Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 131
Filtrar
1.
Genes Dev ; 35(9-10): 677-691, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33888564

RESUMO

During the development of the vertebrate nervous systems, genetic programs assemble an immature circuit that is subsequently refined by neuronal activity evoked by external stimuli. However, prior to sensory experience, the intrinsic property of the developing nervous system also triggers correlated network-level neuronal activity, with retinal waves in the developing vertebrate retina being the best documented example. Spontaneous activity has also been found in the visual system of Drosophila Here, we compare the spontaneous activity of the developing visual system between mammalian and Drosophila and suggest that Drosophila is an emerging model for mechanistic and functional studies of correlated spontaneous activity.


Assuntos
Drosophila melanogaster/citologia , Drosophila melanogaster/crescimento & desenvolvimento , Retina/citologia , Retina/embriologia , Células Receptoras Sensoriais/fisiologia , Animais , Drosophila melanogaster/fisiologia , Olho/citologia , Olho/crescimento & desenvolvimento , Humanos , Modelos Animais , Retina/fisiologia , Células Receptoras Sensoriais/citologia
2.
Proc Natl Acad Sci U S A ; 120(32): e2307451120, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37523539

RESUMO

Cell-type-specific tools facilitate the identification and functional characterization of the distinct cell types that form the complexity of neuronal circuits. A large collection of existing genetic tools in Drosophila relies on enhancer activity to label different subsets of cells and has been extremely useful in analyzing functional circuits in adults. However, these enhancer-based GAL4 lines often do not reflect the expression of nearby gene(s) as they only represent a small portion of the full gene regulatory elements. While genetic intersectional techniques such as the split-GAL4 system further improve cell-type-specificity, it requires significant time and resources to screen through combinations of enhancer expression patterns. Here, we use existing developmental single-cell RNA sequencing (scRNAseq) datasets to select gene pairs for split-GAL4 and provide a highly efficient and predictive pipeline (scMarco) to generate cell-type-specific split-GAL4 lines at any time during development, based on the native gene regulatory elements. These gene-specific split-GAL4 lines can be generated from a large collection of coding intronic MiMIC/CRIMIC lines or by CRISPR knock-in. We use the developing Drosophila visual system as a model to demonstrate the high predictive power of scRNAseq-guided gene-specific split-GAL4 lines in targeting known cell types, annotating clusters in scRNAseq datasets as well as in identifying novel cell types. Lastly, the gene-specific split-GAL4 lines are broadly applicable to any other Drosophila tissue. Our work opens new avenues for generating cell-type-specific tools for the targeted manipulation of distinct cell types throughout development and represents a valuable resource for the Drosophila community.


Assuntos
Proteínas de Drosophila , Fatores de Transcrição , Animais , Fatores de Transcrição/metabolismo , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Técnicas Genéticas , Análise de Sequência de RNA , Drosophila melanogaster/metabolismo
3.
Br J Haematol ; 204(4): 1344-1353, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38479427

RESUMO

This study investigates the potential utility of IKZF1 deletion as an additional high-risk marker for paediatric acute lymphoblastic leukaemia (ALL). The prognostic impact of IKZF1 status, in conjunction with minimal/measurable residual disease (MRD), was evaluated within the MRD-guided TPOG-ALL-2013 protocol using 412 newly diagnosed B-ALL patients aged 1-18. IKZF1 status was determined using multiplex ligation-dependent probe amplification. IKZF1 deletions, when co-occurring with CDKN2A, CDKN2B, PAX5 or PAR1 region deletions in the absence of ERG deletions, were termed IKZF1plus. Both IKZF1 deletion (14.6%) and IKZF1plus (7.8%) independently predicted poorer outcomes in B-ALL. IKZF1plus was observed in 4.1% of Philadelphia-negative ALL, with a significantly lower 5-year event-free survival (53.9%) compared to IKZF1 deletion alone (83.8%) and wild-type IKZF1 (91.3%) (p < 0.0001). Among patients with Day 15 MRD ≥0.01%, provisional high-risk patients with IKZF1plus exhibited the worst outcomes in event-free survival (42.0%), relapse-free survival (48.0%) and overall survival (72.7%) compared to other groups (p < 0.0001). Integration of IKZF1plus and positive Day 15 MRD identified a subgroup of Philadelphia-negative B-ALL with a 50% risk of relapse. This study highlights the importance of assessing IKZF1plus alongside Day 15 MRD positivity to identify patients at increased risk of adverse outcomes, potentially minimizing overtreatment.


Assuntos
Leucemia-Linfoma Linfoblástico de Células Precursoras B , Leucemia-Linfoma Linfoblástico de Células Precursoras , Criança , Humanos , Deleção de Genes , Fator de Transcrição Ikaros/genética , Recidiva Local de Neoplasia , Neoplasia Residual/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Prognóstico , Medição de Risco , Fatores de Transcrição , Lactente , Pré-Escolar , Adolescente
4.
Mol Biol Rep ; 51(1): 604, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38700644

RESUMO

BACKGROUND: The healing process after a myocardial infarction (MI) in humans involves complex events that replace damaged tissue with a fibrotic scar. The affected cardiac tissue may lose its function permanently. In contrast, zebrafish display a remarkable capacity for scar-free heart regeneration. Previous studies have revealed that syndecan-4 (SDC4) regulates inflammatory response and fibroblast activity following cardiac injury in higher vertebrates. However, whether and how Sdc4 regulates heart regeneration in highly regenerative zebrafish remains unknown. METHODS AND RESULTS: This study showed that sdc4 expression was differentially regulated during zebrafish heart regeneration by transcriptional analysis. Specifically, sdc4 expression increased rapidly and transiently in the early regeneration phase upon ventricular cryoinjury. Moreover, the knockdown of sdc4 led to a significant reduction in extracellular matrix protein deposition, immune cell accumulation, and cell proliferation at the lesion site. The expression of tgfb1a and col1a1a, as well as the protein expression of Fibronectin, were all down-regulated under sdc4 knockdown. In addition, we verified that sdc4 expression was required for cardiac repair in zebrafish via in vivo electrocardiogram analysis. Loss of sdc4 expression caused an apparent pathological Q wave and ST elevation, which are signs of human MI patients. CONCLUSIONS: Our findings support that Sdc4 is required to mediate pleiotropic repair responses in the early stage of zebrafish heart regeneration.


Assuntos
Coração , Regeneração , Sindecana-4 , Peixe-Zebra , Animais , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Sindecana-4/genética , Sindecana-4/metabolismo , Regeneração/genética , Coração/fisiologia , Coração/fisiopatologia , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Infarto do Miocárdio/genética , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Proliferação de Células/genética , Miocárdio/metabolismo , Miocárdio/patologia , Técnicas de Silenciamento de Genes
5.
J Liposome Res ; : 1-12, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38779944

RESUMO

Anti-glutamatergic agents may have neuroprotective effects against excitotoxicity that is known to be involved in the pathogenesis of Parkinson's disease (PD). One of these agents is kynurenic acid (KYNA), a tryptophan metabolite, which is an endogenous N-methyl-D-aspartic acid (NMDA) receptor antagonist. However, its pharmacological properties of poor water solubility and limited blood-brain barrier (BBB) permeability rules out its systemic administration in disorders affecting the central nervous system. Our aim in the present study was to investigate the neuroprotective effects of KYNA-loaded micelles (KYNA-MICs) against PD in vitro and in vivo. Lipid-based micelles (MICs) in conjunction with KYNA drug delivery have the potential to enhance the penetration of therapeutic drugs into a diseased brain without BBB obstacles. KYNA-MICs were characterized by particle size (105.8 ± 12.1 nm), loading efficiency (78.3 ± 4.23%), and in vitro drug release (approximately 30% at 24 h). The in vitro experiments showed that KYNA-MICs effectively reduced 2-fold protein aggregation. The in vivo studies revealed that KYNA was successfully delivered by 5-fold increase in neurotoxin-induced PD brains. The results showed significant enhancement of KYNA delivery into brain. We also found that the KYNA-MICs exhibited several therapeutic effects. The KYNA-MICs reduced protein aggregation of an in vitro PD model, ameliorated motor functions, and prevented loss of the striatal neurons in a PD animal model. The beneficial effects of KYNA-MICs are probably explained by the anti-excitotoxic activity of the treatment's complex. As the KYNA-MICs did not induce any appreciable side-effects at the protective dose applied to a chronic PD mouse model, our results demonstrate that KYNA provides neuroprotection and attenuates PD pathology.

6.
Nano Lett ; 23(24): 11727-11733, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38014963

RESUMO

We demonstrated optical bistability in an amorphous silicon Mie resonator with a size of ∼100 nm and Q-factor as low as ∼4 by utilizing photothermal and thermo-optical effects. We not only experimentally confirmed the steep intensity transition and the hysteresis in the scattering response from silicon nanocuboids but also established a physical model to numerically explain the underlying mechanism based on temperature-dependent competition between photothermal heating and heat dissipation. The transition between the bistable states offered particularly steep superlinearity of scattering intensity, reaching an effective nonlinearity order of ∼100th power over excitation intensity, leading to the potential of advanced optical switching devices and super-resolution microscopy.

7.
Chemistry ; 29(45): e202300702, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37272609

RESUMO

A simple and efficient one-pot oxidation synthesis of N-1-piperidonyl amides was successfully developed through the double oxidation of hydrazides (involving hydrazonium formation, azodioxy-carbonyl compounds generation, and α-carbon oxidation) by using meta-chloroperbenzoic acid (mCPBA). The convenient oxidation method was also extended to Rimonabant analogue. The lactam oxidized Rimonabant analogue was first successfully synthesized for demonstrating the construction and characterized by NMR spectroscopic methods and the single-crystal X-ray diffraction study (ORTEP).

8.
J Biochem Mol Toxicol ; 37(5): e23323, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36890697

RESUMO

With the improvement in children's acute lymphoblastic leukemia (ALL) care, the survival rate in children ALL has improved much. Methotrexate (MTX) plays an essential role in the success of children's ALL treatment. Since hepatotoxicity is commonly reported in individuals treated with intravenous or oral MTX, our study further examined the hepatic effect following intrathecal MTX treatment, which is an essential treatment for leukemia patients. Specifically, we examined the pathogenesis of MTX hepatotoxicity in young rats and explored the impact of melatonin treatment in protection against MTX hepatotoxicity. Successfully, we found that melatonin was able to protect against MTX hepatotoxicity.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Melatonina , Leucemia-Linfoma Linfoblástico de Células Precursoras , Ratos , Animais , Metotrexato/toxicidade , Melatonina/farmacologia , Melatonina/uso terapêutico , Proteínas Proto-Oncogênicas c-akt , Fosfatidilinositol 3-Quinases , Serina-Treonina Quinases TOR , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle
9.
Int J Mol Sci ; 24(3)2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36768965

RESUMO

Neuroinflammation and oxidative stress have been emerging as important pathways contributing to Parkinson's disease (PD) pathogenesis. In PD brains, the activated microglia release inflammatory factors such as interleukin (IL)-ß, IL-6, tumor necrosis factor (TNF)-α, and nitric oxide (NO), which increase oxidative stress and mediate neurodegeneration. Using 1-methyl-4-phenylpyridinium (MPP+)-activated human microglial HMC3 cells and the sub-chronic 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mouse model of PD, we found the potential of indole derivative NC009-1 against neuroinflammation, oxidative stress, and neurodegeneration for PD. In vitro, NC009-1 alleviated MPP+-induced cytotoxicity, reduced NO, IL-1ß, IL-6, and TNF-α production, and suppressed NLR family pyrin domain containing 3 (NLRP3) inflammasome activation in MPP+-activated HMC3 cells. In vivo, NC009-1 ameliorated motor deficits and non-motor depression, increased dopamine and dopamine transporter levels in the striatum, and reduced oxidative stress as well as microglia and astrocyte reactivity in the ventral midbrain of MPTP-treated mice. These protective effects were achieved by down-regulating NLRP3, CASP1, iNOS, IL-1ß, IL-6, and TNF-α, and up-regulating SOD2, NRF2, and NQO1. These results strengthen the involvement of neuroinflammation and oxidative stress in PD pathogenic mechanism, and indicate NC009-1 as a potential drug candidate for PD treatment.


Assuntos
Doença de Parkinson , Camundongos , Humanos , Animais , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/etiologia , Doença de Parkinson/metabolismo , Neurotoxinas/farmacologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Doenças Neuroinflamatórias , Interleucina-6/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Microglia/metabolismo , 1-Metil-4-fenilpiridínio/toxicidade , Estresse Oxidativo , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/efeitos adversos
10.
J Neurosci ; 2021 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-34031164

RESUMO

Insect gustatory systems comprise multiple taste organs for detecting chemicals that signal palatable or noxious quality. Although much is known about how taste neurons sense various chemicals, many questions remain about how individual taste neurons in each taste organ control feeding. Here, we use the Drosophila pharynx as a model to investigate how taste information is encoded at the cellular level to regulate consumption of sugars and amino acids. We first generate taste-blind animals and establish a critical role for pharyngeal input in food selection. We then investigate feeding behavior of both male and female flies in which only selected classes of pharyngeal neurons are restored via binary choice feeding preference assays as well as Fly Liquid-Food Interaction Counter (FLIC) assays. We find instances of integration as well as redundancy in how pharyngeal neurons control behavioral responses to sugars and amino acids. Additionally, we find that pharyngeal neurons drive sugar feeding preference based on sweet taste but not on nutritional value. Finally, we demonstrate functional specialization of pharyngeal and external neurons using optogenetic activation. Overall, our genetic taste neuron protection system in a taste-blind background provides a powerful approach to elucidate principles of pharyngeal taste coding and demonstrates functional overlap and subdivision among taste neurons.SIGNIFICANCE STATEMENTDietary intake of nutritious chemicals such as sugars and amino acids is essential for an animal's survival. In insects, distinct classes of taste neurons control acceptance or rejection of food sources. Here we develop a genetic system to investigate how individual taste neurons in the Drosophila pharynx encode specific tastants, focusing on sugars and amino acids. By examining flies in which only a single class of taste neurons is active, we find evidence for functional overlap as well as redundancy in responses to sugars and amino acids. We also uncover functional subdivision between pharyngeal and external neurons in driving feeding responses. Overall, we find that different pharyngeal neurons act together to control intake of the two categories of appetitive tastants.

11.
Brain Behav Immun ; 106: 161-178, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36058421

RESUMO

BACKGROUND: Despite inconsistent results across studies, emerging evidence suggests that the microbial micro-environment may be associated with autism spectrum disorder (ASD). Geographical and cultural factors highly impact microbial profiles, and there is a shortage of data from East Asian populations. This study aimed to comprehensively characterize microbial profiles in an East Asian sample and explore whether gut microbiota contributes to clinical symptoms, emotional/behavioral problems, and GI symptoms in ASD. METHODS: We assessed 82 boys and young men with ASD and 31 typically developing controls (TDC), aged 6-25 years. We analyzed the stool sample of all participants with 16S V3-V4 rRNA sequencing and correlated its profile with GI symptoms, autistic symptoms, and emotional/behavioral problems. RESULTS: Autistic individuals, compared to TDC, had worse GI symptoms. There were no group differences in alpha diversity of species richness estimates (Shannon-wiener and Simpson diversity indices). Participants with ASD had an increased relative abundance of Fusobacterium, Ruminococcus torques group (at the genus level), and Bacteroides plebeius DSM 17135 (at the species level), while a decreased relative abundance of Ruminococcaceae UCG 013, Ervsipelotrichaceae UCG 003, Parasutterella, Clostridium sensu stricto 1, Turicibacter (at the genus level), and Clostridium spiroforme DSM 1552 and Intestinimonas butyriciproducens (at the species level). Altered taxonomic diversity in ASD significantly correlated with autistic symptoms, thought problems, delinquent behaviors, self dysregulation, and somatic complaints. We did not find an association between gut symptoms and gut microbial dysbiosis. CONCLUSIONS: Our findings suggest that altered microbiota are associated with behavioral phenotypes but not GI symptoms in ASD. The function of the identified microbial profiles mainly involves the immune pathway, supporting the hypothesis of a complex relationship between altered microbiome, immune dysregulation, and ASD that may advance the discovery of molecular biomarkers for ASD.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Gastroenteropatias , Microbioma Gastrointestinal , Comportamento Problema , Transtorno do Espectro Autista/metabolismo , Biomarcadores , Gastroenteropatias/complicações , Microbioma Gastrointestinal/genética , Humanos
12.
J Psychiatry Neurosci ; 46(6): E647-E658, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34862305

RESUMO

BACKGROUND: Evidence suggests that cortical anatomy may be aytpical in autism spectrum disorder. The wingless-type MMTV integration site family, member 2 (WNT2), a candidate gene for autism spectrum disorder, may regulate cortical development. However, it is unclear whether WNT2 variants are associated with altered cortical thickness in autism spectrum disorder. METHODS: In a sample of 118 people with autism spectrum disorder and 122 typically developing controls, we investigated cortical thickness using FreeSurfer software. We then examined the main effects of the WNT2 variants and the interactions of group × SNP and age × SNP for each hemisphere and brain region that was altered in people with autism spectrum disorder. RESULTS: Compared to neurotypical controls, people with autism spectrum disorder showed reduced mean cortical thickness in both hemispheres and 9 cortical regions after false discovery rate correction, including the right cingulate gyrus, the orbital gyrus, the insula, the inferior frontal gyrus (orbital part and triangular part), the lateral occipitotemporal gyrus, the posterior transverse collateral sulcus, the lateral sulcus and the superior temporal sulcus. In the full sample, 2 SNPs of WNT2 (rs6950765 and rs2896218) showed age × SNP interactions for the mean cortical thickness of both hemispheres, the middle-posterior cingulate cortex and the superior temporal cortex. LIMITATIONS: We examined the genetic effect for each hemisphere and the 9 regions that were altered in autism spectrum disorder. The age effect we found in this cross-sectional study needs to be examined in longitudinal studies. CONCLUSION: Based on neuroimaging and genetic data, our findings suggest that WNT2 variants might be associated with altered cortical thickness in autism spectrum disorder. Whether and how these WNT2 variants might involve cortical thinning requires further investigation. TRIAL REGISTRATION: ClinicalTrials.gov no. NCT01582256. PROTOCOL REGISTRATION: National Institutes of Health no. NCT00494754.


Assuntos
Transtorno do Espectro Autista , Transtorno do Espectro Autista/diagnóstico por imagem , Transtorno do Espectro Autista/genética , Córtex Cerebral/diagnóstico por imagem , Estudos Transversais , Humanos , Imageamento por Ressonância Magnética/métodos , Polimorfismo de Nucleotídeo Único , Lobo Temporal , Proteína Wnt2/genética
13.
Pediatr Blood Cancer ; 68(4): e28899, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33522704

RESUMO

BACKGROUND: IKZF1deletion is an unfavorable factor in Philadelphia negative (Ph -) B-cell acute lymphoblastic leukemia. However, the effects of IKZF1 deletions co-existing genetic alterations in Ph (-) ALL have not been extensively studied. METHODS: Bone marrow samples from 368 children with Ph (-) ALL were analyzed by using multiplex ligation-dependent probe amplification kit for detection of gene deletions and Sanger sequencing for mutational analysis of RAS pathway genes. The outcome was analyzed on 215 patients treated with Taiwan Pediatric Oncology Group-ALL-2002 protocol. RESULTS: IKZF1 deletions were present in 12.8% and IKZF1plus in 6.3% of patients. Mutations of RAS pathway genes were detected in 25.0% of IKZF1-deleted patients. The 10-year event-free survival (EFS) of IKZF1-undeleted patients was significantly better compared with IKZF1-deleted patients (80.0% vs. 47.8%, p = 0.001). Compared with outcome of patients harboring IKZF1 deletion alone, no difference in EFS was observed in patients with IKZF1plus , whereas three patients carried both IKZF1 and ERG deletions had a superior 10-year EFS (100%). The 10-year EFS of patients with any gene mutation of RAS pathway was worse than that of patients with wild-type genes (79.1% vs. 61.6%, p = 0.033). In multivariate analysis, RAS pathway mutations and IKZF1 deletion were independent predictors of inferior EFS. Co-existence of IKZF1 deletion with RAS pathway mutations had a worst 10-year EFS (11.1 ± 10.5%) and 10-year OS (53.3 ± 17.6%). CONCLUSIONS: Our results showed that RAS pathway mutation is an added-value biomarker in pediatric IKZF1-deleted Ph (-) ALL patients.


Assuntos
Fator de Transcrição Ikaros/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Proteínas ras/genética , Criança , Pré-Escolar , Feminino , Deleção de Genes , Humanos , Lactente , Masculino , Mutação , Cromossomo Filadélfia , Leucemia-Linfoma Linfoblástico de Células Precursoras B/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/metabolismo , Transdução de Sinais , Proteínas ras/metabolismo
14.
Pediatr Nephrol ; 36(11): 3749-3756, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34036446

RESUMO

BACKGROUNDS: Chronic kidney disease (CKD) is underdiagnosed in children with congenital heart disease (CHD). Our aim was to study the incidence of CKD in CHD children and identify risk factors for CKD. METHODS: CHD patients were enrolled from the Kaohsiung Veterans General Hospital database between 2010 and 2019. Patient age at enrollment was age at first visit to the hospital. The end of follow-up was marked by the last measurement of serum creatinine, urine protein-to-creatinine ratio (UPCR), or urine microalbumin-to-creatinine ratio (UACR) after enrollment, and only patients who underwent the aforementioned tests in 2 different years were included. Patients with an estimated glomerular filtration rate (eGFR) < 90 mL/min/1.73m2 were diagnosed as having CKD and were further classified into clinically recognized CKD (CR-CKD, defined as eGFR <60 mL/min/1.73m2, UPCR >0.5, or UACR >30 mg/g) and non-clinically recognized CKD (NCR-CKD). Their demographic data, CHD category, heart surgery types, medications, and contrast-related examinations during follow-up were collected. RESULTS: The study included 359 CHD patients, of whom 167 (46.5%) developed CKD (18 patients with CR-CKD and 341 with NCR-CKD). Patients with CR-CKD were significantly older at enrollment than patients with NCR-CKD. Corrective heart surgery may be a protective factor for CKD. Furthermore, cyanotic heart disease, two or more image-related contrast exposures, and diuretic use may be associated with CKD. CONCLUSION: CHD patients have a high incidence of CKD. The early detection of CKD and prompt corrective heart surgery for CHD may be beneficial for kidney function.


Assuntos
Insuficiência Renal Crônica , Criança , Humanos , Incidência , Insuficiência Renal Crônica/epidemiologia , Fatores de Risco
15.
Cell Mol Life Sci ; 77(6): 1087-1101, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31598735

RESUMO

The insect gustatory system senses taste information from environmental food substrates and processes it to control feeding behaviors. Drosophila melanogaster has been a powerful genetic model for investigating how various chemical cues are detected at the molecular and cellular levels. In addition to an understanding of how tastants belonging to five historically described taste modalities (sweet, bitter, acid, salt, and amino acid) are sensed, recent findings have identified taste neurons and receptors that recognize tastants of non-canonical modalities, including fatty acids, carbonated water, polyamines, H2O2, bacterial lipopolysaccharide (LPS), ammonia, and calcium. Analyses of response profiles of taste neurons expressing different suites of chemosensory receptors have allowed exploration of taste coding mechanisms in primary sensory neurons. In this review, we present the current knowledge of the molecular and cellular basis of taste detection of various categories of tastants. We also summarize evidence for organotopic and multimodal functions of the taste system. Functional characterization of peripheral taste neurons in different organs has greatly increased our understanding of how insect behavior is regulated by the gustatory system, which may inform development of novel insect pest control strategies.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila/fisiologia , Receptores de Superfície Celular/metabolismo , Células Receptoras Sensoriais/metabolismo , Paladar , Animais , Drosophila/anatomia & histologia , Drosophila/citologia , Drosophila/genética , Proteínas de Drosophila/análise , Proteínas de Drosophila/genética , Expressão Gênica , Receptores de Superfície Celular/análise , Receptores de Superfície Celular/genética , Células Receptoras Sensoriais/citologia
16.
Int J Mol Sci ; 22(13)2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34201550

RESUMO

With the improvement of the survival rate of acute lymphoblastic leukemia (ALL) in children, some children ALL survivors reveal inferior intellectual and cognition outcome. Methotrexate (MTX), while serving as an essential component in ALL treatment, has been reported to be related to various neurologic sequelae. Using combined intrathecal (IT) and intraperitoneal (IP) MTX model, we had demonstrated impaired spatial memory function in developing rats, which can be rescued by melatonin treatment. To elucidate the impact of MTX treatment on the epigenetic modifications of the myelination process, we examined the change of neurotrophin and myelination-related transcriptomes in the present study and found combined IT and IP MTX treatment resulted in altered epigenetic modification on the myelination process, mainly in the hippocampus. Further, melatonin can restore the MTX effect through alterations of the epigenetic pathways.


Assuntos
Encéfalo/efeitos dos fármacos , Epigênese Genética/efeitos dos fármacos , Metotrexato/toxicidade , Bainha de Mielina/efeitos dos fármacos , Síndromes Neurotóxicas/etiologia , Animais , Antimetabólitos Antineoplásicos/efeitos adversos , Antimetabólitos Antineoplásicos/toxicidade , Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/genética , Ilhas de CpG , Metilação de DNA/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Injeções Intraperitoneais , Injeções Espinhais , Masculino , Metotrexato/administração & dosagem , Metotrexato/efeitos adversos , Bainha de Mielina/patologia , Síndromes Neurotóxicas/patologia , Regiões Promotoras Genéticas/efeitos dos fármacos , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Proteína-Arginina N-Metiltransferases/genética , Ratos Sprague-Dawley , Fatores de Transcrição SOXE/genética
17.
Int J Mol Sci ; 22(18)2021 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-34576264

RESUMO

After the discovery of endogenous dinitrosyl iron complexes (DNICs) as a potential biological equivalent of nitric oxide (NO), bioinorganic engineering of [Fe(NO)2] unit has emerged to develop biomimetic DNICs [(NO)2Fe(L)2] as a chemical biology tool for controlled delivery of NO. For example, water-soluble DNIC [Fe2(µ-SCH2CH2OH)2(NO)4] (DNIC-1) was explored for oral delivery of NO to the brain and for the activation of hippocampal neurogenesis. However, the kinetics and mechanism for cellular uptake and intracellular release of NO, as well as the biocompatibility of synthetic DNICs, remain elusive. Prompted by the potential application of NO to dermato-physiological regulations, in this study, cellular uptake and intracellular delivery of DNIC [Fe2(µ-SCH2CH2COOH)2(NO)4] (DNIC-2) and its regulatory effect/biocompatibility toward epidermal cells were investigated. Upon the treatment of DNIC-2 to human fibroblast cells, cellular uptake of DNIC-2 followed by transformation into protein-bound DNICs occur to trigger the intracellular release of NO with a half-life of 1.8 ± 0.2 h. As opposed to the burst release of extracellular NO from diethylamine NONOate (DEANO), the cell-penetrating nature of DNIC-2 rationalizes its overwhelming efficacy for intracellular delivery of NO. Moreover, NO-delivery DNIC-2 can regulate cell proliferation, accelerate wound healing, and enhance the deposition of collagen in human fibroblast cells. Based on the in vitro and in vivo biocompatibility evaluation, biocompatible DNIC-2 holds the potential to be a novel active ingredient for skincare products.


Assuntos
Materiais Biocompatíveis/química , Fibroblastos/efeitos dos fármacos , Ferro/química , Óxido Nítrico/química , Óxidos de Nitrogênio/química , Pele/efeitos dos fármacos , Animais , Linhagem Celular , Movimento Celular , Proliferação de Células , Sobrevivência Celular , Colágeno/química , Córnea/efeitos dos fármacos , Sistemas de Liberação de Medicamentos , Embrião não Mamífero/efeitos dos fármacos , Epitélio/efeitos dos fármacos , Olho/efeitos dos fármacos , Fibroblastos/metabolismo , Humanos , Técnicas In Vitro , Cinética , Melanócitos/metabolismo , Oxigênio/química , Pigmentação , Cicatrização , Peixe-Zebra/embriologia
18.
J Exp Biol ; 222(Pt 19)2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31511344

RESUMO

Taste is essential for animals to evaluate food quality and make important decisions about food choice and intake. How complex brains process sensory information to produce behavior is an essential question in the field of sensory neurobiology. Currently, little is known about higher-order taste circuits in the brain as compared with those of other sensory systems. Here, we used the common vinegar fly, Drosophila melanogaster, to screen for candidate neurons labeled by different transgenic GAL4 lines in controlling feeding behaviors. We found that activation of one line (VT041723-GAL4) produces 'proboscis holding' behavior (extrusion of the mouthpart without withdrawal). Further analysis showed that the proboscis holding phenotype indicates an aversive response, as flies pre-fed with either sucrose or water prior to neuronal activation exhibited regurgitation. Anatomical characterization of VT041723-GAL4-labeled neurons suggests that they receive sensory input from peripheral taste neurons. Overall, our study identifies a subset of brain neurons labeled by VT041723-GAL4 that may be involved in a taste circuit that controls regurgitation.


Assuntos
Encéfalo/fisiologia , Drosophila melanogaster/fisiologia , Neurônios/fisiologia , Animais , Animais Geneticamente Modificados , Comportamento Animal , Drosophila melanogaster/genética , Feminino , Proteínas de Fluorescência Verde/metabolismo , Masculino , Optogenética , Faringe/inervação , Caracteres Sexuais , Sinapses/fisiologia , Paladar/fisiologia , Termogênese/fisiologia
19.
BMC Pediatr ; 19(1): 517, 2019 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-31881933

RESUMO

BACKGROUND: Given its narrow therapeutic range, digoxin's pharmacokinetic parameters in infants are difficult to predict due to variation in birth weight and gestational age, especially for critically ill newborns. There is limited evidence to support the safety and dosage requirements of digoxin, let alone to predict its concentrations in infants. This study aimed to compare the concentrations of digoxin predicted by traditional regression modeling and artificial neural network (ANN) modeling for newborn infants given digoxin for clinically significant patent ductus arteriosus (PDA). METHODS: A retrospective chart review was conducted to obtain data on digoxin use for clinically significant PDA in a neonatal intensive care unit. Newborn infants who were given digoxin and had digoxin concentration(s) within the acceptable range were identified as subjects in the training model and validation datasets, accordingly. Their demographics, disease, and medication information, which were potentially associated with heart failure, were used for model training and analysis of digoxin concentration prediction. The models were generated using backward standard multivariable linear regressions (MLRs) and a standard backpropagation algorithm of ANN, respectively. The common goodness-of-fit estimates, receiver operating characteristic curves, and classification of sensitivity and specificity of the toxic concentrations in the validation dataset obtained from MLR or ANN models were compared to identify the final better predictive model. RESULTS: Given the weakness of correlations between actual observed digoxin concentrations and pre-specified variables in newborn infants, the performance of all ANN models was better than that of MLR models for digoxin concentration prediction. In particular, the nine-parameter ANN model has better forecasting accuracy and differentiation ability for toxic concentrations. CONCLUSION: The nine-parameter ANN model is the best alternative than the other models to predict serum digoxin concentrations whenever therapeutic drug monitoring is not available. Further cross-validations using diverse samples from different hospitals for newborn infants are needed.


Assuntos
Digoxina/sangue , Permeabilidade do Canal Arterial/sangue , Redes Neurais de Computação , Digoxina/uso terapêutico , Permeabilidade do Canal Arterial/tratamento farmacológico , Feminino , Previsões , Humanos , Recém-Nascido , Unidades de Terapia Intensiva Neonatal , Modelos Lineares , Masculino , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA