Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 31(6): 9543-9553, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-37157522

RESUMO

Due to the unprecedented wavefront shaping capability, the metasurface has demonstrated state-of-the-art performances in various applications, especially in printing and holography. Recently, these two functions have been combined into a single metasurface chip to achieve a capability expansion. Despite the progress, current dual-mode metasurfaces are realized at the expense of an increase in the difficulty of the fabrication, reduction of the pixel resolution, or strict limitation in the illumination conditions. Inspired by the Jacobi-Anger expansion, a phase-assisted paradigm, called Bessel metasurface, has been proposed for simultaneous printing and holography. By elaborately arranging the orientations of the single-sized nanostructures with geometric phase modulation, the Bessel metasurface can not only encode a greyscale printing image in real space but can reconstruct a holographic image in k-space. With the merits of compactness, easy fabrication, convenient observation, and liberation of the illumination conditions, the design paradigm of the Bessel metasurface would have promising prospects in practical applications, including optical information storage, 3D stereoscopic displays, multifunctional optical devices, etc.

2.
Opt Express ; 30(26): 46552-46559, 2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36558606

RESUMO

Featuring with ultracompactness and subwavelength resolution, metasurface-assisted nanoprinting has been widely researched as an optical device for image display. It also provides a platform for information multiplexing, and a series of multiplexed works based on incident polarizations, operating wavelengths and observation angles have emerged. However, the angular-multiplexing nanoprinting is realized at the cost of image resolution reduction or the increase of fabrication difficulty, hindering its practical applications. Here, inspired by the Jacobi-Anger expansion, a phase-assisted design paradigm, called Bessel metasurface, was proposed for angular multiplexing nanoprinting. By elaborately designing the phase distribution of the Bessel metasurface, the target images can be encoded into the desired observation angles, reaching angular multiplexing. With the merits of ultracompactness and easy fabrication, we believe that our design strategy would be attractive in the real-world applications, including optical information storage, encryption/concealment, multifunctional switchable optical devices, and 3D stereoscopic displays, etc.

3.
Opt Express ; 28(8): 12331-12341, 2020 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-32403731

RESUMO

Metasurfaces have shown unusual abilities to modulate the phase, amplitude and polarization of an incident lightwave with spatial resolution at the subwavelength scale. Here, we experimentally demonstrate a dielectric metasurface enabled with both geometric phase and magnetic resonance that scatters an incident light beam filling the full reflective 2π-space with high-uniformity. Specifically, by delicately reconfiguring the orientations of dielectric nanobricks acting as nano-half-waveplates in a metasurface, the optical power of phase-modulated output light is almost equally allocated to all diffraction orders filling the full reflection space. The measured beam non-uniformity in the full hemispheric space, defined as the relative standard deviation (RSD) of all scattered optical power, is only around 0.25. More interestingly, since the target intensity distribution in a uniform design is rotationally centrosymmetric, the diffraction results are identical under arbitrary polarization states, e.g., circularly polarized, linearly polarized or even unpolarized light, which brings great convenience in practical applications. The proposed uniform-backscattering metasurface enjoys the advantages including polarization insensitivity, high-integration-density and high-stability, which has great potential in sensing, lighting, laser ranging, free-space optical communication and so on.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA