Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Insect Mol Biol ; 33(5): 432-443, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38655882

RESUMO

Agricultural insect pests (AIPs) are widely successful in adapting to natural and anthropogenic stressors, repeatedly overcoming population bottlenecks and acquiring resistance to intensive management practices. Although they have been largely overlooked in evolutionary studies, AIPs are ideal systems for understanding rapid adaptation under novel environmental conditions. Researchers have identified several genomic mechanisms that likely contribute to adaptive stress responses, including positive selection on de novo mutations, polygenic selection on standing allelic variation and phenotypic plasticity (e.g., hormesis). However, new theory suggests that stress itself may induce epigenetic modifications, which may confer heritable physiological changes (i.e., stress-resistant phenotypes). In this perspective, we discuss how environmental stress from agricultural management generates the epigenetic and genetic modifications that are associated with rapid adaptation in AIPs. We summarise existing evidence for stress-induced evolutionary processes in the context of insecticide resistance. Ultimately, we propose that studying AIPs offers new opportunities and resources for advancing our knowledge of stress-induced evolution.


Assuntos
Evolução Biológica , Insetos , Resistência a Inseticidas , Estresse Fisiológico , Animais , Insetos/genética , Resistência a Inseticidas/genética , Epigênese Genética , Adaptação Fisiológica , Agricultura/métodos
2.
J Evol Biol ; 37(1): 62-75, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38285658

RESUMO

Associating with plant hosts is thought to have elevated the diversification of insect herbivores, which comprise the majority of global species diversity. In particular, there is considerable interest in understanding the genetic changes that allow host-plant shifts to occur in pest insects and in determining what aspects of functional genomic diversity impact host-plant breadth. Insect chemoreceptors play a central role in mediating insect-plant interactions, as they directly influence plant detection and sensory stimuli during feeding. Although chemosensory genes evolve rapidly, it is unclear how they evolve in response to host shifts and host specialization. We investigate whether selection at chemosensory genes is linked to host-plant expansion from the buffalo burr, Solanum rostratum, to potato, Solanum tuberosum, in the super-pest Colorado potato beetle (CPB), Leptinotarsa decemlineata (Coleoptera: Chrysomelidae). First, to refine our knowledge of CPB chemosensory genes, we developed novel gene expression data for the antennae and maxillary-labial palps. We then examine patterns of selection at these loci within CPB, as well as compare whether rates of selection vary with respect to 9 closely related, non-pest Leptinotarsa species that vary in diet breadth. We find that rates of positive selection on olfactory receptors are higher in host-plant generalists, and this signal is particularly strong in CPB. These results provide strong candidates for further research on the genetic basis of variation in insect chemosensory performance and novel targets for pest control of a notorious super-pest.


Assuntos
Besouros , Solanum tuberosum , Animais , Besouros/genética , Solanum tuberosum/genética , Genômica , Dieta , Colorado
3.
Mol Biol Evol ; 39(2)2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35044459

RESUMO

Insecticide resistance and rapid pest evolution threatens food security and the development of sustainable agricultural practices, yet the evolutionary mechanisms that allow pests to rapidly adapt to control tactics remains unclear. Here, we examine how a global super-pest, the Colorado potato beetle (CPB), Leptinotarsa decemlineata, rapidly evolves resistance to insecticides. Using whole-genome resequencing and transcriptomic data focused on its ancestral and pest range in North America, we assess evidence for three, nonmutually exclusive models of rapid evolution: pervasive selection on novel mutations, rapid regulatory evolution, and repeated selection on standing genetic variation. Population genomic analysis demonstrates that CPB is geographically structured, even among recently established pest populations. Pest populations exhibit similar levels of nucleotide diversity, relative to nonpest populations, and show evidence of recent expansion. Genome scans provide clear signatures of repeated adaptation across CPB populations, with especially strong evidence of selection on insecticide resistance genes in different populations. Analyses of gene expression show that constitutive upregulation of candidate insecticide resistance genes drives distinctive population patterns. CPB evolves insecticide resistance repeatedly across agricultural regions, leveraging similar genetic pathways but different genes, demonstrating a polygenic trait architecture for insecticide resistance that can evolve from standing genetic variation. Despite expectations, we do not find support for strong selection on novel mutations, or rapid evolution from selection on regulatory genes. These results suggest that integrated pest management practices must mitigate the evolution of polygenic resistance phenotypes among local pest populations, in order to maintain the efficacy and sustainability of novel control techniques.


Assuntos
Besouros , Inseticidas , Solanum tuberosum , Animais , Besouros/genética , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Análise de Sequência de DNA , Solanum tuberosum/genética
4.
Mol Ecol ; 30(1): 237-254, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33095936

RESUMO

Contextualizing evolutionary history and identifying genomic features of an insect that might contribute to its pest status is important in developing early detection and control tactics. In order to understand the evolution of pestiferousness, which we define as the accumulation of traits that contribute to an insect population's success in an agroecosystem, we tested the importance of known genomic properties associated with rapid adaptation in the Colorado potato beetle (CPB), Leptinotarsa decemlineata Say. Within the leaf beetle genus Leptinotarsa, only CPB, and a few populations therein, has risen to pest status on cultivated nightshades, Solanum. Using whole genomes from ten closely related Leptinotarsa species native to the United States, we reconstructed a high-quality species tree and used this phylogenetic framework to assess evolutionary patterns in four genomic features of rapid adaptation: standing genetic variation, gene family expansion and contraction, transposable element abundance and location, and positive selection at protein-coding genes. Throughout approximately 20 million years of history, Leptinotarsa species show little evidence of gene family turnover and transposable element variation. However, there is a clear pattern of CPB experiencing higher rates of positive selection on protein-coding genes. We determine that these rates are associated with greater standing genetic variation due to larger effective population size, which supports the theory that the demographic history contributes to rates of protein evolution. Furthermore, we identify a suite of coding genes under positive selection that are putatively associated with pestiferousness in the Colorado potato beetle lineage. They are involved in the biological processes of xenobiotic detoxification, chemosensation and hormone function.


Assuntos
Besouros , Solanum tuberosum , Solanum , Animais , Besouros/genética , Colorado , Filogenia
5.
J Chem Ecol ; 45(7): 549-558, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31230224

RESUMO

Swede midge, Contarinia nasturtii Kieffer, is an invasive cecidomyiid pest that causes serious losses of Brassica oilseed and vegetable crops in the Northeastern U.S. and Canada. Currently, few alternatives to systemic insecticides exist for its management. Because a single feeding larva can render heading Brassica crops unmarketable, management strategies that prevent oviposition are needed urgently. Pheromone-mediated mating disruption is a promising management approach for swede midge because it prevents mating and subsequent crop damage. While the swede midge pheromone has been identified, one of the major barriers to using it in mating disruption is the high cost of synthesis. Racemic blends, consisting of natural and non-natural stereoisomers, could be useful for mating disruption because they are cheaper to produce. However, it is not clear whether racemic pheromone blends attract males and/or prevent them from locating and mating with females. Here, we studied the behavior of male swede midge in Y-tube and wind tunnel bioassays to pheromone blends. Specifically, we tested whether males: (1) are attracted to different doses of pheromone, (2) discriminate between blends comprising natural stereospecific or racemic components, or a combination thereof, and (3) are able to locate and copulate with females in pheromone-permeated olfactometers. We found that picogram amounts of pheromone attracted males and prevented them from locating females in y-tube olfactometers. While males were more attracted to stereospecific blends, compared to racemic blends, all blends tested prevented nearly all males mating with females. Therefore, low dose racemic blends may be promising for pheromone-mediated mating disruption.


Assuntos
Dípteros/fisiologia , Atrativos Sexuais/química , Animais , Dípteros/crescimento & desenvolvimento , Feminino , Espécies Introduzidas , Masculino , Reprodução/efeitos dos fármacos , Atrativos Sexuais/farmacologia , Comportamento Sexual Animal/efeitos dos fármacos , Estereoisomerismo
6.
J Insect Sci ; 18(3)2018 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-29924332

RESUMO

Swede midge, Contarinia nasturtii Kieffer (Diptera: Cecidomyiidae), is an invasive pest causing significant damage on Brassica crops in the Northeastern United States and Eastern Canada. Heading brassicas, like cauliflower, appear to be particularly susceptible. Swede midge is difficult to control because larvae feed concealed inside meristematic tissues of the plant. In order to develop damage and marketability thresholds necessary for integrated pest management, it is important to determine how many larvae render plants unmarketable and whether the timing of infestation affects the severity of damage. We manipulated larval density (0, 1, 3, 5, 10, or 20) per plant and the timing of infestation (30, 55, and 80 d after seeding) on cauliflower in the lab and field to answer the following questions: 1) What is the swede midge damage threshold? 2) How many swede midge larvae can render cauliflower crowns unmarketable? and 3) Does the age of cauliflower at infestation influence the severity of damage and marketability? We found that even a single larva can cause mild twisting and scarring in the crown rendering cauliflower unmarketable 52% of the time, with more larvae causing more severe damage and additional losses, regardless of cauliflower age at infestation.


Assuntos
Brassica/economia , Herbivoria , Nematóceros/fisiologia , Animais , Brassica/crescimento & desenvolvimento , Larva/crescimento & desenvolvimento , Larva/fisiologia , Nematóceros/crescimento & desenvolvimento , Densidade Demográfica , Fatores de Tempo
7.
Hum Genet ; 136(1): 39-54, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27699474

RESUMO

Genetic variants with extreme allele frequency differences (EAFD) may underlie some human health disparities across populations. To identify EAFD loci, we systematically analyzed and characterized 81 million genomic variants from 2504 unrelated individuals of 26 world populations (phase III of the 1000 Genomes Project). Our analyses revealed a total of 434 genes, 15 pathways, and 18 diseases and traits influenced by EAFD variants from five continental populations. They included known EAFD genes, such as LCT (lactose tolerance), SLC24A5 (skin pigmentation), and EDAR (hair morphology). We found many novel EAFD genes, including TBC1D2B (autophagy mediator), TRIM40 (gastrointestinal inflammatory regulator), KRT71, KRT75, KRT83, and KRTAP10-1 (hair and epithelial keratin synthesis), PIK3R3 (insulin receptor interaction), DARS (neurological disorders), and NACA2 (skin inflammatory response). Our results also showed four complex diseases significantly associated with EAFD loci, including asthma (adjusted enrichment P = 4 × 10-8), type I diabetes (P = 6 × 10-9), alcohol consumption (P = 0.0002), and attention deficit/hyperactivity disorder (P = 0.003). This study provides a comprehensive atlas of genes, pathways, and human diseases significantly influenced by EAFD variants.


Assuntos
Frequência do Gene , Predisposição Genética para Doença , Variação Genética , Povo Asiático/genética , População Negra/genética , Estudo de Associação Genômica Ampla , Humanos , Desequilíbrio de Ligação , Modelos Teóricos , Fenótipo , Polimorfismo de Nucleotídeo Único , População Branca/genética
8.
Mol Ecol ; 26(22): 6284-6300, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28857332

RESUMO

The ability of insect pests to rapidly and repeatedly adapt to insecticides has long challenged entomologists and evolutionary biologists. Since Crow's seminal paper on insecticide resistance in 1957, new data and insights continue to emerge that are relevant to the old questions about how insecticide resistance evolves: such as whether it is predominantly mono- or polygenic, and evolving from standing vs. de novo genetic variation. Many studies support the monogenic hypothesis, and current management recommendations assume single- or two-locus models. But inferences could be improved by integrating data from a broader sample of pest populations and genomes. Here, we generate evidence relevant to these questions by applying a landscape genomics framework to the study of insecticide resistance in a major agricultural pest, Colorado potato beetle, Leptinotarsa decemlineata (Say). Genome-environment association tests using genomic variation from 16 populations spanning gradients of landscape variables associated with insecticide exposure over time revealed 42 strong candidate insecticide resistance genes, with potentially overlapping roles in multiple resistance mechanisms. Measurements of resistance to a widely used insecticide, imidacloprid, among 47 L. decemlineata populations revealed heterogeneity at a small (2 km) scale and no spatial signature of origin or spread throughout the landscape. Analysis of nucleotide diversity suggested candidate resistance loci have undergone varying degrees of selective sweeps, often maintaining similar levels of nucleotide diversity to neutral loci. This study suggests that many genes are involved in insecticide resistance in L. decemlineata and that resistance likely evolves from both de novo and standing genetic variation.


Assuntos
Besouros/genética , Genética Populacional , Resistência a Inseticidas/genética , Herança Multifatorial , Animais , Genes de Insetos , Genômica , Genótipo , Polimorfismo de Nucleotídeo Único , Análise Espacial , Wisconsin
9.
Annu Rev Entomol ; 60: 35-58, 2015 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-25341108

RESUMO

Crop domestication is the process of artificially selecting plants to increase their suitability to human requirements: taste, yield, storage, and cultivation practices. There is increasing evidence that crop domestication can profoundly alter interactions among plants, herbivores, and their natural enemies. Overall, little is known about how these interactions are affected by domestication in the geographical ranges where these crops originate, where they are sympatric with the ancestral plant and share the associated arthropod community. In general, domestication consistently has reduced chemical resistance against herbivorous insects, improving herbivore and natural enemy performance on crop plants. More studies are needed to understand how changes in morphology and resistance-related traits arising from domestication may interact with environmental variation to affect species interactions across multiple scales in agroecosystems and natural ecosystems.


Assuntos
Aracnídeos/fisiologia , Cruzamento , Produtos Agrícolas/fisiologia , Cadeia Alimentar , Insetos/fisiologia , Animais , Produtos Agrícolas/genética
10.
BMC Evol Biol ; 13: 13, 2013 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-23331855

RESUMO

BACKGROUND: Invasive pest species offers a unique opportunity to study the effects of genetic architecture, demography and selection on patterns of genetic variability. Invasive Colorado potato beetle (Leptinotarsa decemlineata) populations have experienced a rapid range expansion and intense selection by insecticides. By comparing native and invasive beetle populations, we studied the origins of organophosphate (OP) resistance-associated mutations in the acetylcholinesterase 2 (AChE2) gene, and the role of selection and demography on its genetic variability. RESULTS: Analysis of three Mexican, two US and five European populations yielded a total of 49 haplotypes. Contrary to the expectations all genetic variability was associated with a point mutation linked to insecticide resistance (S291G), this mutation was found in 100% of Mexican, 95% of US and 71% of European beetle sequences analysed. Only two susceptible haplotypes, genetically very differentiated, were found, one in US and one in Europe. The genetic variability at the AChE2 gene was compared with two other genes not directly affected by insecticide selection, diapause protein 1 and juvenile hormone esterase. All three genes showed reduction in genetic variability indicative of a population bottleneck associated with the invasion. CONCLUSIONS: Stochastic effects during invasion explain most of the observed patterns of genetic variability at the three genes investigated. The high frequency of the S291G mutation in the AChE2 gene among native populations suggests this mutation is the ancestral state and thus, either a pre-adaptation of the beetle for OP resistance or the AChE2 is not the major gene conferring OP resistance. The long historical association with host plant alkaloids together with recombination may have contributed to the high genetic variation at this locus. The genetic diversity in the AChE2 locus of the European beetles, in turn, strongly reflects founder effects followed by rapid invasion. Our results suggest that despite the long history of insecticide use in this species, demographic events together with pre-invasion history have been strongly influential in shaping the genetic diversity of the AChE2 gene in the invasive beetle populations.


Assuntos
Acetilcolinesterase/genética , Besouros/genética , Variação Genética , Resistência a Inseticidas/genética , Espécies Introduzidas , Animais , Besouros/efeitos dos fármacos , Besouros/enzimologia , Análise Mutacional de DNA , Genes de Insetos , Genética Populacional , Haplótipos , Inseticidas/farmacologia , Mutação , Organofosfatos/farmacologia , Solanum tuberosum
11.
Curr Microbiol ; 67(3): 263-70, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23549902

RESUMO

Yeast-like symbiotes (YLS) are endosymbionts that are intimately associated with the growth, development, reproduction of their host, the brown planthopper, Nilaparvata lugens (Hemiptera: Delphacidae). However, it is unclear how many species of YLS are found within N. lugens, and how they are related to each other. Traditional methods or simple amplification based on 18S rDNA sequence does not reliably identify new species quickly and efficiently. Therefore, a novel nested PCR-denaturing gradient gel electrophoresis (DGGE) strategy was developed in this article to analyze the YLS of brown planthopper using a nested PCR protocol that involved the 18S rDNA gene and the 5.8S-ITS gene using fungal universal primers. The nested PCR protocol was developed as follows: firstly, the 18S rDNA gene, and 5.8S-ITS gene were amplified using fungal universal primers. Subsequently, these products were used as a template in a second PCR with primers ITS1GC-ITS2, ITS1FGC-ITS2, and NFGC-NR, which was suitable for DGGE. Using this highly specific molecular approach, we found several previously detected fungi: Noda, Pichia guilliermondii, Candida sp., and some previously undetected fungi, such as Saccharomycetales sp., Debaryomyces hansenii, and some uncultured fungi. In conclusion, the nested PCR system developed in this study, coupled with DGGE fingerprinting, offers a new tool for uncovering fungal endosymbiont diversity within planthoppers.


Assuntos
Biodiversidade , Eletroforese em Gel de Gradiente Desnaturante/métodos , Hemípteros/microbiologia , Reação em Cadeia da Polimerase/métodos , Leveduras/classificação , Leveduras/genética , Animais , DNA Fúngico/genética , DNA Espaçador Ribossômico/genética , RNA Ribossômico 18S/genética
12.
Int J Mol Sci ; 14(2): 3921-45, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23434671

RESUMO

Although rice resistance plays an important role in controlling the brown planthopper (BPH), Nilaparvata lugens, not all varieties have the same level of protection against BPH infestation. Understanding the molecular interactions in rice defense response is an important tool to help to reveal unexplained processes that underlie rice resistance to BPH. A proteomics approach was used to explore how wild type IR64 and near-isogenic rice mutants with gain and loss of resistance to BPH respond during infestation. A total of 65 proteins were found markedly altered in wild type IR64 during BPH infestation. Fifty-two proteins associated with 11 functional categories were identified using mass spectrometry. Protein abundance was less altered at 2 and 14 days after infestation (DAI) (T1, T2, respectively), whereas higher protein levels were observed at 28 DAI (T3). This trend diminished at 34 DAI (T4). Comparative analysis of IR64 with mutants showed 22 proteins that may be potentially associated with rice resistance to the brown planthopper (BPH). Ten proteins were altered in susceptible mutant (D1131) whereas abundance of 12 proteins including S-like RNase, Glyoxalase I, EFTu1 and Salt stress root protein "RS1" was differentially changed in resistant mutant (D518). S-like RNase was found in greater quantities in D518 after BPH infestation but remained unchanged in IR64 and decreased in D1131. Taken together, this study shows a noticeable level of protein abundance in the resistant mutant D518 compared to the susceptible mutant D1131 that may be involved in rendering enhanced level of resistance against BPH.

13.
Pest Manag Sci ; 79(1): 9-20, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36127854

RESUMO

Agricultural insect pests display an exceptional ability to adapt quickly to natural and anthropogenic stressors. Emerging evidence suggests that frequent and varied sources of stress play an important role in driving protective physiological responses; therefore, intensively managed agroecosystems combined with climatic shifts might be an ideal crucible for stress adaptation. Cross-protection, where responses to one stressor offers protection against another type of stressor, has been well documented in many insect species, yet the molecular and epigenetic underpinnings that drive overlapping protective responses in insect pests remain unclear. In this perspective, we discuss cross-protection mechanisms and provide an argument for its potential role in increasing tolerance to a wide range of natural and anthropogenic stressors in agricultural insect pests. By drawing from existing literature on single and multiple stressor studies, we outline the processes that facilitate cross-protective interactions, including epigenetic modifications, which are understudied in insect stress responses. Finally, we discuss the implications of cross-protection for insect pest management, focusing on the consequences of cross-protection between insecticides and elevated temperatures associated with climate change. Given the multiple ways that insect pests are intensively managed in agroecosystems, we suggest that examining the role of multiple stressors can be important in understanding the wide adaptability of agricultural insect pests. © 2022 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Núcleo Familiar , Controle de Pragas , Animais , Insetos
14.
Environ Entomol ; 52(6): 1162-1171, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37823556

RESUMO

Agricultural insect herbivores show a remarkable ability to adapt to modern agroecosystems, making them ideal for the study of the mechanisms underlying rapid evolution. The mobilization of transposable elements is one mechanism that may help explain this ability. The Colorado potato beetle, Leptinotarsa decemlineata, is a highly adaptable species, as shown by its wide host range, broad geographic distribution, and tolerance to insecticides. However, beetle populations vary in insecticide tolerance, with Eastern US beetle populations being more adaptable than Western US ones. Here, we use a community ecology approach to examine how the abundance and diversity of transposable elements differs in 88 resequenced genomes of L. decemlineata collected throughout North America. We tested if assemblages and mobilization of transposable elements differed between populations of L. decemlineata based on the beetle's geography, host plant, and neonicotinoid insecticide resistance. Among populations of North American L. decemlineata, individuals collected in Mexico host more transposable elements than individuals collected in the United States. Transposable element insertion locations differ among geographic populations, reflecting the evolutionary history of this species. Total transposable element diversity between L. decemlineata individuals is enough to distinguish between populations, with more TEs found in beetles collected in Mexico than in the United States. Transposable element diversity does not appear to differ between beetles found on different host plants, or relate to different levels of insecticide resistance.


Assuntos
Besouros , Inseticidas , Solanum tuberosum , Animais , Besouros/genética , Elementos de DNA Transponíveis , Inseticidas/farmacologia , Neonicotinoides , Resistência a Inseticidas/genética
15.
Curr Opin Insect Sci ; 55: 101000, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36521782

RESUMO

Despite considerable research, efforts to manage insecticide resistance continue to fail. The Colorado potato beetle (CPB), Leptinotarsa decemlineata Say (Coleoptera: Chrysomelidae), epitomizes this problem, as it has repeatedly and rapidly evolved resistance to>50 insecticides. The patterns of resistance evolution are intriguing, as they defy models where resistance evolves from rare mutations. Here, we synthesize recent research on insecticide resistance in CPB showing that polygenic resistance drawn from standing genetic diversity explains genomic patterns of insecticide resistance evolution. However, rapid gene regulatory evolution suggests that other mechanisms might also facilitate adaptive change. We explore the hypothesis that sublethal stress from insecticide exposure could alter heritable epigenetic modifications, and discuss the range of experimental approaches needed to fully understand insecticide resistance evolution in this super pest.


Assuntos
Besouros , Inseticidas , Solanum tuberosum , Animais , Besouros/genética , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Regulação da Expressão Gênica
16.
Evol Appl ; 15(10): 1691-1705, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36330305

RESUMO

Pesticide resistance provides one of the best examples of rapid evolution to environmental change. The Colorado potato beetle (CPB) has a long and noteworthy history as a super-pest due to its ability to repeatedly develop resistance to novel insecticides and rapidly expand its geographic and host plant range. Here, we investigate regional differences in demography, recombination, and selection using whole-genome resequencing data from two highly resistant CPB populations in the United States (Hancock, Wisconsin and Long Island, New York). Demographic reconstruction corroborates historical records for a single pest origin during the colonization of the Midwestern and Eastern United States in the mid- to late-19th century and suggests that the effective population size might be higher in Long Island, NY than Hancock, WI despite contemporary potato acreage of Wisconsin being far greater. Population-based recombination maps show similar background recombination rates between these populations, as well as overlapping regions of low recombination that intersect with important metabolic detoxification genes. In both populations, we find compelling evidence for hard selective sweeps linked to insecticide resistance with multiple sweeps involving genes associated with xenobiotic metabolism, stress response, and defensive chemistry. Notably, only two candidate insecticide resistance genes are shared among both populations, but both appear to be independent hard selective sweep events. This suggests that repeated, rapid, and independent evolution of genes may underlie CPB's pest status among geographically distinct populations.

17.
Ecol Evol ; 11(22): 15995-16005, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34824806

RESUMO

Although insect herbivores are known to evolve resistance to insecticides through multiple genetic mechanisms, resistance in individual species has been assumed to follow the same mechanism. While both mutations in the target site insensitivity and increased amplification are known to contribute to insecticide resistance, little is known about the degree to which geographic populations of the same species differ at the target site in a response to insecticides. We tested structural (e.g., mutation profiles) and regulatory (e.g., the gene expression of Ldace1 and Ldace2, AChE activity) differences between two populations (Vermont, USA and Belchow, Poland) of the Colorado potato beetle, Leptinotarsa decemlineata in their resistance to two commonly used groups of insecticides, organophosphates, and carbamates. We established that Vermont beetles were more resistant to azinphos-methyl and carbaryl insecticides than Belchow beetles, despite a similar frequency of resistance-associated alleles (i.e., S291G) in the Ldace2 gene. However, the Vermont population had two additional amino acid replacements (G192S and F402Y) in the Ldace1 gene, which were absent in the Belchow population. Moreover, the Vermont population showed higher expression of Ldace1 and was less sensitive to AChE inhibition by azinphos-methyl oxon than the Belchow population. Therefore, the two populations have evolved different genetic mechanisms to adapt to organophosphate and carbamate insecticides.

18.
Pest Manag Sci ; 77(1): 548-556, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32816381

RESUMO

BACKGROUND: Pheromone-mediated mating disruption, which uses large amounts of synthetic female pheromones to interrupt insect reproductive behavior, has been successful for managing important agricultural pests. While multiple mechanisms have been discovered explaining how synthetic pheromone treatments prevent males from finding females, it is less clear how unnaturally large doses of synthetic sex pheromone impact the behavior of female insects, particularly nonlepidopteran females. In some species, 'autodetecting' females possess pheromone receptors and respond to ambient pheromones by altering their mating behavior. Here, we test whether exposure to stereospecific and racemic synthetic pheromones influences calling and subsequent propensity to mate in female swede midge (Contarinia nasturtii Kieffer; Diptera: Cecidomyiidae), a pest of Brassica crops. RESULTS: In both laboratory and field settings, females exposed to stereospecific and racemic three-component pheromone blends called significantly more frequently and for longer durations than midges in control treatments. In the field, midges were twice as likely to call in pheromone-treated plots versus nontreated plots. Additionally, pheromone pre-exposure reduced subsequent mating: while 68% of female midges mated following control conditions, only 42% and 35% of females pre-exposed to stereospecific and racemic three-component blends mated, respectively. CONCLUSION: While more frequent calling within pheromone-treated backgrounds may increase the likelihood that females are detected by males, a reduction in female propensity to mate would increase the efficacy of a pheromone-mediated mating disruption system. Our work presents the first known investigation of autodetection behavior in Cecidomyiidae. Additional research is necessary to understand the implications of female autodetection for swede midge management.


Assuntos
Dípteros , Atrativos Sexuais , Animais , Feminino , Masculino , Nematóceros , Feromônios/farmacologia , Reprodução , Atrativos Sexuais/farmacologia , Comportamento Sexual Animal
19.
Evol Appl ; 14(3): 746-757, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33767749

RESUMO

Insecticide use is pervasive as a selective force in modern agroecosystems. Insect herbivores exposed to these insecticides have been able to rapidly evolve resistance to them, but how they are able to do so is poorly understood. One possible but largely unexplored explanation is that exposure to sublethal doses of insecticides may alter epigenetic patterns that are heritable. For instance, epigenetic mechanisms, such as DNA methylation that modifies gene expression without changing the underlying genetic code, may facilitate the emergence of resistant phenotypes in complex ways. We assessed the effects of sublethal insecticide exposure, with the neonicotinoid imidacloprid, on DNA methylation in the Colorado potato beetle, Leptinotarsa decemlineata, examining both global changes in DNA methylation and specific changes found within genes and transposable elements. We found that exposure to insecticide led to decreases in global DNA methylation for parent and F2 generations and that many of the sites of changes in methylation are found within genes associated with insecticide resistance, such as cytochrome P450s, or within transposable elements. Exposure to sublethal doses of insecticide caused heritable changes in DNA methylation in an agricultural insect herbivore. Therefore, epigenetics may play a role in insecticide resistance, highlighting a fundamental mechanism of evolution while informing how we might better coexist with insect species in agroecosystems.

20.
Genome Biol Evol ; 13(3)2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33662122

RESUMO

The swede midge, Contarinia nasturtii, is a cecidomyiid fly that feeds specifically on plants within the Brassicaceae. Plants in this family employ a glucosinolate-myrosinase defense system, which can be highly toxic to nonspecialist feeders. Feeding by C. nasturtii larvae induces gall formation, which can cause substantial yield losses thus making it a significant agricultural pest. A lack of genomic resources, in particular a reference genome, has limited deciphering the mechanisms underlying glucosinolate tolerance in C. nasturtii, which is of particular importance for managing this species. Here, we present an annotated, scaffolded reference genome of C. nasturtii using linked-read sequencing from a single individual and explore systems involved in glucosinolate detoxification. The C. nasturtii genome is similar in size and annotation completeness to that of the Hessian fly, Mayetiola destructor, but has greater contiguity. Several genes encoding enzymes involved in glucosinolate detoxification in other insect pests, including myrosinases, sulfatases, and glutathione S-transferases, were found, suggesting that C. nasturtii has developed similar strategies for feeding on Brassicaceae. The C. nasturtii genome will, therefore, be integral to continued research on plant-insect interactions in this system and contribute to effective pest management strategies.


Assuntos
Brassicaceae/parasitologia , Dípteros/genética , Dípteros/metabolismo , Genoma , Animais , Brassicaceae/metabolismo , Dípteros/efeitos dos fármacos , Inativação Metabólica/genética , Larva , Anotação de Sequência Molecular , Praguicidas/metabolismo , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA