal was observed by using in situ transmission electron microscopy. ZnO nanowires and Fe metal were annealed under ultrahigh vacuum (UHV) conditions at 800 K. By controlling the annealing time for the solid-state diffusion, porous Fe3O4 and unique ZnO/porous Fe3O4 nanowire heterostructures were formed. As-formed porous Fe3O4 nanowires with voids can be divided into two types by appearance: plate-like voids and zigzag-like hollow voids. From high-resolution transmission electron microscopy (HRTEM) images and fast Fourier transform (FFT) diffraction patterns, we found that plate-like voids formed along the {111} plane, which was the close-packed plane of Fe3O4, and that zigzag-like hollow voids formed along the {111}/{022} planes. Moreover, a transition region existed during diffusion, with a parallel relationship found between the Fe3O4 crystal with plate-like voids and the ZnO crystal. A sharp interface was determined to exist between the Fe3O4 crystal with zigzag-like hollow voids and ZnO. These oriented porous Fe3O4/ZnO axial nanowire heterostructures exhibited a unique appearance and interesting formation behavior. Furthermore, the structures had a high surface-area-to-volume ratio, which is promising for sensing applications.

5.
Small ; 14(6)2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29205879

RESUMO

Metal/metal oxides have attracted extensive research interest because of their combination of functional properties and compatibility with industry. Diffusion and thermal reliability have become essential issues that require detailed study to develop atomic-scaled functional devices. In this work, the diffusional reaction behavior that transforms piezoelectric ZnO into magnetic Fe3 O4 is investigated at the atomic scale. The growth kinetics of metal oxides are systematically studied through macro- and microanalyses. The growth rates are evaluated by morphology changes, which determine whether the growth behavior was a diffusion- or reaction-controlled process. Furthermore, atom attachment on the kink step is observed at the atomic scale, which has important implications for the thermodynamics of functional metal oxides. Faster growth planes simultaneously decrease, which result in the predominance of low surface energy planes. These results directly reveal the atomic formation process of metal oxide via solid-state diffusion. In addition, the nanofabricated method provides a novel approach to investigate metal oxide evolution and sheds light on diffusional reaction behavior. More importantly, the results and phenomena of this study provide considerable inspiration to enhance the material stability and reliability of metal/oxide-based devices.

6.
Small ; 14(6)2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29205791

RESUMO

The crossbar structure of resistive random access memory (RRAM) is the most promising technology for the development of ultrahigh-density devices for future nonvolatile memory. However, only a few studies have focused on the switching phenomenon of crossbar RRAM in detail. The main purpose of this study is to understand the formation and disruption of the conductive filament occurring at the crossbar center by real-time transmission electron microscope observation. Core-shell Ni/NiO nanowires are utilized to form a cross-structure, which restrict the position of the conductive filament to the crosscenter. A significant morphological change can be observed near the crossbar center, which results from the out-diffusion and backfill of oxygen ions. Energy dispersive spectroscopy and electron energy loss spectroscopy demonstrate that the movement of the oxygen ions leads to the evolution of the conductive filament, followed by redox reactions. Moreover, the distinct reliability of the crossbar device is measured via ex situ experiments. In this work, the switching mechanism of the crossbar core-shell nanowire structure is beneficial to overcome the problem of nanoscale minimization. The experimental method shows high potential to fabricate high-density RRAM devices, which can be applied to 3D stacked package technology and neuromorphic computing systems.

7.
Anal Chem ; 89(18): 9671-9675, 2017 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-28805052

RESUMO

Transition metal oxides have attracted much interest owing to their ability to provide high power density in lithium batteries; therefore, it is important to understand the electrochemical behavior and mechanism of lithiation-delithiation processes. In this study, we successfully and directly observed the structural evolution of CNTs/MnO2 during the lithiation process using transmission electron microscopy (TEM). CNTs/MnO2 were selected due to their high surface area and capacitance effect, and the lithiation mechanism of the CNT wall expansion was systematically analyzed. Interestingly, the wall spacings of CNTs/MnO2 and CNTs were obviously expanded by 10.92% and 2.59%, respectively. The MnO2 layer caused structural defects on the CNTs surface that could allow penetration of Li+ and Mn4+ through the tube wall and hence improve the ionic transportation speed. This study provided direct evidence for understanding the role of CNTs/MnO2 in the lithiation process used in lithium ion batteries and also offers potential benefits for applications and development of supercapacitors.

8.
Small ; 13(15)2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28165195

RESUMO

The Forming phenomenon is observed via in situ transmission electron microscopy in the Ag/Ta2 O5 /Pt system. The device is switched to a low-resistance state as the dual filament is connected to the electrodes. The results of energy dispersive spectrometer and electron energy loss spectroscopy analyses demonstrate that the filament is composed by a stack of oxygen vacancies and Ag metal.

9.
Nano Lett ; 16(2): 1086-91, 2016 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-26789624

RESUMO

Transition metal silicide nanowires (NWs) have attracted increasing attention as they possess advantages of both silicon NWs and transition metals. Over the past years, there have been reported with efforts on one silicide in a single silicon NW. However, the research on multicomponent silicides in a single silicon NW is still rare, leading to limited functionalities. In this work, we successfully fabricated ß-Pt2Si/Si/θ-Ni2Si, ß-Pt2Si/θ-Ni2Si, and Pt, Ni, and Si ternary phase axial NW heterostructures through solid state reactions at 650 °C. Using in situ transmission electron microscope (in situ TEM), the growth mechanism of silicide NW heterostructures and the diffusion behaviors of transition metals were systematically studied. Spherical aberration corrected scanning transmission electron microscope (Cs-corrected STEM) equipped with energy dispersive spectroscopy (EDS) was used to analyze the phase structure and composition of silicide NW heterostructures. Moreover, electrical and photon sensing properties for the silicide nanowire heterostructures demonstrated promising applications in nano-optoeletronic devices. We found that Ni, Pt, and Si ternary phase nanowire heterostructures have an excellent infrared light sensing property which is absent in bulk Ni2Si or Pt2Si. The above results would benefit the further understanding of heterostructured nano materials.

10.
Anal Chem ; 87(11): 5584-8, 2015 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-25942426

RESUMO

Recently, in situ transmission electron microscopy (TEM) has provided a route to analyze structural characterization and chemical evolution with its powerful and unique applications. In this paper, we disclose the detailed phenomenon of sublimation on the atomic scale. In2Se3/In2O3 nanowires were synthesized via the vapor-liquid-solid mechanism and studied in an ultra-high-vacuum (UHV) TEM at high temperature in real time. During in situ observation of the sublimation process of the nanowires, the evolution and reconstruction of the exposed In2Se3 surface progressed in different manners with time. The surface structure was decomposed by mass-desorption and stepwise-migration processes, which are also energetically favored processes in the ab initio calculation. This study developed a new concept and will be essential in the development of atomic kinetics.

11.
Nano Lett ; 14(5): 2759-63, 2014 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-24742102

RESUMO

One dimensional metal oxide nanostructures have attracted much attention owing to their fascinating functional properties. Among them, piezoelectricity and photocatalysts along with their related materials have stirred significant interests and widespread studies in recent years. In this work, we successfully transformed piezoelectric ZnO into photocatalytic TiO2 and formed TiO2/ZnO axial heterostructure nanowires with flat interfaces by solid to solid cationic exchange reactions in high vacuum (approximately 10(-8) Torr) transmission electron microscope (TEM). Kinetic behavior of the single crystalline TiO2 was systematically analyzed. The nanoscale growth rate of TiO2 has been measured using in situ TEM videos. On the basis of the rate, we can control the dimensions of the axial-nanoheterostructure. In addition, the unique Pt/ ZnO / TiO2/ ZnO /Pt heterostructures with complementary resistive switching (CRS) characteristics were designed to solve the important issue of sneak-peak current. The resistive switching behavior was attributed to the migration of oxygen and TiO2 layer served as reservoir, which was confirmed by energy dispersive spectrometry (EDS) analysis. This study not only supplied a distinct method to explore the transformation mechanisms but also exhibited the potential application of ZnO/TiO2 heterostructure in nanoscale crossbar array resistive random-access memory (RRAM).

12.
Anal Chem ; 86(9): 4348-53, 2014 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-24670115

RESUMO

We demonstrate the formation of hollow nickel germanide nanostructures of Ni-Ge core-shell nanoparticles by solid state reactions. The structural evolutions of nickel germanide hollow nanostructures have been investigated in real-time ultrahigh vacuum transmission electron microscopy (UHV-TEM). Annealed above 450 °C, the nonequilibrium interdiffusion of core and shell species occurred at the interface; thus, Ni germanide hollow nanostructures were formed by solid state reactions involving the Kirkendall effect. In addition, the different hollow nanostructures formed from different core diameters of Ni-Ge core-shell nanoparticles have been studied. Also, we propose the mechanism with effects of the size and annealing duration on the solid state reactions based on the Kirkendall effect.


Assuntos
Nanoestruturas , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão
13.
Nano Lett ; 13(8): 3671-7, 2013 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-23855543

RESUMO

Resistive random access memory (ReRAM) has been considered the most promising next-generation nonvolatile memory. In recent years, the switching behavior has been widely reported, and understanding the switching mechanism can improve the stability and scalability of devices. We designed an innovative sample structure for in situ transmission electron microscopy (TEM) to observe the formation of conductive filaments in the Pt/ZnO/Pt structure in real time. The corresponding current-voltage measurements help us to understand the switching mechanism of ZnO film. In addition, high-resolution transmission electron microscopy (HRTEM) and electron energy loss spectroscopy (EELS) have been used to identify the atomic structure and components of the filament/disrupted region, determining that the conducting paths are caused by the conglomeration of zinc atoms. The behavior of resistive switching is due to the migration of oxygen ions, leading to transformation between Zn-dominated ZnO(1-x) and ZnO.

14.
Anal Chem ; 85(8): 3955-60, 2013 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-23461652

RESUMO

Resistive random-access memory (ReRAM) has been of wide interest for its potential to replace flash memory in the next-generation nonvolatile memory roadmap. In this study, we have fabricated the Au/ZnO-nanowire/Au nanomemory device by electron beam lithography and, subsequently, utilized in situ transmission electron microscopy (TEM) to observe the atomic structure evolution from the initial state to the low-resistance state (LRS) in the ZnO nanowire. The element mapping of LRS showing that the nanowire was zinc dominant indicating that the oxygen vacancies were introduced after resistance switching. The results provided direct evidence, suggesting that the resistance change resulted from oxygen migration.

15.
Adv Mater ; 35(41): e2302979, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37378645

RESUMO

The application of high-entropy oxide (HEO) has attracted significant attention in recent years owing to their unique structural characteristics, such as excellent electrochemical properties and long-term cycling stability. However, the application of resistive random-access memory (RRAM) has not been extensively studied, and the switching mechanism of HEO-based RRAM has yet to be thoroughly investigated. In this study, HEO (Cr, Mn, Fe, Co, Ni)3 O4 with a spinel structure is epitaxially grown on a Nb:STO conductive substrate, and Pt metal is deposited as the top electrode. After the resistive-switching operation, some regions of the spinel structure are transformed into a rock-salt structure and analyzed using advanced transmission electron microscopy and scanning transmission electron microscopy. From the results of X-ray photoelectron spectroscopy and electron energy loss spectroscopy, only specific elements would change their valence state, which results in excellent resistive-switching properties with a high on/off ratio on the order of 105 , outstanding endurance (>4550 cycles), long retention time (>104 s), and high stability, which suggests that HEO is a promising RRAM material.

16.
J Formos Med Assoc ; 111(2): 101-8, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22370289

RESUMO

BACKGROUND/PURPOSE: Multimodal analgesia can improve perioperative analgesia but knowledge of combination protocols is still incomplete. This study was designed to evaluate whether the combination of sciatic nerve blockade (SNB) and intravenous alfentanil (IVA) is more effective than either single treatment in relieving postoperative pain in rats. METHODS: In a plantar incision model, withdrawal thresholds were evaluated by von Frey test before incision as baselines and for 7 days after incision. The animals were randomly allocated into various groups to receive SNB with 1% or 2% lidocaine, IVA of 50 or 150 µg/kg, or combined treatments (SNB 1% + 50 µg/kg IVA or SNB 2% + 150 µg/kg IVA) before incision. The results were compared with those of sham procedures--i.e., injections of peri-sciatic or intravenous saline, or a combination of both. RESULTS: Plantar incision caused postoperative allodynia for 3 days. SNB with 2% lidocaine reduced allodynia at 1 hour, 3 hours, day 1, and day 2, but not at postoperative 5 hours or days 3-7, whereas 150 µg/kg IVA produced short analgesia for only 3 hours after surgery. Neither low-dose SNB nor low-dose IVA had a significant effect. When high-dose SNB and high-dose IVA were combined, a strong antiallodynic effect was shown in an additive manner. No synergism was evidently displayed by the combination. CONCLUSION: Our results indicated that in an incisional pain model, multimodal analgesia is superior to single or no pretreatment; however, the combination of multimodal analgesic treatments should be individually discerned depending on nociceptive types and analgesic mechanisms.


Assuntos
Alfentanil , Anestésicos Intravenosos , Anestésicos Locais , Lidocaína , Bloqueio Nervoso , Dor Pós-Operatória/prevenção & controle , Animais , Relação Dose-Resposta a Droga , Masculino , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Nervo Isquiático , Resultado do Tratamento
17.
Adv Sci (Weinh) ; 6(24): 1902363, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31890465

RESUMO

The technologies of 3D vertical architecture have made a major breakthrough in establishing high-density memory structures. Combined with an array structure, a 3D high-density vertical resistive random access memory (VRRAM) cross-point array is demonstrated to efficiently increase the device density. Though electrochemical migration (ECM) resistive random access (RRAM) has the advantage of low power consumption, the stability of the operating voltage requires further improvements due to filament expansions and deterioration. In this work, 3D-VRRAM arrays are designed. Two-layered RRAM cells, with one inert and one active sidewall electrode stacked at a cross-point, are constructed, where the thin film sidewall electrode in the VRRAM structure is beneficial for confining the expansions of the conducting filaments. Thus, the top cell (Pt/ZnO/Pt) and the bottom cell (Ag/ZnO/Pt) in the VRRAM structure, which are switched by different mechanisms, can be analyzed at the same time. The oxygen vacancy filaments in the Pt/ZnO/Pt cell and Ag filaments in the Ag/ZnO/Pt cell are verified. The 40 nm thickness sidewall electrode restricts the filament size to nanoscale, which demonstrates the stability of the operating voltages. Additionally, the 0.3 V operating voltage of Ag/ZnO/Pt ECM VRRAM demonstrates the potential of low power consumption of VRRAM arrays in future applications.

18.
Nanoscale ; 11(21): 10486-10492, 2019 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-31112184

RESUMO

Heterogeneous nanoparticles are widely used in catalysis, sensors and biology due to their versatile functions. Among the various heterogeneous nanoparticles, Au-Cu2O core-shell nanoparticles show high stability and short response times for use as sensors and catalysts and have thus attracted much attention. Previous studies show that the properties of Au-Cu2O are mainly related to the shape and size of the Au-Cu2O nanoparticles. However, the forming behavior of heterostructures and the mechanism have not been fully explored. In this work, liquid cell transmission electron microscopy (LCTEM) was used to investigate the formation of these interesting Au-Cu2O nanoparticles and their process of aggregation. The electron beam and dispersion of gold nanoparticles are both important parameters for the reduction reaction in in situ LCTEM. The Au-Cu2O core-shell nanoparticles can be synthesized to have two morphologies, multifaceted and cubic. The nanoparticles grew into these different morphologies due to the amount of remaining citrate ligands on the surface of the gold nanoparticles. For the multifaceted nanoparticles, the epitaxy of the two components is confirmed from high-resolution TEM images and electron diffraction patterns with an epitaxial relationship of Au (020)//Cu2O (020) and Au [101]//Cu2O [101]. The growth rate is approximately 210 nm2 s-1. On the other hand, the cubic nanoparticles nucleate and grow independently. The growth kinetics and elemental distributions have been systematically studied. In addition, the nanoclusters would float, rotate, and finally aggregate with the surrounding clusters. This in situ experiment sheds light on the growth mechanisms of nanostructures and will improve the applicability and controllability of heterostructure synthesis.

19.
Adv Mater ; 27(34): 5028-33, 2015 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-26193454

RESUMO

The filament in aAu/Ta2 O5 /Au system is analyzed and determined to be a nanoscaled TaO2-x filament. A shrunken anode localizes the filament formation and the defect boundary leads to faster accumulation of oxygen vacancies. The defect changes the switching domination between electron transport and oxygen-vacancy migration. The migration of oxygen vacancies limits the filament dynamics, indicating the crucial role played by oxygen defects.

20.
Nanoscale ; 7(5): 1776-81, 2015 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-25519809

RESUMO

Metal silicide nanowires (NWs) are very interesting materials with diverse physical properties. Among the silicides, manganese silicide nanostructures have attracted wide attention due to their several potential applications, including in microelectronics, optoelectronics, spintronics and thermoelectric devices. In this work, we exhibited the formation of pure manganese silicide and manganese silicide/silicon nanowire heterostructures through solid state reaction with line contacts between manganese pads and silicon NWs. Dynamical process and phase characterization were investigated by in situ transmission electron microscopy (in situ TEM) and spherical aberration corrected scanning transmission electron microscopy (Cs-corrected STEM), respectively. The growth dynamics of the manganese silicide phase under thermal effects were systematically studied. Additionally, Al2O3, serving as the surface oxide, altered the growth behavior of the MnSi nanowire, enhancing the silicide/Si epitaxial growth and effecting the diffusion process in the silicon nanowire as well. In addition to fundamental science, this significant study has great potential in advancing future processing techniques in nanotechnology and related applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA