Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
1.
Biol Reprod ; 110(1): 116-129, 2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-37801702

RESUMO

Ovarian hyperstimulation syndrome (OHSS) is a life-threatening and potentially fatal complication during in vitro fertilization treatment. The levels of transforming growth factor-ß1 (TGF-ß1) are upregulated in human follicular fluid and granulosa-lutein cells (hGL) of OHSS patients and could contribute to the development of OHSS by downregulating steroidogenic acute regulatory protein (StAR) expression. However, whether the same is true for the other two members of the TGF-ß family, TGF-ß2 and -ß3, remains unknown. We showed that all three TGF-ß isoforms were expressed in human follicular fluid. In comparison, TGF-ß1 was expressed at the highest level, followed by TGF-ß2 and TGF-ß3. Compared to non-OHSS patients, follicular fluid levels of TGF-ß1 and TGF-ß3 were significantly upregulated in OHSS patients. The same results were observed in mRNA levels of TGF-ß isoforms in hGL cells and ovaries of OHSS rats. In addition, StAR mRNA levels were upregulated in hGL cells of OHSS patients and the ovaries of OHSS rats. Treatment cells with TGF-ß isoforms downregulated the StAR expression with a comparable effect. Moreover, activations of SMAD3 signaling were required for TGF-ß isoforms-induced downregulation of StAR expression. This study indicates that follicular fluid TGF-ß1 and TGF-ß3 levels could be used as biomarkers and therapeutic targets for the OHSS.


Assuntos
Síndrome de Hiperestimulação Ovariana , Fator de Crescimento Transformador beta1 , Feminino , Humanos , Ratos , Animais , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta3/genética , Fator de Crescimento Transformador beta3/metabolismo , Fator de Crescimento Transformador beta2/genética , Fator de Crescimento Transformador beta2/metabolismo , Síndrome de Hiperestimulação Ovariana/genética , RNA Mensageiro/metabolismo , Isoformas de Proteínas
2.
Exp Cell Res ; 430(1): 113693, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37392963

RESUMO

Neuropeptide FF (NPFF) belongs to the RFamide peptide family. NPFF regulates a variety of physiological functions by binding to a G protein-coupled receptor (GPCR), NPFFR2. Epithelial ovarian cancer (EOC) is a leading cause of death among gynecological malignancies. The pathogenesis of EOC can be regulated by many local factors, including neuropeptides, through an autocrine/paracrine manner. However, to date, the expression and/or function of NPFF/NPFFR2 in EOC is undetermined. In this study, we show that the upregulation of NPFFR2 mRNA was associated with poor overall survival in EOC. The TaqMan probe-based RT-qPCR showed that NPFF and NPFFR2 were expressed in three human EOC cells, CaOV3, OVCAR3, and SKOV3. In comparison, NPFF and NPFFR2 expression levels were higher in SKOV3 cells than in CaOV3 or OVCAR3 cells. Treatment of SKOV3 cells with NPFF did not affect cell viability and proliferation but stimulated cell invasion. NPFF treatment upregulates matrix metalloproteinase-9 (MMP-9) expression. Using the siRNA-mediated knockdown approach, we showed that the stimulatory effect of NPFF on MMP-9 expression was mediated by the NPFFR2. Our results also showed that ERK1/2 signaling was activated in SKOV3 cells in response to the NPFF treatment. In addition, blocking the activation of ERK1/2 signaling abolished the NPFF-induced MMP-9 expression and cell invasion. This study provides evidence that NPFF stimulates EOC cell invasion by upregulating MMP-9 expression through the NPFFR2-mediated ERK1/2 signaling pathway.


Assuntos
Neoplasias Ovarianas , Humanos , Feminino , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Metaloproteinase 9 da Matriz/genética , Apoptose , Sistema de Sinalização das MAP Quinases , Linhagem Celular Tumoral , Carcinoma Epitelial do Ovário/genética , Transdução de Sinais , Invasividade Neoplásica
3.
Cell Mol Life Sci ; 80(3): 60, 2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36749397

RESUMO

Amphiregulin (AREG) is an epidermal growth factor (EGF)-like growth factor that binds exclusively to the EGF receptor (EGFR). Treatment with luteinizing hormone (LH) and/or human chorionic gonadotropin dramatically induces the expression of AREG in the granulosa cells of the preovulatory follicle. In addition, AREG is the most abundant EGFR ligand in human follicular fluid. Therefore, AREG is considered a predominant propagator that mediates LH surge-regulated ovarian functions in an autocrine and/or paracrine manner. In addition to the well-characterized stimulatory effect of LH on AREG expression, recent studies discovered that several local factors and epigenetic modifications participate in the regulation of ovarian AREG expression. Moreover, aberrant expression of AREG has recently been reported to contribute to the pathogenesis of several ovarian diseases, such as ovarian hyperstimulation syndrome, polycystic ovary syndrome, and epithelial ovarian cancer. Furthermore, increasing evidence has elucidated new applications of AREG in assisted reproductive technology. Collectively, these studies highlight the importance of AREG in female reproductive health and disease. Understanding the normal and pathological roles of AREG and elucidating the molecular and cellular mechanisms of AREG regulation of ovarian functions will inform innovative approaches for fertility regulation and the prevention and treatment of ovarian diseases. Therefore, this review summarizes the functional roles of AREG in ovarian function and disease.


Assuntos
Fator de Crescimento Epidérmico , Doenças Ovarianas , Feminino , Humanos , Anfirregulina/metabolismo , Fator de Crescimento Epidérmico/metabolismo , Hormônio Luteinizante , Receptores ErbB/metabolismo
4.
Reproduction ; 165(1): 113-122, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36288122

RESUMO

In brief: Although the pro-invasive role of epidermal growth factor (EGF) has been reported in human trophoblast cells, the underlying mechanism remains largely unexplored. This work reveals that EGF-induced downregulation of connective tissue growth factor (CTGF) mediates the EGF-stimulated human trophoblast cell invasion. Abstract: During the development of the placenta, trophoblast cell invasion must be carefully regulated. Although EGF has been shown to promote trophoblast cell invasion, the underlying mechanism remains largely undetermined. Our previous study using RNA-sequencing (RNA-seq) has identified that kisspeptin-1 is a downstream target of EGF in a human trophoblast cell line, HTR-8/SVneo, and mediates EGF-stimulated cell invasion. In the present study, after re-analysis of our previous RNA-seq data, we found that the CTGF was also downregulated in response to the EGF treatment. The inhibitory effects of EGF on CTGF mRNA and protein levels were confirmed in HTR-8/SVneo cells by reverse transcription quantitative real-time PCR and western blot, respectively. Treatment with EGF activated both PI3K/AKT and ERK1/2 signaling pathways. Using pharmacological inhibitors, our results showed that EGFR-mediated activation of PI3K/AKT signaling was required for the EGF-downregulated CTGF mRNA and protein levels. Matrigel-coated transwell invasion assays demonstrated that EGF treatment stimulated cell invasion. In addition, the invasiveness of HTR-8/SVneo cells was suppressed by treatment with recombinant human CTGF. By contrast, siRNA-mediated knockdown of CTGF increased cell invasion. Notably, the EGF-promoted HTR-8/SVneo cell invasion was attenuated by co-treatment with CTGF. This study provides important insights into the molecular mechanisms mediating EGF-stimulated human trophoblast cell invasion and increases the understanding of the biological functions of CTGF in the human placenta.


Assuntos
Fator de Crescimento Epidérmico , Trofoblastos , Gravidez , Feminino , Humanos , Trofoblastos/metabolismo , Fator de Crescimento Epidérmico/farmacologia , Fator de Crescimento Epidérmico/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fator de Crescimento do Tecido Conjuntivo/genética , Fator de Crescimento do Tecido Conjuntivo/farmacologia , Fator de Crescimento do Tecido Conjuntivo/metabolismo , RNA Mensageiro/metabolismo , Movimento Celular
5.
Cell Commun Signal ; 21(1): 179, 2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37480123

RESUMO

BACKGROUND: The production of human chorionic gonadotropin (hCG) by the placental trophoblast cells is essential for maintaining a normal pregnancy. Aberrant hCG levels are associated with reproductive disorders. The protein of hCG is a dimer consisting of an α subunit and a ß subunit. The ß subunit is encoded by the CGB gene and is unique to hCG. Growth differentiation factor-11 (GDF-11), a member of the transforming growth factor-ß (TGF-ß) superfamily, is expressed in the human placenta and can stimulate trophoblast cell invasion. However, whether the expression of CGB and the production of hCG are regulated by GDF-11 remains undetermined. METHODS: Two human choriocarcinoma cell lines, BeWo and JEG-3, and primary cultures of human cytotrophoblast (CTB) cells were used as experimental models. The effects of GDF-11 on CGB expression and hCG production, as well as the underlying mechanisms, were explored by a series of in vitro experiments. RESULTS: Our results show that treatment of GDF-11 downregulates the expression of CGB and the production of hCG in both BeWo and JEG-3 cells as well as in primary CTB cells. Using a pharmacological inhibitor and siRNA-mediated approach, we reveal that both ALK4 and ALK5 are required for the GDF-11-induced downregulation of CGB expression. In addition, treatment of GDF-11 activates SMAD2/3 but not SMAD1/5/8 signaling pathways. Moreover, both SMAD2 and SMAD3 are involved in the GDF-11-downregulated CGB expression. ELISA results show that the GDF-11-suppressed hCG production requires the ALK4/5-mediated activation of SMAD2/3 signaling pathways. CONCLUSIONS: This study not only discovers the biological function of GDF-11 in the human placenta but also provides important insights into the regulation of the expression of hCG. Video Abstract.


Assuntos
Gonadotropina Coriônica , Placenta , Feminino , Humanos , Gravidez , Linhagem Celular Tumoral , Gonadotropina Coriônica/farmacologia , Transdução de Sinais , Proteína Smad2 , Fator de Crescimento Transformador beta
6.
Cell Commun Signal ; 21(1): 93, 2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-37143106

RESUMO

BACKGROUND: Extravillous trophoblast (EVT) cell invasion is a tightly regulated process that requires for a normal pregnancy. The epithelial-mesenchymal transition (EMT) has been implicated in EVT cell invasion. Growth differentiation factor-8 (GDF-8), a member of the transforming growth factor-beta (TGF-ß) superfamily, is expressed in the human placenta and promotes EVT cell invasion by upregulating the expression of matrix metalloproteinase 2 (MMP2). However, the underlying molecular mechanism of GDF-8-induced MMP2 expression remains undetermined. Therefore, the present study aims to examine the role of Snail and Slug, the EMT-related transcriptional regulators, in GDF-8-stimulated MMP2 expression and cell invasion in HTR-8/SVneo human EVT cell line and primary cultures of human EVT cells. METHODS: HTR-8/SVneo and primary cultures of human EVT cells were used to examine the effect of GDF-8 on MMP2 expression and explore the underlying mechanism. For gene silencing and overexpression, the HTR-8/SVneo cell line was used to make the experiments more technically feasible. The cell invasiveness was measured by Matrigel-coated transwell invasion assay. RESULTS: GDF-8 stimulated MMP2 expression in both HTR-8/SVneo and primary EVT cells. The stimulatory effect of GDF-8 on MMP2 expression was blocked by the inhibitor of TGF-ß type-I receptors, SB431542. Treatment with GDF-8 upregulated Snail and Slug expression in both HTR-8/SVneo and primary EVT cells. The stimulatory effects of GDF-8 on Snail and Slug expression were blocked by pretreatment of SB431542 and siRNA-mediated knockdown of SMAD4. Interestingly, using the siRNA knockdown approach, our results showed that Snail but not Slug was required for the GDF-8-induced MMP2 expression and cell invasion in HTR-8/SVneo cells. The reduction of MMP2 expression in the placentas with preeclampsia (PE) was also observed. CONCLUSIONS: These findings discover the physiological function of GDF-8 in the human placenta and provide important insights into the regulation of MMP2 expression in human EVT cells. Video Abstract.


Assuntos
Metaloproteinase 2 da Matriz , Trofoblastos , Feminino , Humanos , Gravidez , Movimento Celular , Metaloproteinase 2 da Matriz/metabolismo , Miostatina/metabolismo , Miostatina/farmacologia , RNA Interferente Pequeno/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Trofoblastos/metabolismo
7.
Cell Commun Signal ; 21(1): 101, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-37158892

RESUMO

BACKGROUND: Ovarian hyperstimulation syndrome (OHSS) is a serious complication during in vitro fertilization (IVF) treatment. The upregulation of ovarian transforming growth factor-beta 1 (TGF-ß1) is involved in the development of OHSS. The secreted protein acidic and rich in cysteine (SPARC) is a secreted multifunctional matricellular glycoprotein. Although the regulatory effects of TGF-ß1 on SPARC expression have been reported, whether TGF-ß1 regulates SPARC expression in the human ovary remains unknown. In addition, the role of SPARC in the pathogenesis of OHSS is unclear. METHODS: A steroidogenic human ovarian granulosa-like tumor cell line, KGN, and primary culture of human granulosa-lutein (hGL) cells obtained from patients undergoing IVF treatment were used as experimental models. OHSS was induced in rats, and ovaries were collected. Follicular fluid samples were collected from 39 OHSS and 35 non-OHSS patients during oocyte retrieval. The underlying molecular mechanisms mediating the effect of TGF-ß1 on SPARC expression were explored by a series of in vitro experiments. RESULTS: TGF-ß1 upregulated SPARC expression in both KGN and hGL cells. The stimulatory effect of TGF-ß1 on SPARC expression was mediated by SMAD3 but not SMAD2. The transcription factors, Snail and Slug, were induced in response to the TGF-ß1 treatment. However, only Slug was required for the TGF-ß1-induced SPARC expression. Conversely, we found that the knockdown of SPARC decreased Slug expression. Our results also revealed that SPARC was upregulated in the OHSS rat ovaries and in the follicular fluid of OHSS patients. Knockdown of SPARC attenuated the TGF-ß1-stimulated expression of vascular endothelial growth factor (VEGF) and aromatase, two markers of OHSS. Moreover, the knockdown of SPARC reduced TGF-ß1 signaling by downregulating SMAD4 expression. CONCLUSIONS: By illustrating the potential physiological and pathological roles of TGF-ß1 in the regulation of SPARC in hGL cells, our results may serve to improve current strategies used to treat clinical infertility and OHSS. Video Abstract.


Assuntos
Células Lúteas , Síndrome de Hiperestimulação Ovariana , Feminino , Humanos , Animais , Ratos , Cisteína , Osteonectina , Fator de Crescimento Transformador beta1 , Fator A de Crescimento do Endotélio Vascular
8.
J Cell Physiol ; 237(1): 687-695, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34318927

RESUMO

Epigallocatechin-3-gallate (EGCG) is the most abundant and biologically active catechins extracted from green tea. The health benefits of EGCG have been extendedly studied. Ovarian steroidogenesis plays a pivotal role in maintaining normal reproductive function. Granulosa cells in the ovary are essential for steroid hormone production. To date, the effect of EGCG on steroidogenesis in human granulosa cells remains unclear. In the present study, we examine the physiological concentrations of EGCG on steroidogenesis in a steroidogenic human granulosa-like tumor cell line, KGN. Our results demonstrate that treatment with EGCG upregulates steroidogenic acute regulatory protein (StAR) expression and increases progesterone (P4) production. EGCG does not affect the expression levels of other steroidogenesis-related enzymes, such as P450 side-chain cleavage enzyme, 3ß-hydroxysteroid dehydrogenase, and aromatase. In addition, we identify the expression of 67-kDa laminin receptor (67LR) in KGN cells. Moreover, EGCG-induced StAR expression and P4 production require the 67LR-mediated activation of the PKA-CREB signaling pathway. These results provide a better understanding of the function of EGCG on ovarian steroidogenesis, which may lead to the development of alternative therapeutic approaches for reproductive disorders.


Assuntos
Células da Granulosa , Progesterona , Catequina/análogos & derivados , Feminino , Células da Granulosa/metabolismo , Humanos , Fosfoproteínas/metabolismo , Progesterona/metabolismo , Receptores de Laminina/metabolismo , Transdução de Sinais
9.
Reprod Biol Endocrinol ; 20(1): 34, 2022 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-35183204

RESUMO

BACKGROUND: Growth differentiation factor-11 (GDF-11) belongs to the transforming growth factor-ß (TGF-ß) superfamily. To date, the expression of GDF-11 in the ovary and its role in regulating ovarian function are completely unknown. Ovarian granulosa cell-mediated steroidogenesis plays a pivotal role in maintaining normal female reproductive function. GDF-11 and GDF-8 share high sequence similarity and exhibit many similar features and functions. Steroidogenic acute regulatory protein (StAR) regulates the rate-limiting step in steroidogenesis and its expression can be downregulated by GDF-8. Polycystic ovary syndrome (PCOS) is the most common cause of female infertility. The expression levels of GDF-8 are upregulated in the human follicular fluid and granulosa-lutein (hGL) cells of PCOS patients. However, whether similar results can be observed for the GDF-11 needs to be determined. METHODS: The effect of GDF-11 on StAR expression and the underlying molecular mechanisms were explored by a series of in vitro experiments in a primary culture of hGL cells obtained from patients undergoing in vitro fertilization (IVF) treatment. Human follicular fluid samples were obtained from 36 non-PCOS patients and 36 PCOS patients. GDF-11 levels in follicular fluid were measured by ELISA. RESULTS: GDF-11 downregulates StAR expression, whereas the expression levels of the P450 side-chain cleavage enzyme (P450scc) and 3ß-hydroxysteroid dehydrogenase (3ß-HSD) are not affected by GDF-11 in hGL cells. Using pharmacological inhibitors and a siRNA-mediated approach, we reveal that ALK5 but not ALK4 mediates the suppressive effect of GDF-11 on StAR expression. Although GDF-11 activates both SMAD2 and SMAD3 signaling pathways, only SMAD3 is involved in the GDF-11-induced downregulation of StAR expression. In addition, we show that SMAD1/5/8, ERK1/2, and PI3K/AKT signaling pathways are not activated by GDF-11 in hGL cells. RT-qPCR and ELISA detect GDF-11 mRNA expression in hGL cells and GDF-11 protein expression in human follicular fluid, respectively. Interestingly, unlike GDF-8, the expression levels of GDF-11 are not varied in hGL cells and follicular fluid between non-PCOS and PCOS patients. CONCLUSIONS: This study increases the understanding of the biological function of GDF-11 and provides important insights into the regulation of ovarian steroidogenesis.


Assuntos
Proteínas Morfogenéticas Ósseas/fisiologia , Fatores de Diferenciação de Crescimento/fisiologia , Células Lúteas/metabolismo , Fosfoproteínas/genética , Adulto , Células Cultivadas , Regulação para Baixo/genética , Feminino , Líquido Folicular/metabolismo , Células da Granulosa/metabolismo , Humanos , Infertilidade Feminina/genética , Infertilidade Feminina/metabolismo , Fosfoproteínas/metabolismo , Síndrome do Ovário Policístico/genética , Síndrome do Ovário Policístico/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo I/metabolismo , Transdução de Sinais/fisiologia , Proteína Smad3/metabolismo
10.
Reprod Biol Endocrinol ; 20(1): 22, 2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-35101033

RESUMO

BACKGROUND: Tightly regulation of extravillous cytotrophoblast (EVT) cell invasion is critical for the placentation and establishment of a successful pregnancy. Insufficient EVT cell invasion leads to the development of preeclampsia (PE) which is a leading cause of maternal and perinatal mortality and morbidity. Transforming growth factor-beta1 (TGF-ß1) and kisspeptin are expressed in the human placenta and have been shown to inhibit EVT cell invasion. Kisspeptin is a downstream target of TGF-ß1 in human breast cancer cells. However, whether kisspeptin is regulated by TGF-ß1 and mediates TGF-ß1-suppressed human EVT cell invasion remains unclear. METHODS: The effect of TGF-ß1 on kisspeptin expression and the underlying mechanisms were explored by a series of in vitro experiments in a human EVT cell line, HTR-8/SVneo, and primary cultures of human EVT cells. Serum levels of TGF-ß1 and kisspeptin in patients with or without PE were measured by ELISA. RESULTS: TGF-ß1 upregulates kisspeptin expression in HTR-8/SVneo cells and primary cultures of human EVT cells. Using pharmacological inhibitor and siRNA, we demonstrate that the stimulatory effect of TGF-ß1 on kisspeptin expression is mediated via the ALK5 receptor. Treatment with TGF-ß1 activates SMAD2/3 canonical pathways as well as ERK1/2 and PI3K/AKT non-canonical pathways. However, only inhibition of ERK1/2 activation attenuates the stimulatory effect of TGF-ß1 on kisspeptin expression. In addition, siRNA-mediated knockdown of kisspeptin attenuated TGF-ß1-suppressed EVT cell invasion. Moreover, we report that serum levels of TGF-ß1 and kisspeptin are significantly upregulated in patients with PE. CONCLUSIONS: By illustrating the potential physiological role of TGF-ß1 in the regulation of kisspeptin expression, our results may serve to improve current strategies used to treat placental diseases.


Assuntos
Kisspeptinas/genética , Fator de Crescimento Transformador beta1/fisiologia , Trofoblastos/fisiologia , Movimento Celular/genética , Células Cultivadas , Feminino , Humanos , Kisspeptinas/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Gravidez , Transdução de Sinais/genética , Proteínas Smad/fisiologia
11.
Cell Commun Signal ; 20(1): 89, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35705978

RESUMO

BACKGROUND: Growth differentiation factor-11 (GDF-11), also known as bone morphogenetic protein-11, belongs to the transforming growth factor-beta superfamily. GDF-11 was first identified as an important regulator during embryonic development. Increasing evidence has demonstrated that GDF-11 regulates the development of various organs and its aberrant expressions are associated with the risk of cardiovascular diseases and cancers. Extravillous trophoblast (EVT) cells invasion is a critical event for placenta development and needs to be finely regulated. However, to date, the biological function of GDF-11 in the human EVT cells remains unknown. METHODS: HTR-8/SVneo, a human EVT cell line, and primary cultures of human EVT cells were used to examine the effect of GDF-11 on matrix metalloproteinase 2 (MMP2) expression. Matrigel-coated transwell invasion assay was used to examine cell invasiveness. A series of in vitro experiments were applied to explore the underlying mechanisms that mediate the effect of GDF-11 on MMP2 expression and cell invasion. RESULTS: Treatment with GDF-11 stimulates MMP2 expression, in the HTR-8/SVneo and primary human EVT cells. Using a pharmacological inhibitor and siRNA-mediated knockdown approaches, our results demonstrated that the stimulatory effect of GDF-11 on MMP2 expression was mediated by the ALK4/5-SMAD2/3 signaling pathways. In addition, the expression of inhibitor of DNA-binding protein 2 (ID2) was upregulated by GDF-11 and that was required for the GDF-11-stimulated MMP2 expression and EVT cell invasion. CONCLUSIONS: These findings discover a new biological function and underlying molecular mechanisms of GDF-11 in the regulation of human EVT cell invasion. Video Abstract.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Fatores de Diferenciação de Crescimento/metabolismo , Proteína 2 Inibidora de Diferenciação , Metaloproteinase 2 da Matriz , Trofoblastos , Movimento Celular , Feminino , Humanos , Proteína 2 Inibidora de Diferenciação/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Gravidez
12.
Cell Commun Signal ; 20(1): 166, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36284301

RESUMO

BACKGROUND: Heparin-binding epidermal growth factor-like growth factor (HB-EGF) belongs to the epidermal growth factor (EGF) family of growth factors. HB-EGF and its receptors, epidermal growth factor receptor (EGFR) and HER4, are expressed in the human corpus luteum. HB-EGF has been shown to regulate luteal function by preventing cell apoptosis. Steroidogenesis is the primary function of the human corpus luteum. Steroidogenic acute regulatory protein (StAR) plays a critical role in steroidogenesis. StAR expression and progesterone (P4) production in human granulosa-lutein (hGL) cells have been shown to be upregulated by a ligand of EGFR, amphiregulin. However, whether HB-EGF can achieve the same effects remains unknown. METHODS: A steroidogenic human ovarian granulosa-like tumor cell line, KGN, and primary culture of hGL cells obtained from patients undergoing in vitro fertilization treatment were used as experimental models. The underlying molecular mechanisms mediating the effects of HB-EGF on StAR expression and P4 production were explored by a series of in vitro experiments. RESULTS: Western blot showed that EGFR, HER2, and HER4 were expressed in both KGN and hGL cells. Treatment with HB-EGF for 24 h induced StAR expression but did not affect the expression of steroidogenesis-related enzymes, P450 side chain cleavage enzyme, 3ß-hydroxysteroid dehydrogenase, and aromatase. Using pharmacological inhibitors and a siRNA-mediated knockdown approach, we showed that EGFR, HER4, but not HER2, were required for HB-EGF-stimulated StAR expression and P4 production. In addition, HB-EGF-induced upregulations of StAR expression and P4 production were mediated by the activation of the ERK1/2 signaling pathway. CONCLUSION: This study increases the understanding of the physiological role of HB-EGF in human luteal functions. Video Abstract.


Assuntos
Células Lúteas , Feminino , Humanos , Células Lúteas/metabolismo , Progesterona/metabolismo , Aromatase/metabolismo , Aromatase/farmacologia , Anfirregulina/metabolismo , Anfirregulina/farmacologia , Fator de Crescimento Epidérmico/farmacologia , Fator de Crescimento Semelhante a EGF de Ligação à Heparina/metabolismo , Fator de Crescimento Semelhante a EGF de Ligação à Heparina/farmacologia , Sistema de Sinalização das MAP Quinases , RNA Interferente Pequeno/metabolismo , Ligantes , Luteína/metabolismo , Luteína/farmacologia , Fosfoproteínas/metabolismo , Transdução de Sinais , Receptores ErbB/metabolismo , Hidroxiesteroide Desidrogenases/metabolismo , Hidroxiesteroide Desidrogenases/farmacologia , Heparina/metabolismo , Heparina/farmacologia , Células da Granulosa/metabolismo , Células Cultivadas
13.
Reprod Biomed Online ; 44(3): 539-547, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35135729

RESUMO

Premature ovarian insufficiency (POI), defined as loss of normal ovarian functions before the age of 40 years, occurs in at least 1% of all women. It affects the reproductive system and causes many health problems and psychological stress. Abnormal serum lipid profile leads to cardiovascular diseases, which are strongly associated with high mortality in patients with POI. To date, several studies have examined the levels of different serum lipids in patients with POI. The results, however, are either inconclusive or inconsistent. Therefore, the aim of this meta-analysis was to measure whether serum levels of total cholesterol, high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C) and triglyceride are varied in patients with POI. Ten studies in total were included in this meta-analysis involving 1009 individuals: 458 patients with POI and 551 controls. Our analysis results showed that serum total cholesterol (P < 0.00001), LDL-C (P < 0.0001), and triglyceride (P = 0.01) levels were significantly higher in patients with POI compared with healthy controls. Serum HDL-C levels, however, did not vary significantly between controls and patients with POI. These results suggest that elevations in unfavourable lipids may contribute to the high risk of cardiovascular diseases that are observed in patients with POI.


Assuntos
Doenças Cardiovasculares , Menopausa Precoce , Insuficiência Ovariana Primária , Adulto , Doenças Cardiovasculares/complicações , Estudos de Casos e Controles , LDL-Colesterol , Feminino , Humanos , Lipídeos , Triglicerídeos
14.
Lasers Med Sci ; 37(4): 2203-2208, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34988731

RESUMO

The purpose of our study was to investigate the effects of vulvovaginal erbium laser on the genitourinary syndrome of menopause (GSM) and sexual function of postmenopausal women. We conducted a retrospective study of sixty-four postmenopausal women with GSM, and these patients were scheduled for three times of vulvovaginal erbium laser treatment. A baseline and post-treatment vaginal status was assessed by measuring vaginal pH, patients' subjective vulvovaginal atrophy (VVA) symptoms, which included dryness, dyspareunia, itching, and burning. The urinary response to treatment was assessed using ICIQ-SF, UDI-6, IIQ-7, OABSS, and POPDI-6. Sexual function was evaluated using the Female Sexual Function Index (FSFI) before and after vulvovaginal laser therapy. Patient follow-ups were scheduled for 12 months after treatment. A total of sixty-four patients were enrolled in the study. We observed the significant improvement in the percentage of negative symptoms (dryness/dyspareunia/itching/burning) and in lower urinary tracts symptoms evaluated with ICIQ-SF, UDI-6, IIQ-7, OABSS, and POPDI-6 (P < 0.05). Patients' overall satisfaction regarding their sexual life, assessed via Female Sexual Function Index (FSFI), showed significant improvement in its six domains of sexual function (P < 0.05). The pH level of vaginal secretions significantly decreased. No long-term complications were found post-treatment. The Er:YAG vaginal laser procedure is associated with a significant improvement in GSM and sexual function of postmenopausal women. Our result demonstrates that it can be a safe and efficacious treatment for patients with GSM without any serious adverse effects up to 1-year post-treatment. The long-term effects of using vulvovaginal laser in the treatment of GSM should be investigated.


Assuntos
Dispareunia , Lasers de Gás , Atrofia/complicações , Atrofia/patologia , Dispareunia/etiologia , Dispareunia/terapia , Érbio , Feminino , Humanos , Lasers de Gás/efeitos adversos , Menopausa , Prurido/complicações , Estudos Retrospectivos , Resultado do Tratamento , Vagina/patologia , Vagina/cirurgia
15.
J Cell Physiol ; 236(9): 6619-6629, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33512728

RESUMO

Estradiol (E2), one of the main steroid hormones secreted by the ovaries, plays an important role in maintaining normal female reproductive function. Ovarian granulosa cells are the main source of E2 production because these cells express aromatase, which is encoded by the CYP19A1 gene and catalyzes the final step in E2 biosynthesis from androgens. Transforming growth factor-beta 1 (TGF-ß1) and its receptors are expressed in human granulosa cells, and TGF-ß1 expression can be detected in human follicular fluid. To date, TGF-ß1 has been shown to regulate various ovarian functions. However, whether aromatase can be regulated by TGF-ß1 in human granulosa cells has not been determined. In the present study, we demonstrate that TGF-ß1 stimulates aromatase expression in primary human granulosa-lutein cells and in the human ovarian granulose-like tumor cell line, KGN. We used pharmacological inhibitors and small interfering RNA-mediated knockdown approaches to reveal that the SMAD2 and ERK1/2 signaling pathways are involved in TGF-ß1-induced aromatase expression and E2 production. These results not only provide important insights into the molecular mechanisms that mediate TGF-ß1-induced aromatase expression and E2 production in human granulosa cells but also increase the understanding of the normal physiological roles of TGF-ß1 in the ovary.


Assuntos
Aromatase/metabolismo , Estradiol/biossíntese , Células da Granulosa/metabolismo , Células Lúteas/metabolismo , Sistema de Sinalização das MAP Quinases , Proteína Smad2/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Feminino , Humanos , Modelos Biológicos , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Transdução de Sinais , Proteína Smad3/metabolismo
16.
Reproduction ; 162(5): 331-338, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34432647

RESUMO

Matrix metalloproteinases (MMPs) play a pivotal role in the regulation of cell invasion. Placental trophoblast cell invasion is a precisely regulated event. Dysregulation of MMPs has been linked to various placental diseases. Growth differentiation factor-8 (GDF-8), also known as myostatin, is a member of the transforming growth factor-beta (TGF-ß) superfamily. GDF-8 and its putative receptors are expressed in human extravillous cytotrophoblast cells (EVTs). Although the pro-invasive effect of GDF-8 in human EVT cells has been recently reported, the underlying molecular mechanism remains largely unknown. In this study, we investigate the effects of GDF-8 on the expression of the two most important MMPs, MMP2 and MMP9, in the HTR-8/SVneo human EVT cell line. Our results show that GDF-8 significantly upregulates the expression of MMP2. The expression of MMP9 is not affected by GDF-8. Using a siRNA-mediated knockdown approach, we reveal that the stimulatory effect of GDF-8 on MMP2 expression is mediated by the ALK5-SMAD2/3 signaling pathway. Additionally, the knockdown of MMP2 attenuates the GDF-8-induced cell invasiveness. These findings deepen our understanding of the biological roles of GDF-8 in the regulation of human trophoblast cell invasion.


Assuntos
Metaloproteinase 2 da Matriz , Miostatina , Receptor do Fator de Crescimento Transformador beta Tipo I , Proteína Smad2 , Proteína Smad3 , Trofoblastos , Movimento Celular , Feminino , Humanos , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 2 da Matriz/metabolismo , Miostatina/metabolismo , Placenta/metabolismo , Gravidez , Proteína Smad2/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Trofoblastos/metabolismo
17.
Cell Commun Signal ; 19(1): 101, 2021 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-34620174

RESUMO

BACKGROUND: During pregnancy, trophoblast cell invasion needs to be finely controlled. Aberrant trophoblast cell invasion is associated with placental diseases. Epidermal growth factor (EGF) and its receptor, EGFR, are expressed in trophoblast cells. Although the pro-invasive effect of EGF on trophoblast cells has been reported, the underlying mechanism remains largely unknown. RESULTS: In the present study, we conducted an RNA sequencing (RNA-seq) to HTR-8/SVneo human trophoblast cells in response to EGF and identified KISS1 as a target gene of EGF. The human KISS1 gene encodes kisspeptin, also known as metastin, which can suppress tumor metastasis. Our results showed that EGF treatment downregulated KISS1 expression and secretion by activating the EGFR-mediated PI3K/AKT signaling pathway. In addition, the expression of inhibitor of DNA-binding protein 3 (ID3) was downregulated by EGF and that was required for the EGF-suppressed KISS1 expression. Functionally, transwell invasion assays demonstrated that EGF stimulated human trophoblast cell invasion by downregulating KISS1 expression. Preeclampsia (PE) is a placental disease characterized by insufficient trophoblast cell invasion. Our clinical results revealed that serum levels of EGF were downregulated while serum and placental levels of KISS1 were upregulated in PE patients. CONCLUSIONS: This study demonstrates that downregulation of EGF can lead to poor trophoblast cell invasion by increasing KISS1 expression which subsequently contributes to the pathogenesis of PE. Video Abstract.


Assuntos
Proteínas Inibidoras de Diferenciação/genética , Kisspeptinas/genética , Proteínas de Neoplasias/genética , Doenças Placentárias/genética , Movimento Celular/genética , Fator de Crescimento Epidérmico/genética , Receptores ErbB/genética , Feminino , Humanos , Invasividade Neoplásica/genética , Metástase Neoplásica , Fosfatidilinositol 3-Quinases/genética , Placenta/metabolismo , Placenta/patologia , Doenças Placentárias/patologia , Pré-Eclâmpsia/genética , Pré-Eclâmpsia/metabolismo , Pré-Eclâmpsia/patologia , Gravidez , Proteínas Proto-Oncogênicas c-akt/genética , Transdução de Sinais/genética , Trofoblastos/metabolismo , Trofoblastos/patologia
18.
Reprod Biomed Online ; 42(1): 227-236, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33168491

RESUMO

Sex hormone-binding globulin (SHBG) is a plasma glycoprotein that binds androgens and oestrogens, and regulates their bioavailability to target tissues. To date, several human SHBG gene polymorphisms have been identified. Polycystic ovary syndrome (PCOS) is one of the most common endocrine disorders, and hyperandrogenism has been considered to be a hallmark of PCOS. Many studies have examined the association between SHBG gene polymorphisms and PCOS risk, but the results have been inconclusive or inconsistent. Therefore, the aim of this meta-analysis was to investigate whether SHBG gene polymorphisms are associated with risk of PCOS. Twelve studies were included, involving 4733 participants: 2271 patients with PCOS and 2462 control participants. The results revealed that SHBG polymorphism of eight or more (TAAAA)n pentanucleotide repeats (rs35785886) was associated with PCOS risk (odds ratio [OR] = 1.24, 95% confidence interval [CI] = 1.06, 1.44, Z = 2.77, P = 0.006) and low serum SHBG concentrations in women with PCOS (standardized mean difference = -0.83, 95% CI = -1.54, -0.12, Z = 2.30, P = 0.02). Other SHBG gene polymorphisms (rs6259, rs6257, rs727428 and rs1799941) were not significantly associated with either PCOS risk or serum SHBG concentrations. These findings suggest that the presence of a polymorphism of eight or more SHBG (TAAAA)n may be a predictive factor for the risk of PCOS.


Assuntos
Síndrome do Ovário Policístico/genética , Globulina de Ligação a Hormônio Sexual/genética , Estudos de Casos e Controles , Feminino , Predisposição Genética para Doença , Humanos , Polimorfismo Genético
19.
Hepatology ; 70(4): 1360-1376, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30933372

RESUMO

Cell-fate determination is influenced by interactions between master transcription factors (TFs) and cis-regulatory elements. Hepatocyte nuclear factor 4 alpha (HNF4A), a liver-enriched TF, acts as a master controller in specification of hepatic progenitor cells by regulating a network of TFs to control onset of hepatocyte cell fate. Using analysis of genome-wide histone modifications, DNA methylation, and hydroxymethylation in mouse hepatocytes, we show that HNF4A occupies active enhancers in hepatocytes and is essential for active histone and DNA signatures, especially acetylation of lysine 27 of histone 3 (H3K27ac) and 5-hydroxymethylcytosine (5hmC). In mice lacking HNF4A protein in hepatocytes, we observed a decrease in both H3K27ac and hydroxymethylation at regions bound by HNF4A. Mechanistically, HNF4A-associated hydroxymethylation (5hmC) requires its interaction with ten-eleven translocation methylcytosine dioxygenase 3 (TET3), a protein responsible for oxidation from 5mC to 5hmC. Furthermore, HNF4A regulates TET3 expression in liver by directly binding to an enhancer region. Conclusion: In conclusion, we identified that HNF4A is required for the active epigenetic state at enhancers that amplifies transcription of genes in hepatocytes.


Assuntos
Metilação de DNA/genética , Epigenômica , Fator 4 Nuclear de Hepatócito/genética , Hepatócitos/metabolismo , Fígado/patologia , Animais , Diferenciação Celular/genética , Células Cultivadas , Feminino , Fator 4 Nuclear de Hepatócito/metabolismo , Hepatócitos/patologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Sensibilidade e Especificidade , Células-Tronco/citologia , Células-Tronco/metabolismo , Ativação Transcricional/genética
20.
Reproduction ; 160(1): 11-19, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32272446

RESUMO

Polycystic ovary syndrome (PCOS) is the most common cause of female infertility. Growth differentiation factor-8 (GDF-8) is expressed in the ovary and can be detected in human follicular fluid which provides an important microenvironment for maintaining physiological functions of the ovarian follicle. To date, the relationship between GDF-8 levels in follicular fluid and the risk of PCOS is completely unknown. In the present study, we show that during the process of the controlled ovarian hyperstimulation (COH), serum GDF-8 levels are higher on the day of gonadotropin administration and 14 days after embryo transfer in in vitro fertilization (IVF) patients with PCOS than they are in IVF patients without PCOS. Importantly, GDF-8 levels in follicular fluid at oocyte retrieval are also higher in PCOS patients than in non-PCOS patients. Treatment of primary human granulosa-lutein (hGL) cells with GDF-8 downregulates StAR protein expression and the inhibition is more pronounced in hGL cells from PCOS patients than it is in cells from non-PCOS patients. Importantly, high GDF-8 levels and low progesterone (P4) levels were associated with poor pregnancy outcomes in PCOS patients. Our results provide the first evidence that aberrant expression of GDF-8 in the follicular fluid of PCOS patients results in abnormal P4 expression, which leads to poor pregnancy outcomes.


Assuntos
Fertilização in vitro/efeitos adversos , Líquido Folicular/metabolismo , Infertilidade Feminina/diagnóstico , Miostatina/metabolismo , Síndrome do Ovário Policístico/terapia , Taxa de Gravidez , Adulto , Estudos de Casos e Controles , Transferência Embrionária , Feminino , Humanos , Infertilidade Feminina/etiologia , Infertilidade Feminina/metabolismo , Gravidez , Resultado da Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA