Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Brain Behav Immun ; 119: 171-187, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38565398

RESUMO

Gut microbial homeostasis is crucial for the health of cognition in elderly. Previous study revealed that polysorbate 80 (P80) as a widely used emulsifier in food industries and pharmaceutical formulations could directly alter the human gut microbiota compositions. However, whether long-term exposure to P80 could accelerate age-related cognitive decline via gut-brain axis is still unknown. Accordingly, in this study, we used the senescence accelerated mouse prone 8 (SAMP8) mouse model to investigate the effects of the emulsifier P80 intake (1 % P80 in drinking water for 12 weeks) on gut microbiota and cognitive function. Our results indicated that P80 intake significantly exacerbated cognitive decline in SAMP8 mice, along with increased brain pathological proteins deposition, disruption of the blood-brain barrier and activation of microglia and neurotoxic astrocytes. Besides, P80 intake could also induce gut microbiota dysbiosis, especially the increased abundance of secondary bile acids producing bacteria, such as Ruminococcaceae, Lachnospiraceae, and Clostridium scindens. Moreover, fecal microbiota transplantation from P80 mice into 16-week-old SAMP8 mice could also exacerbated cognitive decline, microglia activation and intestinal barrier impairment. Intriguingly, the alterations of gut microbial composition significantly affected bile acid metabolism profiles after P80 exposure, with markedly elevated levels of deoxycholic acid (DCA) in serum and brain tissue. Mechanically, DCA could activate microglial and promote senescence-associated secretory phenotype production through adenosine triphosphate-binding cassette transporter A1 (ABCA1) importing lysosomal cholesterol. Altogether, the emulsifier P80 accelerated cognitive decline of aging mice by inducing gut dysbiosis, bile acid metabolism alteration, intestinal barrier and blood brain barrier disruption as well as neuroinflammation. This study provides strong evidence that dietary-induced gut microbiota dysbiosis may be a risk factor for age-related cognitive decline.


Assuntos
Barreira Hematoencefálica , Disfunção Cognitiva , Disbiose , Emulsificantes , Microbioma Gastrointestinal , Polissorbatos , Animais , Camundongos , Microbioma Gastrointestinal/efeitos dos fármacos , Polissorbatos/farmacologia , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/induzido quimicamente , Emulsificantes/metabolismo , Emulsificantes/farmacologia , Disbiose/metabolismo , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Envelhecimento/metabolismo , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Masculino , Microglia/metabolismo , Microglia/efeitos dos fármacos , Eixo Encéfalo-Intestino/efeitos dos fármacos , Cognição/efeitos dos fármacos , Ácidos e Sais Biliares/metabolismo
2.
Environ Sci Technol ; 58(12): 5578-5588, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38477971

RESUMO

The removal of antibiotic-resistant bacteria (ARB) and antibiotic-resistance genes (ARGs) using sulfate anion radical (SO4•-)-based advanced oxidation processes has gained considerable attention recently. However, immense uncertainties persist in technology transfer. Particularly, the impact of dichlorine radical (Cl2•-) generation during SO4•--mediated disinfection on ARB/ARGs removal remains unclear, despite the Cl2•- concentration reaching levels notably higher than those of SO4•- in certain SO4•--based procedures applied to secondary effluents, hospital wastewaters, and marine waters. The experimental results of this study reveal a detrimental effect on the disinfection efficiency of tetracycline-resistant Escherichia coli (Tc-ARB) during SO4•--mediated treatment owing to Cl2•- generation. Through a comparative investigation of the distinct inactivation mechanisms of Tc-ARB in the Cl2•-- and SO4•--mediated disinfection processes, encompassing various perspectives, we confirm that Cl2•- is less effective in inducing cellular structural damage, perturbing cellular metabolic activity, disrupting antioxidant enzyme system, damaging genetic material, and inducing the viable but nonculturable state. Consequently, this diminishes the disinfection efficiency of SO4•--mediated treatment owing to Cl2•- generation. Importantly, the results indicate that Cl2•- generation increases the potential risk associated with the dark reactivation of Tc-ARB and the vertical gene transfer process of tetracycline-resistant genes following SO4•--mediated disinfection. This study underscores the undesired role of Cl2•- for ARB/ARGs removal during the SO4•--mediated disinfection process.


Assuntos
Bactérias , Sulfatos , Purificação da Água , Bactérias/genética , Genes Bacterianos , Antagonistas de Receptores de Angiotensina , Inibidores da Enzima Conversora de Angiotensina , Desinfecção/métodos , Antibacterianos/farmacologia , Tetraciclina , Purificação da Água/métodos
3.
Environ Sci Technol ; 58(4): 2123-2132, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38237556

RESUMO

Advanced oxidation processes (AOPs) often employ strong oxidizing inorganic radicals (e.g., hydroxyl and sulfate radicals) to oxidize contaminants in water treatment. However, the water matrix could scavenge the strong oxidizing radicals, significantly deteriorating the treatment efficiency. Here, we report a periodate/catechol process in which reactive quinone species (RQS) including the o-semiquinone radical (o-SQ•-) and o-benzoquinone (o-Q) were dominant to effectively degrade anilines within 60 s. The second-order reaction rate constants of o-SQ•- and o-Q with aniline were determined to be 1.0 × 108 and 4.0 × 103 M-1 s-1, respectively, at pH 7.0, which accounted for 21% and 79% of the degradation of aniline with a periodate-to-catechol molar ratio of 1:1. The major byproducts were generated via addition or polymerization. The RQS-based process exhibited excellent anti-interference performance in the degradation of aniline-containing contaminants in real water samples in the presence of diverse inorganic ions and organics. Subsequently, we extended the RQS-based process by employing tea extract and dissolved organic matter as catechol replacements as well as metal ions [e.g., Fe(III) or Cu(II)] as periodate replacements, which also exhibited good performance in aniline degradation. This study provides a novel strategy to develop RQS-based AOPs for the highly selective degradation of aniline-containing emerging contaminants.


Assuntos
Compostos Férricos , Ácido Periódico , Poluentes Químicos da Água , Peróxido de Hidrogênio , Oxirredução , Benzoquinonas , Compostos de Anilina , Catecóis , Poluentes Químicos da Água/análise
4.
Ren Fail ; 46(1): 2355352, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38785291

RESUMO

Background: Recent studies have shown that the baseline values of absolute aortic root diameter (ARD) and indexed diameter are associated with all-cause mortality and cardiovascular events in the general population, even in the absence of aneurysmal aortic disease. However, there is limited available data on the association between ARD and prognosis in end-stage renal disease (ESRD) patients receiving maintenance hemodialysis (MHD). Accordingly, the purpose of this study is to investigate the predictive value of ARD for all-cause mortality and cardiovascular events in this specific population.Methods: ARD was measured by echocardiography at the level of the sinuses of Valsalva at end diastole and indexed to body surface area (BSA). The primary endpoint was all-cause mortality. The secondary endpoint was major adverse cardiovascular events (MACE), including cardiovascular mortality, myocardial infarction and stroke. Cox proportional hazards models were conducted to evaluate the association between baseline ARD/BSA and clinical outcomes.Results: A total of 391 patients were included in this study. The primary endpoint occurred in 95 (24.3%) patients while the secondary endpoint occurred in 71 (18.2%) patients. Multivariate Cox regression analysis showed that ARD/BSA was an independent prognostic factor for all-cause mortality (HR, per 1-SD increase, 1.403; 95% CI, 1.118-1.761; p = 0.003) as well as MACE (HR, per 1-SD increase, 1.356; 95% CI, 1.037-1.772; p = 0.026).Conclusions: Our results show that ARD/BSA is predictive of all-cause mortality and MACE in MHD patients with ESRD and support the view that assessment of ARD/BSA may refine risk stratification and preventive strategies in this population.


Assuntos
Ecocardiografia , Falência Renal Crônica , Diálise Renal , Humanos , Masculino , Falência Renal Crônica/terapia , Falência Renal Crônica/complicações , Falência Renal Crônica/mortalidade , Feminino , Pessoa de Meia-Idade , Prognóstico , Idoso , Aorta/diagnóstico por imagem , Aorta/patologia , Estudos Retrospectivos , Modelos de Riscos Proporcionais , Doenças Cardiovasculares/mortalidade , Doenças Cardiovasculares/etiologia , Fatores de Risco
5.
Small ; 19(14): e2203394, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36732895

RESUMO

The electrochemical performances of lithium metal batteries are determined by the kinetics of interfacial de-solvation and ion transport, especially at low-temperature environments. Here, a novel electrolyte that easily de-solvated and conducive to interfacial film formation is designed for low-temperature lithium metal batteries. A fluorinated carboxylic ester, diethyl fluoromalonate (DEFM), and a fluorinated carbonate, fluoroethylene carbonate (FEC) are used as solvents, while high concentrated lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) is served as the solute. Through tailoring the electrolyte formulation, the lithium ions in the high concentrated fluorinated carboxylic ester electrolyte are mainly combined with anions, which weakens the bonding strength of lithium ions and solvent molecules in the solvation structure, beneficial to the de-solvation process at low temperature. The fluorinated carboxylic ester (FCE) electrolyte enables the LiFePO4 (LFP) | Li half-cell achieves a high capacity of 91.9 mAh g-1 at -30 °C, with high F content in the interface. With optimized de-solvation kinetics, the LFP | Li full cell remains over 100 mAh g-1 at 0 °C after cycling 100 cycles. Building new solvents with outstanding low-temperature properties and weaker solvation to match with Li metal anode, this work brings new possibilities of realizing high energy density and low temperature energy storage batteries.

6.
Stem Cells ; 40(10): 892-905, 2022 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-35896382

RESUMO

Exploiting the pluripotent properties of embryonic stem cells (ESCs) holds great promise for regenerative medicine. Nevertheless, directing ESC differentiation into specialized cell lineages requires intricate control governed by both intrinsic and extrinsic factors along with the actions of specific signaling networks. Here, we reveal the involvement of the p21-activated kinase 4 (Pak4), a serine/threonine kinase, in sustaining murine ESC (mESC) pluripotency. Pak4 is highly expressed in R1 ESC cells compared with embryonic fibroblast cells and its expression is progressively decreased during differentiation. Manipulations using knockdown and overexpression demonstrated a positive relationship between Pak4 expression and the clonogenic potential of mESCs. Moreover, ectopic Pak4 expression increases reprogramming efficiency of Oct4-Klf4-Sox2-Myc-induced pluripotent stem cells (iPSCs) whereas Pak4-knockdown iPSCs were largely incapable of generating teratomas containing mesodermal, ectodermal and endodermal tissues, indicative of a failure in differentiation. We further establish that Pak4 expression in mESCs is transcriptionally driven by the core pluripotency factor Nanog which recognizes specific binding motifs in the Pak4 proximal promoter region. In turn, the increased levels of Pak4 in mESCs fundamentally act as an upstream activator of the Akt pathway. Pak4 directly binds to and phosphorylates Akt at Ser473 with the resulting Akt activation shown to attenuate downstream GSK3ß signaling. Thus, our findings indicate that the Nanog-Pak4-Akt signaling axis is essential for maintaining mESC self-renewal potential with further importance shown during somatic cell reprogramming where Pak4 appears indispensable for multi-lineage specification.


Assuntos
Proteínas Proto-Oncogênicas c-akt , Quinases Ativadas por p21 , Animais , Camundongos , Diferenciação Celular , Reprogramação Celular , Células-Tronco Embrionárias/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Células-Tronco Embrionárias Murinas/metabolismo , Quinases Ativadas por p21/genética , Quinases Ativadas por p21/metabolismo , Proteínas Serina-Treonina Quinases , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina/metabolismo
7.
BMC Oral Health ; 23(1): 327, 2023 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-37231478

RESUMO

BACKGROUND: Sexual dimorphism is obvious not only in the overall architecture of human body, but also in intraoral details. Many studies have found a correlation between gender and morphometric features of teeth, such as mesio-distal diameter, buccal-lingual diameter and height. However, it's still difficult to detect gender through the observation of intraoral photographs, with accuracy around 50%. The purpose of this study was to explore the possibility of automatically telling gender from intraoral photographs by deep neural network, and to provide a novel angle for individual oral treatment. METHODS: A deep learning model based on R-net was proposed, using the largest dataset (10,000 intraoral images) to support the automatic detection of gender. In order to reverse analyze the classification basis of neural network, Gradient-weighted Class Activation Mapping (Grad-CAM) was used in the second step, exploring anatomical factors associated with gender recognizability. The simulated modification of images based on features suggested was then conducted to verify the importance of characteristics between two genders. Precision (specificity), recall (sensitivity) and receiver operating characteristic (ROC) curves were used to evaluate the performance of our network. Chi-square test was used to evaluate intergroup difference. A value of p < 0.05 was considered statistically significant. RESULTS: The deep learning model showed a strong ability to learn features from intraoral images compared with human experts, with an accuracy of 86.5% and 82.5% in uncropped image data group and cropped image data group respectively. Compared with hard tissue exposed in the mouth, gender difference in areas covered by soft tissue was easier to identify, and more significant in mandibular region than in maxillary region. For photographs with simulated removal of lips and basal bone along with overlapping gingiva, mandibular anterior teeth had similar importance for sex determination as maxillary anterior teeth. CONCLUSIONS: Deep learning method could detect gender from intraoral photographs with high efficiency and accuracy. With assistance of Grad-CAM, the classification basis of neural network was deciphered, which provided a more precise entry point for individualization of prosthodontic, periodontal and orthodontic treatments.


Assuntos
Aprendizado Profundo , Dente , Humanos , Masculino , Feminino , Redes Neurais de Computação , Fotografia Dentária , Gengiva
8.
Angew Chem Int Ed Engl ; 62(12): e202300480, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36718945

RESUMO

Introducing pores in single crystals creates a new type of porous materials that incorporate porosity and structural coherence. Herein, we use in situ transmission electron microscopy to disclose the porosity formation by converting KTiOPO4 (KTP) single crystals into porous single-crystalline (PSC) TiO2 monoliths in a solid-solid transformation. The isolated crystalline nuclei of TiO2 clusters with identical lattice orientation on KTP surface moves TiO2 /KTP interface toward mother phase for growing PSC TiO2 monoliths. The relative density in PSC TiO2 monoliths dominates porosity while the macroscopic dimensions remain unchanged in the transformation. The single-crystalline nature of porous architecture stabilizes oxygen vacancy to activate lattice oxygen while the three-dimensional percolation enhances species diffusion. PSC TiO2 monoliths with deposited Pt clusters show enhanced and stable catalytic CO oxidation in air at ∼75 °C for 200 hours of operation.

9.
Org Biomol Chem ; 20(8): 1642-1646, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35108719

RESUMO

Catalytic construction of oxindoles bearing all-carbon-quaternary centers attracts wide attention from the synthetic chemistry community. Herein, we report a palladium-catalyzed sequential Heck coupling/C-C bond activation of aryl halide-tethered alkenes with benzocyclobutenols affording a series of oxindole-derived compounds in good to excellent yields, as well as the preliminary enantioselectivity results.

10.
Environ Sci Technol ; 56(5): 3085-3095, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35174701

RESUMO

Nanoplastics (NPs) have become a new type of pollutant of high concern that is ubiquitous in aqueous environments. However, the transport and transformation of NPs in natural waters are not yet fully understood. In this study, the aggregation and photooxidation of NPs were assessed with nanosized polystyrene (PS) as an example, and the effects of dissolved organic matter (DOM) were investigated with Suwannee River fulvic acid (SRFA) as representative DOM. The results showed that simulated sunlight irradiation exhibited negligible effects on the aggregation of PS, while SRFA enhanced its heteroaggregation through hydrophobic interactions. In SRFA solutions, photooxidation of PS with a particle size of 200 nm was observed, which led to an increase in the O/C ratio on its surface at a rate of (2.20 ± 0.40) × 10-2 h-1. This indicates the promotional effect of SRFA on the oxidation of nanosized PS, which is attributed to the generation of the excited triplet state (3SRFA*), hydroxyl radicals (•OH), and singlet oxygen (1O2). Among these reactive species, 1O2 played a crucial role in the oxidation of PS. The findings in this study are helpful for an in-depth understanding of the environmental behavior of NPs in natural waters.


Assuntos
Matéria Orgânica Dissolvida , Luz Solar , Poluentes Químicos da Água , Microplásticos , Água/química , Poluentes Químicos da Água/química
11.
Nat Prod Rep ; 38(6): 1072-1099, 2021 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-33710221

RESUMO

Covering: 2015 to the end of 2020 Fungal-derived polyketides, non-ribosomal peptides, terpenoids and their hybrids contribute significantly to the chemical space of total natural products. Cytochrome P450 enzymes play essential roles in fungal natural product biosynthesis with their broad substrate scope, great catalytic versatility and high frequency of involvement. Due to the membrane-bound nature, the functional and mechanistic understandings for fungal P450s have been limited for quite a long time. However, recent technical advances, such as the efficient and precise genome editing techniques and the development of several filamentous fungal strains as heterologous P450 expression hosts, have led to remarkable achievements in fungal P450 studies. Here, we provide a comprehensive review to cover the most recent progresses from 2015 to 2020 on catalytic functions and mechanisms, research methodologies and remaining challenges in the fast-growing field of fungal natural product biosynthetic P450s.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Fungos/enzimologia , Produtos Biológicos/metabolismo , Catálise , Policetídeos/metabolismo , Terpenos/metabolismo
12.
J Org Chem ; 86(21): 14563-14571, 2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34662127

RESUMO

Human drug metabolites (HDMs) are important chemicals widely used in drug-related studies. However, acquiring these enzyme-derived and regio-/stereo-selectively modified compounds through chemical approaches is complicated. PikC is a biosynthetic P450 enzyme involved in pikromycin biosynthesis from the bacterium Streptomyces venezuelae. Here, we identify the mutant PikCD50N as a potential biocatalyst, with a broad substrate scope, diversified product profile, and high catalytic efficiency, for preparation of HDMs. Remarkably, PikCD50N can mediate the drug-metabolizing reactions using the low-cost H2O2 as a direct electron and oxygen donor.


Assuntos
Peróxido de Hidrogênio , Preparações Farmacêuticas , Sistema Enzimático do Citocromo P-450/genética , Humanos , Macrolídeos
13.
Angew Chem Int Ed Engl ; 60(34): 18792-18799, 2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34101335

RESUMO

Dry reforming of CH4 /CO2 provides a promising and economically feasible route for the large-scale carbon fixation; however, the coking and sintering of catalysts remain a fundamental challenge. Here we stabilize single-crystalline Ni nanoparticles at the surface of porous single-crystalline MgO monoliths and show the quantitative production of syngas from dry reforming of CH4 /CO2 . We show the complete conversion of CH4 /CO2 even only at 700 °C with excellent performance durability after a continuous operation of 500 hours. The well-defined and catalytically active Ni-MgO interfaces facilitate the reforming reaction and enhance the coking resistance. Our findings would enable an industrially and economically viable path for carbon reclamation, and the "Nanocrystal On Porous Single-crystalline Monoliths" technique could lead to stable catalyst designs for many challenging reactions.

14.
Angew Chem Int Ed Engl ; 60(46): 24418-24423, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34498345

RESUMO

The knowledge on sulfur incorporation mechanism involved in sulfur-containing molecule biosynthesis remains limited. Chuangxinmycin is a sulfur-containing antibiotic with a unique thiopyrano[4,3,2-cd]indole (TPI) skeleton and selective inhibitory activity against bacterial tryptophanyl-tRNA synthetase. Despite the previously reported biosynthetic gene clusters and the recent functional characterization of a P450 enzyme responsible for C-S bond formation, the enzymatic mechanism for sulfur incorporation remains unknown. Here, we resolve this central biosynthetic problem by in vitro biochemical characterization of the key enzymes and reconstitute the TPI skeleton in a one-pot enzymatic reaction. We reveal that the JAMM/MPN+ protein Cxm3 functions as a deubiquitinase-like sulfurtransferase to catalyze a non-classical sulfur-transfer reaction by interacting with the ubiquitin-like sulfur carrier protein Cxm4GG. This finding adds a new mechanism for sulfurtransferase in nature.


Assuntos
Antibacterianos/biossíntese , Proteínas de Bactérias/metabolismo , Sulfurtransferases/metabolismo , Actinoplanes/genética , Actinoplanes/metabolismo , Antibacterianos/química , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Escherichia coli/química , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Indóis/análise , Indóis/química , Indóis/metabolismo , Família Multigênica , Pyrococcus/enzimologia , Pyrococcus/genética , Enxofre/metabolismo , Sulfurtransferases/química , Sulfurtransferases/genética , Ubiquitinação , Ubiquitinas/genética , Ubiquitinas/metabolismo
15.
Appl Opt ; 59(20): 5924-5929, 2020 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-32672735

RESUMO

An efficient three-dimensional (3D) quasi-TE0 and quasi-TE1 mode (de)multiplexer [(De)MUX] is proposed and optimized based on a dual-waveguide 3D-coupler, in which the sidewalls of a bottom silicon waveguide and an upper poly-silicon waveguide are aligned vertically. The full-vectorial finite element method and 3D full-vectorial finite difference time domain method are utilized to study the performances of the proposed 3D mode (De)MUX. The results indicate that the proposed mode (De)MUX can achieve a compact coupling length of 6.88 µm, a mode crosstalk of -30.04dB, an insertion loss of 0.02 dB, and an ultra-broad 1 dB bandwidth of 300 nm. The proposed 3D mode (De)MUX based on a sidewall-aligned vertical coupler has the potential to extend the functionality and to increase the integration of the mode division multiplexing (MDM) systems.

16.
Angew Chem Int Ed Engl ; 59(23): 8891-8895, 2020 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-32133770

RESUMO

Porous tantalum nitride (Ta3 N5 ) single crystals, combining structural coherence and porous microstructure, would substantially improve the photoelectrochemical performance. The structural coherence would reduce the recombination of charge carriers and maintain excellent transport properties while the porous microstructure would not only reduce photon scattering but also facilitate surface reactions. Here, we grow bulk-porous Ta3 N5 single crystals on a two-centimeter scale with (002), (023), and (041) facets, respectively, and show significantly enhanced photoelectrochemical performance. We show the preferential facet growth of porous crystals in a lattice reconstruction strategy in relation to lattice match and lattice channel. We present the facet engineering to enhance light absorption, exciton lifetime and transport properties. The porous Ta3 N5 single crystal boosts photoelectrochemical oxidation of alcohols with the (002) facet showing the highest performance of >99 % alcohol conversion and >99 % aldehyde/ketone selectivity.

17.
Behav Brain Res ; 464: 114927, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38428645

RESUMO

BACKGROUND: Psychiatric disorders, such as schizophrenia (SCZ), major depressive (MDD), and bipolar disorder (BD) have a profound impact on millions of individuals worldwide. The critical step toward developing effective preventive and treatment strategies lies in comprehending the causal mechanisms behind these diseases and identifying modifiable risk factors associated with them. METHODS: In this study, we conducted a 2-sample Mendelian randomization analysis to explore the potential links between chickenpox(varicella-zoster virus infection) and three major psychiatric disorders(SCZ, MDD, BD). RESULTS: In our MR study, among the three major psychiatric disorders, chickenpox was shown to be causally related to BD, indicating that infection with chickenpox may increase the risk of developing BD (IVW: OR = 1.064, 95% CI =1.025-1.104, P=0.001; RAPS: OR=1.066, 95% CI=1.024-1.110, P=0.002), while there was no causal relationship between SCZ and MDD. Similar estimated causal effects were observed consistently across the various MR models. The robustness of the identified causal relationship between chickenpox and BD holds true regardless of the statistical methods employed, as confirmed by extensive sensitivity analyses that address violations in model assumptions. The MR-Egger regression test failed to reveal any signs of directional pleiotropy (intercept = -0.042, standard error (SE) = 0.029, p = 0.236). Similarly, the MR-PRESSO analysis revealed no evidence of directional pleiotropy or outliers among the chickenpox-related instrumental variables (global test p = 0.653). Furthermore, a leave-one-out sensitivity analysis yielded consistent results, further underscoring the credibility and stability of the causal relationship. CONCLUSIONS: Our findings provide compelling evidence of a causal effect of chickenpox on the risk of BD. To gain a more comprehensive understanding of this association and its underlying mechanisms, additional research is needed. Such investigations are pivotal in identifying effective interventions for promoting BD prevention.


Assuntos
Varicela , Transtorno Depressivo Maior , Transtornos Mentais , Humanos , Herpesvirus Humano 3/genética , Varicela/epidemiologia , Transtorno Depressivo Maior/genética , Análise da Randomização Mendeliana , Estudo de Associação Genômica Ampla
18.
ACS Appl Mater Interfaces ; 16(6): 7070-7079, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38308393

RESUMO

Na4Fe3(PO4)2(P2O7) (NFPP) is regarded as a promising cathode material for sodium-ion batteries (SIBs) owing to its low cost, easy manufacture, environmental purity, high structural stability, unique three-dimensional Na-ion diffusion channels, and appropriate working voltage. However, for NFPP, the low conductivity of electrons and ions limits their capacity and power density. The generation of NaFeP2O7 and NaFePO4 inhibits the diffusion of sodium ions and reduces reversible capacity and rate performance during the manufacturing process in synthesis methods. Herein, we report an entropy-driven approach to enhance the electronic conductivity and, concurrently, phase purity of NFPP as the superior cathode in sodium-ion batteries. This approach was realized via Ti ions substituting different ratios of Fe-occupied sites in the NFPP lattice (denoted as NTFPP-X, T is the Ti in the lattice, X is the ratio of Ti-substitution) with the configurational entropic increment of the lattice structures from 0.68 R to 0.79 R. Specifically, 5% Ti-substituted lattice (NTFPP-0.05) inducing entropic augmentation not only improves the electronic conductivity from 7.1 × 10-2 S/m to 8.6 × 10-2 S/m but also generates the pure-phase of NFPP (suppressing the impure phases of the NaFeP2O7 and NaFePO4) of the lattice structure, which is validated by a series of characterizations, including powder X-ray diffraction (XRD), Fourier transform infrared spectra (FT-IR), X-ray photoelectron spectroscopy (XPS), and density functional theory (DFT). Benefiting from the Ti replacement in the lattice, the optimal NTFPP-0.05 composite shows a high first discharge capacity (118.5 mAh g-1 at 0.1 C), superior rate performance (70.5 mAh g-1 at 10 C), and excellent long cycling life (1200 cycles at 10 C with capacity retention of 86.9%). This research proposes a new entropy-driven approach to improve the electrochemical performance of NFPP and reports a low-cost, ultrastable, and high-rate cathode material of NTFPP-0.05 for SIBs.

19.
J Hazard Mater ; 469: 134033, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38521033

RESUMO

Photochemical reactions contribute to the attenuation and transformation of pharmaceuticals and personal care products (PPCPs) in surface natural waters. Nevertheless, effects of DOM and halogen ions on phototransformation of PPCPs remain elusive. This work selected disparate PPCPs as target pollutants to investigate their aquatic phototransformation processes. Results show that PPCPs containing multiple electron-donating groups (-OH, -NH2, -OR, etc.) are more reactive with photochemically produced reactive intermediates (PPRIs) such as triplet DOM (3DOM*), singlet oxygen (1O2), and reactive halogen species (RHSs), relative to PPCPs containing electron-withdrawing groups (-NOR, -COOR, -OCR, etc.). The generation of RHSs as a result of the coexistance of DOM and halide ions changed the contribution of PPRIs to the photochemical conversion of PPCPs during their migration from fresh water to seawater. For PPCPs (AMP, SMZ, PN, NOR, CIP, etc) with highly reactive groups toward RHSs, the generation of RHSs facilitated their photolysis in halide ion-rich waters, where Cl- plays a critical role in the photochemical transformation of PPCPs. Density functional theory (DFT) calculations showed that single electron transfer and H-abstraction are main reaction pathways of RHSs with the PPCPs. These results demonstate the irreplaceable roles of PPRIs and revealing the underlying reaction mechanisms during the phototransformation of PPCPs, which contributes to a better understanding of the environmental behaviors of PPCPs in complex aquatic environments.


Assuntos
Cosméticos , Poluentes Químicos da Água , Matéria Orgânica Dissolvida , Halogênios , Poluentes Químicos da Água/análise , Fotólise , Íons , Preparações Farmacêuticas
20.
J Colloid Interface Sci ; 669: 877-885, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38749226

RESUMO

Recently, due to high price, resource shortage and unstable supply of cobalt, the development of low-cost cobalt-free Ni-rich cathodes has attracted extensive attention with the ever-increasing lithium-ion batteries (LIBs) industry. Selecting cost-effective elements to replace cobalt in Ni-rich cathodes is urgent. However, the principle of structural design of Ni-rich cathode remains unclear, hampering the selection of alternative elements. Herein, the cobalt-free cathodes of LiNi0.95Mg0.05O2 (NiMg) and LiNi0.95Mn0.05O2 (NiMn) are designed as alternatives to LiNi0.96Co0.04O2 (NiCo). NiMg has comparable cycle stability with NiCo, while NiMn has inferior cycle performance. Reverse Monte Carlo modelling was used to generate structural model and uncover local structure by fitting pair distribution function. It reveals Mn causes more severe Jahn-Teller distortions and disordered lattice host framework (Ni0.95M0.05O2, M = Co/Mn/Mg) than Co and Mg due to the strong size effect and coulomb interactions of Mn in Ni0.95Mn0.05O2 layer. The outstanding cycle stability of NiMg and NiCo originates from the ordered lattice host frameworks, which relieve stress and inhibit particle breakage during cycle. Meanwhile, the ordered lattice host framework induced guest Li+ disordering reduces Li+ diffusion energy barrier, improving the rate capability. This study provides a new perspective for the structural design of cobalt-free Ni-rich cathodes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA