Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(13)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-39000957

RESUMO

Visual ranging technology holds great promise in various fields such as unmanned driving and robot navigation. However, complex dynamic environments pose significant challenges to its accuracy and robustness. Existing monocular visual ranging methods are susceptible to scale uncertainty, while binocular visual ranging is sensitive to changes in lighting and texture. To overcome the limitations of single visual ranging, this paper proposes a fusion method for monocular and binocular visual ranging based on an adaptive Unscented Kalman Filter (AUKF). The proposed method first utilizes a monocular camera to estimate the initial distance based on the pixel size, and then employs the triangulation principle with a binocular camera to obtain accurate depth. Building upon this foundation, a probabilistic fusion framework is constructed to dynamically fuse monocular and binocular ranging using the AUKF. The AUKF employs nonlinear recursive filtering to estimate the optimal distance and its uncertainty, and introduces an adaptive noise-adjustment mechanism to dynamically update the observation noise based on fusion residuals, thus suppressing outlier interference. Additionally, an adaptive fusion strategy based on depth hypothesis propagation is designed to autonomously adjust the noise prior of the AUKF by combining current environmental features and historical measurement information, further enhancing the algorithm's adaptability to complex scenes. To validate the effectiveness of the proposed method, comprehensive evaluations were conducted on large-scale public datasets such as KITTI and complex scene data collected in real-world scenarios. The quantitative results demonstrate that the fusion method significantly improves the overall accuracy and stability of visual ranging, reducing the average relative error within an 8 m range by 43.1% and 40.9% compared to monocular and binocular ranging, respectively. Compared to traditional methods, the proposed method significantly enhances ranging accuracy and exhibits stronger robustness against factors such as lighting changes and dynamic targets. The sensitivity analysis further confirmed the effectiveness of the AUKF framework and adaptive noise strategy. In summary, the proposed fusion method effectively combines the advantages of monocular and binocular vision, significantly expanding the application range of visual ranging technology in intelligent driving, robotics, and other fields while ensuring accuracy, robustness, and real-time performance.

2.
Sensors (Basel) ; 23(24)2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38139648

RESUMO

This paper proposes an improved Soft Actor-Critic Long Short-Term Memory (SAC-LSTM) algorithm for fast path planning of mobile robots in dynamic environments. To achieve continuous motion and better decision making by incorporating historical and current states, a long short-term memory network (LSTM) with memory was integrated into the SAC algorithm. To mitigate the memory depreciation issue caused by resetting the LSTM's hidden states to zero during training, a burn-in training method was adopted to boost the performance. Moreover, a prioritized experience replay mechanism was implemented to enhance sampling efficiency and speed up convergence. Based on the SAC-LSTM framework, a motion model for the Turtlebot3 mobile robot was established by designing the state space, action space, reward function, and overall planning process. Three simulation experiments were conducted in obstacle-free, static obstacle, and dynamic obstacle environments using the ROS platform and Gazebo9 software. The results were compared with the SAC algorithm. In all scenarios, the SAC-LSTM algorithm demonstrated a faster convergence rate and a higher path planning success rate, registering a significant 10.5 percentage point improvement in the success rate of reaching the target point in the dynamic obstacle environment. Additionally, the time taken for path planning was shorter, and the planned paths were more concise.

3.
Sensors (Basel) ; 23(24)2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38139653

RESUMO

Although numerous effective Simultaneous Localization and Mapping (SLAM) systems have been developed, complex dynamic environments continue to present challenges, such as managing moving objects and enabling robots to comprehend environments. This paper focuses on a visual SLAM method specifically designed for complex dynamic environments. Our approach proposes a dynamic feature removal module based on the tight coupling of instance segmentation and multi-view geometric constraints (TSG). This method seamlessly integrates semantic information with geometric constraint data, using the fundamental matrix as a connecting element. In particular, instance segmentation is performed on frames to eliminate all dynamic and potentially dynamic features, retaining only reliable static features for sequential feature matching and acquiring a dependable fundamental matrix. Subsequently, based on this matrix, true dynamic features are identified and removed by capitalizing on multi-view geometry constraints while preserving reliable static features for further tracking and mapping. An instance-level semantic map of the global scenario is constructed to enhance the perception and understanding of complex dynamic environments. The proposed method is assessed on TUM datasets and in real-world scenarios, demonstrating that TSG-SLAM exhibits superior performance in detecting and eliminating dynamic feature points and obtains good localization accuracy in dynamic environments.

4.
Sensors (Basel) ; 22(3)2022 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-35161591

RESUMO

Using reinforcement learning (RL) for torque distribution of skid steering vehicles has attracted increasing attention recently. Various RL-based torque distribution methods have been proposed to deal with this classical vehicle control problem, achieving a better performance than traditional control methods. However, most RL-based methods focus only on improving the performance of skid steering vehicles, while actuator faults that may lead to unsafe conditions or catastrophic events are frequently omitted in existing control schemes. This study proposes a meta-RL-based fault-tolerant control (FTC) method to improve the tracking performance of vehicles in the case of actuator faults. Based on meta deep deterministic policy gradient (meta-DDPG), the proposed FTC method has a representative gradient-based metalearning algorithm workflow, which includes an offline stage and an online stage. In the offline stage, an experience replay buffer with various actuator faults is constructed to provide data for training the metatraining model; then, the metatrained model is used to develop an online meta-RL update method to quickly adapt its control policy to actuator fault conditions. Simulations of four scenarios demonstrate that the proposed FTC method can achieve a high performance and adapt to actuator fault conditions stably.

5.
Sensors (Basel) ; 17(9)2017 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-28885555

RESUMO

Inertial sensors are widely used in various applications, such as human motion monitoring and pedestrian positioning. However, inertial sensors cannot accurately define the process of human movement, a limitation that causes data drift in the process of human body positioning, thus seriously affecting positioning accuracy and stability. The traditional pedestrian dead-reckoning algorithm, which is based on a single inertial measurement unit, can suppress the data drift, but fails to accurately calculate the number of walking steps and heading value, thus it cannot meet the application requirements. This study proposes an indoor dynamic positioning method with an error self-correcting function based on the symmetrical characteristics of human motion to obtain the definition basis of human motion process quickly and to solve the abovementioned problems. On the basis of this proposed method, an ultra-wide band (UWB) method is introduced. An unscented Kalman filter is applied to fuse inertial sensors and UWB data, inertial positioning is applied to compensation for the defects of susceptibility to UWB signal obstacles, and UWB positioning is used to overcome the error accumulation of inertial positioning. The above method can improve both the positioning accuracy and the response of the positioning results. Finally, this study designs an indoor positioning test system to test the static and dynamic performances of the proposed indoor positioning method. Results show that the positioning system both has high accuracy and good real-time performance.


Assuntos
Algoritmos , Movimento (Física) , Pedestres , Humanos , Caminhada
6.
Comput Intell Neurosci ; 2023: 8978398, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36643887

RESUMO

With the increasing frequency of autonomous driving, more and more attention is paid to personalized path planning. However, the path selection preferences of users will change with internal or external factors. Therefore, this paper proposes a personalized path recommendation strategy that can track and study user's path preference. First, we collect the data of the system, establish the relationship with the user preference factor, and get the user's initial preference weight vector by dichotomizing the K-means algorithm. The system then determines whether user preferences change based on a set threshold, and when the user's preference changes, the current preference weight vector can be obtained by redefining the preference factor or calling difference perception. Finally, the road network is quantized separately according to the user preference weight vector, and the optimal path is obtained by using Tabu search algorithm. The simulation results of two scenarios show that the proposed strategy can meet the requirements of autopilot even when user preferences change.


Assuntos
Algoritmos , Redes Neurais de Computação , Simulação por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA