Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 28(9)2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37175314

RESUMO

The large-scale implementations of lithium iron phosphate (LFP) batteries for energy storage systems have been gaining attention around the world due to their quality of high technological maturity and flexible configuration. Unfortunately, the exponential production of LFP batteries is accompanied by an annual accumulation of spent batteries and a premature consumption of the lithium resource. Recycling souring critical battery materials such as Li2CO3 is essential to reduce the supply chain risk and achieve net carbon neutrality goals. During the recovery of Li2CO3, impurity removal is the most crucial step in the hydrometallurgy process of spent LiFePO4, which determines the purity of Li2CO3. By investigating and comparing the results of impurity elimination from the purified Li+-containing liquids with strong and weak alkalis under identical pH conditions, respectively, a strategy based on an alkali mixture has been proposed. The purified Li+-containing liquid was, thereafter, concentrated and sodium carbonate was added in order to precipitate Li2CO3. As a result, a high purity Li2CO3 (99.51%) of battery grade was obtained. LiFePO4 prepared with the recovered Li2CO3 and FePO4 as raw materials also displayed a comparative high capacity and stable cycle performance to the commercial product and further verified the electrochemical activity of the recovered materials.

2.
Acta Pharmacol Sin ; 43(11): 2885-2894, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35365781

RESUMO

Few therapies can reverse the proangiogenic activity of senescent mesenchymal stromal/stem cells (MSCs). In this study, we investigated the effects of rapamycin on the proangiogenic ability of senescent human umbilical cord MSCs (UCMSCs). An in vitro replicative senescent cell model was established in cultured UCMSCs. We found that late passage (P25 or later) UCMSCs (LP-UCMSCs) exhibited impaired proangiogenic abilities. Treatment of P25 UCMSCs with rapamycin (900 nM) reversed the senescent phenotype and notably enhanced the proangiogenic activity of senescent UCMSCs. In a nude mouse model of hindlimb ischemia, intramuscular injection of rapamycin-treated P25 UCMSCs into the ischemic limb significantly promoted neovascularization and ischemic limb salvage. We further analyzed the changes in the expression of angiogenesis-associated genes in rapamycin-primed MSCs and found higher expression of several genes related to angiogenesis, such as VEGFR2 and CTGF/CCN2, in primed cells than in unprimed MSCs. Taken together, our data demonstrate that rapamycin is a potential drug to restore the proangiogenic activity of senescent MSCs, which is of importance in treating ischemic diseases and tissue engineering.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Humanos , Camundongos , Animais , Salvamento de Membro , Membro Posterior , Neovascularização Fisiológica , Sirolimo/farmacologia , Sirolimo/uso terapêutico , Isquemia/terapia , Isquemia/metabolismo , Células-Tronco Mesenquimais/metabolismo , Neovascularização Patológica/metabolismo , Camundongos Nus , Células Cultivadas
3.
Opt Express ; 17(8): 6741-6, 2009 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-19365502

RESUMO

A new source of two diode laser beams, spatially separated but optically phase-locked with each other, is used to study the modulation transfer spectroscopy of coherent population trapping resonance (CPT). The spectrum for the (87)Rb D2 line is obtained with narrow linewidth and high signal-to-noise ratio, and analyzed with different experimental parameters. A theoretical analysis of the CPT modulation transfer spectra is deduced from the density matrix equation of motion, and found to be in good agreement with the experimental results.


Assuntos
Algoritmos , Interferometria/instrumentação , Lasers Semicondutores , Modelos Teóricos , Análise Espectral/instrumentação , Simulação por Computador , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Fatores de Tempo
4.
J Huazhong Univ Sci Technolog Med Sci ; 35(3): 343-349, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26072071

RESUMO

This study examined the mechanism of the inhibitory effect of parthenolide (PTL) on the activity of NF-κB in multiple myeloma (MM). Human multiple myeloma cell line RPMI 8226 cells were treated with or without different concentrations of PTL for various time periods, and then MTT assay was used to detect cell proliferation. Cell cycle and apoptosis were flow cytometrically detected. The level of protein ubiquitination was determined by using immunoprecipitation. Western blotting was employed to measure the level of total protein ubiquitination, the expression of IκB-α in cell plasma and the content of p65 in nucleus. The content of p65 in nucleus before and after PTL treatment was also examined with immunofluorescence. Exposure of RPMI 8226 cells to PTL attenuated the level of ubiquitinated Nemo, increased the expression of IκB-α and reduced the level of p65 in nucleus, finally leading to the decrease of the activity of NF-κB. PTL inhibited cell proliferation, induced apoptosis and blocked cell cycle. Furthermore, the levels of ubiquitinated tumor necrosis factor receptor-associated factor 6 (TRAF6) and total proteins were decreased after PTL treatment. By using Autodock software package, we predicted that PTL could bind to TRAF6 directly and tightly. Taken together, our findings suggest that PTL inhibits the activation of NF-κB signaling pathway via directly binding with TRAF6, thereby suppressing MM cell proliferation and inducing apoptosis.


Assuntos
Mieloma Múltiplo/metabolismo , NF-kappa B/antagonistas & inibidores , Sesquiterpenos/farmacologia , Fator 6 Associado a Receptor de TNF/metabolismo , Apoptose , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Mieloma Múltiplo/tratamento farmacológico , NF-kappa B/sangue , Fator de Transcrição RelA/metabolismo , Ubiquitinação/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA