Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biomed Sci ; 24(1): 34, 2017 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-28545516

RESUMO

BACKGROUND: Olfactory ensheathing cells (OEC), specialized glia that ensheathe bundles of olfactory nerves, have been reported as a favorable substrate for axonal regeneration. Grafting OEC to injured spinal cord appears to facilitate axonal regeneration although the functional recovery is limited. In an attempt to improve the growth-promoting properties of OEC, we transduced prostacyclin synthase (PGIS) to OEC via adenoviral (Ad) gene transfer and examined the effect of OEC with enhanced prostacyclin synthesis in co-culture and in vivo. Prostacyclin is a vasodilator, platelet anti-aggregatory and cytoprotective agent. RESULTS: Cultured OEC expressed high level of cyclooxygneases, but not PGIS. Infection of AdPGIS to OEC could selectively augument prostacyclin synthesis. When cocultured with either OEC or AdPGIS-OEC, neuronal cells were resistant to OGD-induced damage. The resulted OEC were further transplanted to the transected cavity of thoracic spinal cord injured (SCI) rats. By 6 weeks post-surgery, significant functional recovery in hind limbs occurred in OEC or AdPGIS-OEC transplanted SCI rats compared with nontreated SCI rats. At 10-12 weeks postgraft, AdPGIS-OEC transplanted SCI rats showed significantly better motor restoration than OEC transplanted SCI rats. Futhermore, regenerating fiber tracts in the distal spinal cord stump were found in 40-60% of AdPGIS-OEC transplanted SCI rats. CONCLUSIONS: Enhanced synthesis of prostacyclin in grafted OEC improved fiber tract regeneration and functional restoration in spinal cord injured rats. These results suggest an important potential of prostacyclin in stimulating OEC therapeutic properties that are relevant for neural transplant therapies.


Assuntos
Sistema Enzimático do Citocromo P-450/genética , Expressão Gênica , Oxirredutases Intramoleculares/genética , Neuroglia/fisiologia , Nervo Olfatório/fisiologia , Regeneração da Medula Espinal , Animais , Células Cultivadas , Sistema Enzimático do Citocromo P-450/metabolismo , Oxirredutases Intramoleculares/metabolismo , Ratos , Ratos Sprague-Dawley , Recuperação de Função Fisiológica
2.
Biomaterials ; 271: 120762, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33773400

RESUMO

Although traditional 3D scaffolds or biomimetic hydrogels have been used for tissue engineering and regenerative medicine, soft tissue microenvironment usually has a highly anisotropic structure and a dynamically controllable deformation with various biomolecule distribution. In this study, we developed a hierarchical hybrid gelatin methacrylate-microcapsule hydrogel (HGMH) with Neurotrophin-3(NT-3)-loaded PLGA microcapsules to fabricate anisotropic structure with patterned NT-3 distribution (demonstrated as striped and triangular patterns) by dielectrophoresis (DEP). The HGMH provides a dynamic biomimetic sinuate-microwrinkles change with NT-3 spatial gradient and 2-stage time-dependent distribution, which was further simulated using a 3D finite element model. As demonstrated, in comparison with striped-patterned hydrogel, the triangular-patterned HGMH with highly anisotropic array of microcapsules exhibits remarkably spatial NT-3 gradient distributions that can not only guide neural stem cells (NSCs) migration but also facilitate spinal cord injury regeneration. This approach to construct hierarchical 4D hydrogel system via an electromicrofluidic platform demonstrates the potential for building various biomimetic soft scaffolds in vitro tailed to real soft tissues.


Assuntos
Hidrogéis , Regeneração da Medula Espinal , Cápsulas , Engenharia Tecidual , Alicerces Teciduais
3.
Neurosci Lett ; 433(3): 163-9, 2008 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-18291581

RESUMO

We used a complete spinal cord transection model in which the T8 spinal segment was removed to study the effect of combined treatment of peripheral nerve graft and application of FGF-1 on the glial environment. The combined treatment resulted in reduced astrocytic glial scarring, reactive macrophage gliosis, and inhibitory proteoglycan in the back-degenerated white matter tract. While the macrophage activities in the back-degenerative tract were down-regulated, those in the grafted peripheral nerves and in the distal Wallerian degenerative tracts were not. We concluded that the combined treatment changed the glial environment in the back-degenerative tract, and differentially regulated the macrophage activities in the system, in favor of CNS regeneration.


Assuntos
Fator 1 de Crescimento de Fibroblastos/farmacologia , Gliose/prevenção & controle , Nervos Periféricos/transplante , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/cirurgia , Transplante de Tecidos/métodos , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/fisiologia , Biomarcadores/análise , Biomarcadores/metabolismo , Modelos Animais de Doenças , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/fisiologia , Feminino , Fator 1 de Crescimento de Fibroblastos/uso terapêutico , Proteína Glial Fibrilar Ácida/metabolismo , Gliose/etiologia , Gliose/fisiopatologia , Sobrevivência de Enxerto/efeitos dos fármacos , Sobrevivência de Enxerto/fisiologia , Macrófagos/efeitos dos fármacos , Macrófagos/fisiologia , Regeneração Nervosa/efeitos dos fármacos , Regeneração Nervosa/fisiologia , Vias Neurais/efeitos dos fármacos , Vias Neurais/patologia , Vias Neurais/fisiopatologia , Neuroglia/efeitos dos fármacos , Neuroglia/fisiologia , Nervos Periféricos/citologia , Nervos Periféricos/fisiologia , Proteoglicanas/metabolismo , Ratos , Ratos Sprague-Dawley , Traumatismos da Medula Espinal/fisiopatologia , Resultado do Tratamento , Degeneração Walleriana/etiologia , Degeneração Walleriana/fisiopatologia , Degeneração Walleriana/prevenção & controle
4.
PLoS One ; 10(9): e0138705, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26393921

RESUMO

Chondroitin sulfate proteoglycans (CSPGs) are glial scar-associated molecules considered axonal regeneration inhibitors and can be digested by chondroitinase ABC (ChABC) to promote axonal regeneration after spinal cord injury (SCI). We previously demonstrated that intrathecal delivery of low-dose ChABC (1 U) in the acute stage of SCI promoted axonal regrowth and functional recovery. In this study, high-dose ChABC (50 U) introduced via intrathecal delivery induced subarachnoid hemorrhage and death within 48 h. However, most SCI patients are treated in the sub-acute or chronic stages, when the dense glial scar has formed and is minimally digested by intrathecal delivery of ChABC at the injury site. The present study investigated whether intraparenchymal delivery of ChABC in the sub-acute stage of complete spinal cord transection would promote axonal outgrowth and improve functional recovery. We observed no functional recovery following the low-dose ChABC (1 U or 5 U) treatments. Furthermore, animals treated with high-dose ChABC (50 U or 100 U) showed decreased CSPGs levels. The extent and area of the lesion were also dramatically decreased after ChABC treatment. The outgrowth of the regenerating axons was significantly increased, and some partially crossed the lesion site in the ChABC-treated groups. In addition, retrograde Fluoro-Gold (FG) labeling showed that the outgrowing axons could cross the lesion site and reach several brain stem nuclei involved in sensory and motor functions. The Basso, Beattie and Bresnahan (BBB) open field locomotor scores revealed that the ChABC treatment significantly improved functional recovery compared to the control group at eight weeks after treatment. Our study demonstrates that high-dose ChABC treatment in the sub-acute stage of SCI effectively improves glial scar digestion by reducing the lesion size and increasing axonal regrowth to the related functional nuclei, which promotes locomotor recovery. Thus, our results will aid in the treatment of spinal cord injury.


Assuntos
Axônios , Condroitina ABC Liase/uso terapêutico , Traumatismos da Medula Espinal/tratamento farmacológico , Animais , Tronco Encefálico/patologia , Condroitina ABC Liase/administração & dosagem , Relação Dose-Resposta a Droga , Feminino , Injeções Espinhais , Ratos , Ratos Sprague-Dawley
5.
Neurosci Lett ; 472(2): 79-84, 2010 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-20079803

RESUMO

Chondroitin sulfate proteoglycan (CSPG) is a major component of glial scar to restrict axonal regeneration in the lesion site after spinal cord injury (SCI). Chondroitinase ABC (ChABC), a bacteria enzyme, which has been demonstrated to digest the glycosaminoglycan (GAG) side chain of CSPG to promote axonal re-growth across the injured site. Our previous study suggested that long-term delivery of ChABC (1U/ml, injection volume 0.6 microl for one animal) via intrathecal catheter could decrease the inhibitory effect of limiting axonal re-growth after SCI. The functional behavior has been shown to improve following ChABC treatment. Little axons re-grow across the lesion site of the spinal cord but not enough to support axon innervations to targets. In this article, we show that ChABC administration combining olfactory mucosa progenitor cell (OMPC) transplantation can promote axonal re-growth across the lesion site and enhance the consistency of stepping in spinally transected rats. These OMPCs generated NG2(+) cell lineages after transplanting into the spinal cord parenchyma, and OMPCs were found to spread and migrate toward the lesion region of spinal cord. Moreover, the spatial and temporal characteristics of the step cycle in rats that receive a complete spinal cord transaction following continuous ChABC supply and OMPC transplantation. The gait characteristics of treated rats on a treadmill were consistent and approached that of intact rats. In future, the mechanism of restoring the injured spinal cord will be further investigated.


Assuntos
Células-Tronco Adultas/transplante , Condroitina ABC Liase/uso terapêutico , Marcha , Mucosa Olfatória/citologia , Traumatismos da Medula Espinal/terapia , Animais , Axônios/fisiologia , Proliferação de Células , Ratos , Medula Espinal/efeitos dos fármacos , Medula Espinal/patologia , Medula Espinal/ultraestrutura , Traumatismos da Medula Espinal/patologia , Traumatismos da Medula Espinal/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA