Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 20(10): A412-7, 2012 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-22712090

RESUMO

Nano-patterned glass superstrates obtained via a large-area production approach are desirable for antireflection and light trapping in thin-film solar cells. The tapered nanostructures allow a graded refractive index profile between the glass and material interfaces, leading to suppressed surface reflection and increased forward diffraction of light. In this work, we investigate nanostructured glass patterns with different aspect ratios using scalable nanosphere lithography for hydrogenated amorphous silicon (a-Si:H) thin film solar cells. Compared to flat glass cell and Asahi U-type glass cell, enhancements in short-circuit current density (J(sc)) of 51.6% and 8%, respectively, were achieved for a moderate aspect ratio of 0.16. The measured external quantum efficiencies (EQE) spectra confirmed a broadband enhancement due to antireflection and light trapping properties.

2.
Opt Express ; 18 Suppl 3: A467-76, 2010 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-21165077

RESUMO

Vertically-aligned silicon nanowires (SiNWs) that demonstrate reductions of phonon thermal conductivities are ideal components for thermoelectric devices. In this paper, we present large-area silicon nanowire arrays in various lengths using a silver-induced, electroless-etching method that is applicable to both n- and p-type substrates. The measured thermal conductivities of nanowire composites are significantly reduced by up to 43%, compared to that of bulk silicon. Detailed calculations based on the series thermal resistance and phonon radiative transfer models confirm the reduction of thermal conductivity not only due to the increased air fraction, but also the nanowire size effect, suggesting the soundness of employing bulk silicon nanowire composites as efficient thermoelectric materials.

3.
ACS Appl Mater Interfaces ; 4(12): 6857-64, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23167527

RESUMO

Hybrid organic-silicon heterojunction solar cells promise a significant reduction on fabrication costs by avoiding energy-intensive processes. However, their scalability remains challenging without a low-cost transparent electrode. In this work, we present solution-processed silver-nanowire meshes that uniformly cover the microtextured surface of hybrid heterojunction solar cells to enable efficient carrier collection for large device area. We systematically compare the characteristics and device performance with long and short nanowires with an average length/diameter of 30 µm/115 nm and 15 µm/45 nm, respectively, to those with silver metal grids. A remarkable power conversion efficiency of 10.1% is achieved with a device area of 1 × 1 cm(2) under 100 mW/cm(2) of AM1.5G illumination for the hybrid solar cells employing long wires, which represents an enhancement factor of up to 36.5% compared to the metal grid counterpart. The high-quality nanowire network displays an excellent spatial uniformity of photocurrent generation via distributed nanowire meshes and low dependence on efficient charge transport under a high light-injection condition with increased device area. The capability of silver nanowires as flexible transparent electrodes presents a great opportunity to accelerate the mass deployment of high-efficiency hybrid silicon photovoltaics via simple and rapid soluble processes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA