RESUMO
To investigate the impact of extrusion parameters on the formation of Nε-(carboxymethyl)lysine (CML), Nε-(carboxyethyl)lysine (CEL) and acrylamide in plant-based meat analogues (PBMAs), the content changes and the correlations of compounds related to their formation were studied. The extrusion promoted CML, CEL and acrylamide formation, with more CEL being formed than CML. Variations in the moisture level and barrel temperature exerted a greater influence on the CML, CEL, acrylamide and α-dicarbonyl compounds than the screw speed and the feed rate. An increase in the moisture content led to a decrease in the CEL content, whereas it enhanced CML formation. The impact of moisture on acrylamide formation varied depending on whether low- or high-moisture extrusion was applied. Elevated temperatures promoted the accumulation of CEL, methylglyoxal and 2,3-butanedione while diminishing the accumulation of CML, acrylamide, glyoxal and 3-deoxyglucosone. CML and CEL were positively correlated with glyoxal and methylglyoxal, respectively. CEL and methylglyoxal were negatively correlated with protein and water content, whereas CML, glyoxal and 3-deoxyglucosone displayed positive correlations. In summary, higher moisture levels and feed rates and lower screw speeds and barrel temperatures are advantageous for producing PBMAs with lower CEL and total advanced glycation end-products contents, while lower or higher moisture contents, a lower feed rate and a higher barrel temperature are beneficial to reducing the acrylamide content.
Assuntos
Acrilamida , Lisina , Acrilamida/química , Acrilamida/análise , Lisina/análogos & derivados , Lisina/análise , Lisina/química , Carne/análise , Temperatura , Manipulação de Alimentos/métodos , Aldeído Pirúvico/análise , Aldeído Pirúvico/química , Substitutos da CarneRESUMO
The Maillard reaction (MR) has been established to be a paramount contributor to the characteristic sensory property of thermally processed food products. Meanwhile, MR also gives rise to myriads of harmful byproducts (HMPs) (e.g., advanced glycation end products (AGEs) and acrylamide). Nutritional additives have attracted increasing attention in recent years owing to their potential to simultaneously improve nutritional quality and attenuate HMP formation. In this manuscript, a brief overview of various nutritional additives (vitamins, minerals, fatty acids, amino acids, dietary fibers, and miscellaneous micronutrients) in heat-processed food is provided, followed by a summary of the formation mechanisms of AGEs and acrylamide highlighting the potential crosstalk between them. The main body of the manuscript is on the capability of nutritional additives to modulate AGE and acrylamide formation besides their traditional roles as nutritional enhancers. Finally, limitations/concerns associated with their use to attenuate dietary exposure to HMPs and future perspectives are discussed. Literature data support that through careful control of the addition levels, certain nutritional additives possess promising potential for simultaneous improvement of nutritional value and reduction of AGE and acrylamide content via multiple action mechanisms. Nonetheless, there are some major concerns that may limit their wide applications for achieving such dual functions, including influence on sensory properties of food products, potential overestimation of nutrition enhancement, and introduction of hazardous alternative reaction products or derivatives. These could be overcome through comprehensive assay of dose-response relationships and systematic evaluation of the diverse combinations from the same and/or different categories of nutritional additives to establish synergistic mixtures.
Assuntos
Alimento Processado , Reação de Maillard , Estado Nutricional , Valor Nutritivo , AcrilamidasRESUMO
Seed mucilages are potential sources of natural polysaccharides. They are biodegradable, biocompatible, sustainable, renewable, and safe for human consumption. Due to the desirable physicochemical and functional properties (e.g. gelling, thickening, stabilizing, and emulsifying), seed mucilages have attracted extensive attention from researchers for utilization as a promising material for the development of advanced carrier systems. Seed mucilages have been utilized as natural polymers to improve the properties of various carrier systems (e.g. complex coacervates, beads, nanofibers, and gels) and for the delivery of diverse hydrophilic and lipophilic compounds (e.g. vitamins, essential oils, antioxidants, probiotics, and antimicrobial agents) to achieve enhanced stability, bioavailability, bioactivity of the encapsulated molecules, and improved quality attributes of food products. This review highlights the recent progress in seed mucilage-based carrier systems for food and nutraceutical applications. The main contents include (1) sources, extraction methods, and physicochemical and functional characteristics of seed mucilages, (2) application of seed mucilages for the development of advanced carrier systems, (3) major issues associated with carrier fabrication, and (4) mechanisms of carrier development, latest improvements in carrier formulation, carrier efficiency in the delivery of bioactive agents, and application in food and nutraceuticals. Furthermore, major challenges and future perspectives of seed mucilage-based carriers for a commercial application are discussed.
RESUMO
As a major ubiquitous secondary metabolite, flavonoids are widely distributed in planta. Among flavonoids, kaempferol is a typical natural flavonol in diets and medicinal plants with myriad bioactivities, such as anti-inflammatory activity, anti-cancer activity, antioxidant activity, and anti-diabetic activity. However, the natural sources, absorption and metabolism as well as the bioactivities of kaempferol have not been reviewed comprehensively and systematically. This review highlights the latest research progress and the effect of kaempferol in the prevention and treatment of various chronic diseases, as well as its protective health effects, and provides a theoretical basis for future research to be used in nutraceuticals. Further, comparison of the different extraction and analytical methods are presented to highlight the most optimum for PG recovery and its detection in plasma and body fluids. Such review aims at improving the value-added applications of this unique dietary bioactive flavonoids at commercial scale and to provide a reference for its needed further development.
Assuntos
Flavonoides , Quempferóis , Quempferóis/farmacologia , Quempferóis/metabolismo , Flavonoides/farmacologia , Flavonoides/metabolismo , Polifenóis , Antioxidantes/farmacologia , Suplementos NutricionaisRESUMO
Prunus mume Sieb. Et Zucc (P. mume) is an acidic fruit native to China (named Chinese Mei or greengage plum). It is currently cultivated in several Asian countries, including Japan ("Ume"), Korea (Maesil), and Vietnam (Mai or Mo). Due to its myriad nutritional and functional properties, it is accepted in different countries, and its characteristics account for its commercialization. In this review, we summarize the information on the bioactive compounds from the fruit of P. mume and their structure-activity relationships (SAR); the pulp has the highest enrichment of bioactive chemicals. The nutritional properties of P. mume and the numerous uses of its by-products make it a potential functional food. P. mume extracts exhibit antioxidant, anticancer, antimicrobial, and anti-hyperuricaemic properties, cardiovascular protective effects, and hormone regulatory properties in various in vitro and in vivo assays. SAR shows that the water solubility, molecular weight, and chemical conformation of P. mume extracts are closely related to their biological activity. However, further studies are needed to evaluate the fruit's potential nutritional and functional therapeutic mechanisms. The industrial process of large-scale production of P. mume and its extracts as functional foods or nutraceuticals needs to be further optimized.
Assuntos
Prunus , Prunus/química , Frutas/química , Extratos Vegetais/farmacologia , Extratos Vegetais/análise , Relação Estrutura-Atividade , Suplementos NutricionaisRESUMO
Tartary buckwheat belongs to the family Polygonaceae, which is a traditionally edible and medicinal plant. Due to its various bioactive compounds, the consumption of Tartary buckwheat is correlated to a wide range of health benefits, and increasing attention has been paid to its potential as a functional food. This review summarizes the main bioactive compounds and important bioactivities and health benefits of Tartary buckwheat, emphasizing its protective effects on metabolic diseases and relevant molecular mechanisms. Tartary buckwheat contains a wide range of bioactive compounds, such as flavonoids, phenolic acids, triterpenoids, phenylpropanoid glycosides, bioactive polysaccharides, and bioactive proteins and peptides, as well as D-chiro-inositol and its derivatives. Consumption of Tartary buckwheat and Tartary buckwheat-enriched products is linked to multiple health benefits, e.g., antioxidant, anti-inflammatory, antihyperlipidemic, anticancer, antidiabetic, antiobesity, antihypertensive, and hepatoprotective activities. Especially, clinical studies indicate that Tartary buckwheat exhibits remarkable antidiabetic activities. Various tartary buckwheat -based foods presenting major health benefits as fat and blood glucose-lowering agents have been commercialized. Additionally, to address the safety concerns, i.e., allergic reactions, heavy metal and mycotoxin contaminations, the quality control standards for Tartary buckwheat and its products should be drafted and completed in the future.
Assuntos
Fagopyrum , Plantas Medicinais , Fagopyrum/química , Flavonoides/metabolismo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , GlicosídeosRESUMO
Euglena gracilis is one of the few permitted edible microalgae. Considering consumer acceptance, E. gracilis grown heterotrophically with yellow appearances have wider food industrial applications such as producing meat analogs than green cells. However, there is much room to improve the protein content of heterotrophic culture cells. In this study, the effects of nitrogen sources, temperature, initial pH, and C/N ratios on the protein production of E. gracilis were evaluated under heterotrophic cultivation. These results indicated that ammonium sulfate was the optimal nitrogen source for protein production. The protein content of E. gracilis cultured by ammonium sulfate increased by 113% and 44.7% compared with that cultured by yeast extract and monosodium glutamate, respectively. The manipulation of the low C/N ratio further improved E. gracilis protein content to 66.10% (w/w), which was 1.6-fold of that in the C/N = 25 group. Additionally, amino acid analysis revealed that the nitrogen-to-protein conversion factor (NTP) could be affected by nitrogen sources. A superior essential amino acid index (EAAI) of 1.62 and a balanced amino acid profile further confirmed the high nutritional value of E. gracilis protein fed by ammonium sulfate. This study highlighted the vast potency of heterotrophic cultured E. gracilis as an alternative dietary protein source.
Assuntos
Euglena gracilis , Microalgas , Euglena gracilis/metabolismo , Microalgas/metabolismo , Sulfato de Amônio/metabolismo , Proteínas/metabolismo , Aminoácidos/metabolismo , Nitrogênio/metabolismoRESUMO
Curcumin (CUR) has been reported to enhance the chemotherapeutic efficacy of oxaliplatin (OXA) in colorectal cancer (CRC) and inhibit OXA-induced side effects. However, shortcomings, including poor solubility and sensitivity to metabolic transformation, have greatly undermined its value in clinical applications. In this study, the potential of CUR-encapsulated hyaluronic acid (HA)-zein composite nanoparticles (HZ-CUR) as an oral adjuvant for OXA-based chemotherapy was assessed in representative CRC models in mice. Cell viability and colony formation assays in three human CRC cell lines showed that HZ-CUR had a stronger anti-CRC effect than free CUR when given alone and a stronger synergistic effect when combined with OXA, especially in HCT116 and HT29 cell lines. Western blotting, cellular uptake, and RNA interference assays revealed that OXA-induced upregulation of CD44 likely contributed to enhanced cellular uptake of HZ-CUR and thus the enhanced anticancer effect. The significantly improved anti-CRC effects and potential underlying mechanism of HZ-CUR alone and in combination with OXA were further validated in a subcutaneous xenograft and an in situ CRC model in mice. These findings support that HZ-CUR may be an effective oral adjuvant for OXA-based CRC chemotherapy that would not only improve its efficacy but also help reduce the associated side effects.
Assuntos
CurcuminaRESUMO
Many important food bioactive compounds are plant secondary metabolites that have traditional applications for health promotion and disease prevention. However, the chemical instability and poor bioavailability of these compounds represent major challenges to researchers. In the last decade, therefore, major impetus has been given for the research and development of advanced carrier systems for the delivery of natural bioactive molecules. Among them, stimuli-responsive carriers hold great promise for simultaneously improving stability, bioavailability, and more importantly delivery and on-demand release of intact bioactive phytochemicals to target sites in response to certain stimuli or combination of them (e.g., pH, temperature, oxidant, enzyme, and irradiation) that would eventually enhance therapeutic outcomes and reduce side effects. Hybrid formulations (e.g., inorganic-organic complexes) and multi-stimuli-responsive formulations have demonstrated great potential for future studies. Therefore, this review systematically compiles and assesses the recent advances on the smart delivery of food bioactive compounds, particularly quercetin, curcumin, and resveratrol through stimuli-responsive carriers, and critically reviews their functionality, underlying triggered-release mechanism, and therapeutic potential. Finally, major limitations, contemporary challenges, and possible solutions/future research directions are highlighted. Much more research is needed to optimize the processing parameters of existing formulations and to develop novel ones for lead food bioactive compounds to facilitate their food and nutraceutical applications.
Assuntos
Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Composição de Medicamentos , Concentração de Íons de Hidrogênio , TemperaturaRESUMO
In recent years, microalgae have drawn increasing attention as a valuable source of functional food ingredients. Intriguingly, Nitzschia laevis is rich in fucoxanthinol that is seldom found in natural sources. Fucoxanthinol, a marine xanthophyll carotenoid, possesses various beneficial bioactivities. Nevertheless, it's not clear whether fucoxanthinol could exert anti-neuroinflammatory function. In light of these premises, the aim of the present study was to investigate the anti-inflammatory role of fucoxanthinol purified from Nitzschia laevis in Lipopolysaccharide (LPS)-stimulated microglia. The results showed that pre-treatment of fucoxanthinol remarkably attenuated the expression of LPS-induced nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), and the production of tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), prostaglandin E2 (PGE-2), nitric oxide (NO) and reactive oxygen species (ROS) induction. Modulation mechanism studies revealed that fucoxanthinol hampered nuclear factor-kappa B (NF-κB), Akt, and mitogen-activated protein kinase (MAPK) pathways. Meanwhile, fucoxanthinol led to the enhancement of nuclear translocation of NF-E2-related factor 2 (Nrf2), and the upregulation of heme oxygenase-1 (HO-1) and NAD(P)H: quinone oxidoreductase 1 (NQO-1). Taken together, the results indicated that fucoxanthinol obtained from Nitzschia laevis had great potential as a neuroprotective agent in neuroinflammation and neurodegenerative disorders.
Assuntos
Diatomáceas , Inflamação/tratamento farmacológico , Microglia/efeitos dos fármacos , Microglia/metabolismo , beta Caroteno/análogos & derivados , Animais , Anti-Inflamatórios/farmacologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Ciclo-Oxigenase 2/metabolismo , Dinoprostona/metabolismo , Heme Oxigenase-1/metabolismo , Inflamação/induzido quimicamente , Interleucina-6/metabolismo , Lipopolissacarídeos , Proteínas de Membrana/metabolismo , Camundongos , NAD(P)H Desidrogenase (Quinona)/metabolismo , NADPH Oxidases/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , beta Caroteno/química , beta Caroteno/farmacologiaRESUMO
There is currently much interest in fucoxanthin due to its broad beneficial health effects. The major commercial source of fucoxanthin is marine seaweed, which has many shortcomings, and has thus restricted its large-scale production and more diversified applications. In this study, growth characteristics and fucoxanthin accumulation were evaluated to explore the potential of the marine diatom Nitzschia laevis in fucoxanthin production. The results suggested that heterotrophic culture was more effective for cell growth, while the mixotrophic culture was favorable for fucoxanthin accumulation. A two-stage culture strategy was consequently established. A model of exponential fed-batch culture led to a biomass concentration of 17.25 g/L. A mix of white and blue light significantly increased fucoxanthin content. These outcomes were translated into a superior fucoxanthin productivity of 16.5 mg/(L·d), which was more than 2-fold of the best value reported thus far. The culture method established herein therefore represents a promising strategy to boost fucoxanthin production in N. laevis, which might prove to be a valuable natural source of commercial fucoxanthin.
Assuntos
Organismos Aquáticos/metabolismo , Diatomáceas/crescimento & desenvolvimento , Diatomáceas/metabolismo , Processos Heterotróficos/fisiologia , Xantofilas/biossíntese , Técnicas de Cultura Celular por Lotes/métodos , Biomassa , Reatores Biológicos , LuzRESUMO
BACKGROUND & AIMS: Many colorectal cancer (CRC) cells contain mutations in KRAS. Analyses of CRC cells with mutations in APC or CTNNB1 and KRAS identified SLC25A22, which encodes mitochondrial glutamate transporter, as a synthetic lethal gene. We investigated the functions of SLC25A22 in CRC cells with mutations in KRAS. METHODS: We measured levels of SLC25A22 messenger RNA and protein in paired tumor and nontumor colon tissues collected from 130 patients in Hong Kong and 17 patients in China and compared protein levels with patient survival times. Expression of SLC25A22 was knocked down in KRAS mutant CRC cell lines (DLD1, HCT116, LOVO, SW480, SW620, and SW1116) and CRC cell lines without mutations in KRAS (CACO-2, COLO205, HT29, and SW48); cells were analyzed for colony formation, proliferation, glutaminolysis and aspartate synthesis, and apoptosis in Matrigel and polymerase chain reaction array analyses. DLD1 and HCT116 cells with SLC25A22 knockdown were grown as xenograft tumors in nude mice; tumor growth and metastasis were measured. SLC25A22 was expressed ectopically in HCT116 cells, which were analyzed in vitro and grown as xenograft tumors in nude mice. RESULTS: Levels of SLC25A22 messenger RNA and protein were increased in colorectal tumor tissues compared with matched nontumor colon tissues; increased protein levels were associated with shorter survival times of patients (P = .01). Knockdown of SLC25A22 in KRAS mutant CRC cells reduced their proliferation, migration, and invasion in vitro, and tumor formation and metastasis in mice, compared with cells without SLC25A22 knockdown. Knockdown of SLC25A22 reduced aspartate biosynthesis, leading to apoptosis, decreased cell proliferation in KRAS mutant CRC cells. Incubation of KRAS mutant CRC cells with knockdown of SLC25A22 with aspartate increased proliferation and reduced apoptosis, which required GOT1, indicating that oxaloacetate is required for cell survival. Decreased levels of oxaloacetate in cells with knockdown of SLC25A22 reduced regeneration of oxidized nicotinamide adenine dinucleotide and reduced nicotinamide adenine dinucleotide phosphate. Reduced oxidized nicotinamide adenine dinucleotide inhibited glycolysis and decreased levels of adenosine triphosphate, which inactivated mitogen-activated protein kinase kinase and extracellular signal-regulated kinase signaling via activation of AMP-activated protein kinase. An increased ratio of oxidized nicotinamide adenine dinucleotide phosphate to reduced nicotinamide adenine dinucleotide phosphate induced oxidative stress and glutathione oxidation, which suppressed cell proliferation. Asparagine synthetase mediated synthesis of asparagine from aspartate to promote cell migration. CONCLUSIONS: SLC25A22 promotes proliferation and migration of CRC cells with mutations KRAS, and formation and metastasis of CRC xenograft tumors in mice. Patients with colorectal tumors that express increased levels of SLC25A22 have shorter survival times than patients whose tumors have lower levels. SLC25A22 induces intracellular synthesis of aspartate, activation of mitogen-activated protein kinase kinase and extracellular signal-regulated kinase signaling and reduces oxidative stress.
Assuntos
Adenoma/metabolismo , Ácido Aspártico/metabolismo , Biomarcadores Tumorais/metabolismo , Carcinoma/metabolismo , Neoplasias Colorretais/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Adenoma/mortalidade , Adenoma/patologia , Adulto , Idoso , Animais , Biomarcadores Tumorais/genética , Carcinoma/mortalidade , Carcinoma/patologia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Sobrevivência Celular , Colo/metabolismo , Colo/patologia , Neoplasias Colorretais/mortalidade , Neoplasias Colorretais/patologia , Progressão da Doença , Feminino , Humanos , Masculino , Camundongos , Camundongos Nus , Pessoa de Meia-Idade , Proteínas de Transporte da Membrana Mitocondrial/deficiência , Mutação , Transplante de NeoplasiasRESUMO
PURPOSE: The purpose of the study was to evaluate the metabolism, pharmacokinetics and efficacy of phospho-NSAIDs in Ces1c-knockout mice. METHODS: Hydrolysis of phospho-NSAIDs by Ces1c was investigated using Ces1c-overexpressing cells. The rate of phospho-NSAID hydrolysis was compared between wild-type, Ces1c+/- and Ces1c-/- mouse plasma in vitro, and the effect of plasma Ces1c on the cytotoxicity of phospho-NSAIDs was evaluated. Pharmacokinetics of phospho-sulindac was examined in wild-type and Ces1c-/- mice. The impact of Ces1c on the efficacy of phospho-sulindac was investigated using lung and pancreatic cancer models in vivo. RESULTS: Phospho-NSAIDs were extensively hydrolyzed in Ces1c-overexpressing cells. Phospho-NSAID hydrolysis in wild-type mouse plasma was 6-530-fold higher than that in the plasma of Ces1c-/- mice. Ces1c-expressing wild-type mouse serum attenuated the in vitro cytotoxicity of phospho-NSAIDs towards cancer cells. Pharmacokinetic studies of phospho-sulindac using wild-type and Ces1c-/- mice demonstrated 2-fold less inactivation of phospho-sulindac in the latter. Phospho-sulindac was 2-fold more efficacious in inhibiting the growth of lung and pancreatic carcinoma in Ces1c -/- mice, as compared to wild-type mice. CONCLUSIONS: Our results indicate that intact phospho-NSAIDs are the pharmacologically active entities and phospho-NSAIDs are expected to be more efficacious in humans than in rodents due to their differential expression of carboxylesterases.
Assuntos
Anti-Inflamatórios não Esteroides/uso terapêutico , Antineoplásicos/uso terapêutico , Aspirina/análogos & derivados , Hidrolases de Éster Carboxílico/genética , Carcinoma Pulmonar de Lewis/tratamento farmacológico , Ibuprofeno/análogos & derivados , Organofosfatos/uso terapêutico , Compostos Organofosforados/uso terapêutico , Sulindaco/análogos & derivados , Animais , Anti-Inflamatórios não Esteroides/metabolismo , Anti-Inflamatórios não Esteroides/farmacocinética , Antineoplásicos/metabolismo , Antineoplásicos/farmacocinética , Aspirina/metabolismo , Aspirina/farmacocinética , Aspirina/uso terapêutico , Hidrolases de Éster Carboxílico/sangue , Carcinoma Pulmonar de Lewis/genética , Carcinoma Pulmonar de Lewis/metabolismo , Ibuprofeno/metabolismo , Ibuprofeno/farmacocinética , Ibuprofeno/uso terapêutico , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Organofosfatos/metabolismo , Organofosfatos/farmacocinética , Compostos Organofosforados/metabolismo , Compostos Organofosforados/farmacocinética , Sulindaco/metabolismo , Sulindaco/farmacocinética , Sulindaco/uso terapêuticoRESUMO
BACKGROUND: The anticancer properties of aspirin are restricted by its gastrointestinal toxicity and its limited efficacy. Therefore, we synthesized phospho-aspirin (PA-2; MDC-22), a novel derivative of aspirin, and evaluated its chemotherapeutic and chemopreventive efficacy in preclinical models of triple negative breast cancer (TNBC). METHODS: Efficacy of PA-2 was evaluated in human breast cancer cells in vitro, and in orthotopic and subcutaneous TNBC xenografts in nude mice. Mechanistic studies were also carried out to elucidate the mechanism of action of PA-2. RESULTS: PA-2 inhibited the growth of TNBC cells in vitro more potently than aspirin. Treatment of established subcutaneous TNBC xenografts (MDA-MB-231 and BT-20) with PA-2 induced a strong growth inhibitory effect, resulting in tumor stasis (79% and 90% inhibition, respectively). PA-2, but not aspirin, significantly prevented the development of orthotopic MDA-MB-231 xenografts (62% inhibition). Mechanistically, PA-2: 1) inhibited the activation of epidermal growth factor receptor (EGFR) and suppressed its downstream signaling cascades, including PI3K/AKT/mTOR and STAT3; 2) induced acetylation of p53 at multiple lysine residues and enhanced its DNA binding activity, leading to cell cycle arrest; and 3) induced oxidative stress by suppressing the thioredoxin system, consequently inhibiting the activation of the redox sensitive transcription factor NF-κB. These molecular alterations were observed in vitro and in vivo, demonstrating their relevance to the anticancer effect of PA-2. CONCLUSIONS: Our findings demonstrate that PA-2 possesses potent chemotherapeutic efficacy against TNBC, and is also effective in its chemoprevention, warranting further evaluation as an anticancer agent.
Assuntos
Aspirina/análogos & derivados , Receptores ErbB/antagonistas & inibidores , Neoplasias Mamárias Experimentais/prevenção & controle , Organofosfatos/uso terapêutico , Estresse Oxidativo/fisiologia , Proteína Supressora de Tumor p53/administração & dosagem , Proteína Supressora de Tumor p53/metabolismo , Acetilação/efeitos dos fármacos , Animais , Aspirina/administração & dosagem , Aspirina/uso terapêutico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/prevenção & controle , Linhagem Celular Tumoral , Receptores ErbB/fisiologia , Feminino , Humanos , Neoplasias Mamárias Experimentais/tratamento farmacológico , Neoplasias Mamárias Experimentais/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Organofosfatos/administração & dosagem , Estresse Oxidativo/efeitos dos fármacos , Resultado do Tratamento , Proteína Supressora de Tumor p53/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto/métodosRESUMO
This study aimed to develop complex coacervates utilizing lactoferrin (LF) and chia seed mucilage (CSM) for promoting intestinal delivery of quercetin (Q) and fortification of set yogurt. Three cross-linkers, including calcium chloride (CC), transglutaminase (TG), and polyphenolic complex (HP), were used to further reinforce the coacervate network. Cross-linked coacervates had higher values of coacervate yield, encapsulation efficiency, and loading capacity. They efficiently preserved Q under gastric condition (â87%-99%), with CSM-TG-Q-LF being most effective for intestinal delivery of Q. Moreover, digested pellets of the cross-linked coacervates displayed better antioxidant activity than the uncross-linked coacervates with CSM-TG-Q-LF pellets showing maximum bioactivity. The Q-loaded coacervates demonstrated superior assembly in the yogurt matrix compared to the unencapsulated Q. Moreover, the coacervate systems, especially CSM-TG-Q-LF significantly improved the textural properties of yogurt and the stability of Q in it. Therefore, CSM-TG-LF is a promising carrier to promote intestinal delivery and food application of hydrophobic molecules.
Assuntos
Lactoferrina , Quercetina , Sementes , Iogurte , Sementes/química , Iogurte/análise , Lactoferrina/química , Lactoferrina/metabolismo , Quercetina/química , Mucilagem Vegetal/química , Humanos , Chenopodium quinoa/química , Alimentos Fortificados/análise , Mucosa Intestinal/metabolismo , Sistemas de Liberação de Medicamentos/instrumentaçãoRESUMO
The modification of starch digestibility can be achieved through the formation of complexes with polyphenols. We studied the combined impacts of ultrasound and high-pressure homogenization (UT-HPH) on the structure and in vitro digestibility of rice starch-chlorogenic acid complexes. The development of V-type complexes was supported by our findings, which also showed that synergistic UT-HPH therapy exhibited the highest absorbance value for the complexing index (0.882). Significant alterations in digestibility were also observed in the complexes, with the content of RDS decreasing from 49.27% to 27.06%, the content of slowly SDS increasing from 25.69% to 35.35%, and the percentage of RS increasing from 25.05% to 37.59%. Furthermore, a high positive correlation was found by applying the Pearson correlation coefficient in our research between RS, weight, PSD, and CI. This study presents a sustainable processing approach for utilizing chlorogenic acid in starch-rich food systems.
Assuntos
Oryza , Amido , Amido/química , Ácido Clorogênico , Digestão , Hidroxibenzoatos , Oryza/químicaRESUMO
Baked oyster is a popular seafood dish around the world. The present study investigated the effect of various concentrations of a green-tea extract (GTE) marinade on the safety and sensory profiles of oysters baked for different durations. The results showed 10 g/L of GTE and 10-min baking time was the optimal combination, as supported by significantly attenuated lipid oxidation (35.29 %) and Nε-(carboxyethyl)lysine (CEL) content (48.51 %) without appreciable negative impact on the sensory or nutritional quality of the oysters. However, high concentrations of the marinade or prolonged baking promoted protein oxidation and Nε-(carboxymethyl)lysine (CML) formation likely through the pro-oxidative action of the GTE phytochemicals. Correlation analysis further revealed the main factors that affected CML, CEL, and fluorescent AGEs generation, respectively. These findings provide theoretical support for the protective effect and mechanism of GTE against quality deterioration of baked oysters and would help broaden the application of GTE in the food industry.
RESUMO
Alzheimer's disease (AD) currently lacks effective treatments, making its prevention a critical focus. While accumulating evidence supports that plant-based fermented foods may contribute to AD prevention, the neuroprotective effect of plant-based fermented foods on AD has not been comprehensively reviewed. In this study, we conducted a systematic review of preclinical studies on the efficacy of plant-based fermented foods in AD. The literature search was based on databases including PubMed, Embase, Web of Science, and Scopus. The PICO approach was employed for report inclusion, and each report was assessed for risk of bias using the SYRCLE's RoB tool. From the analysis of 25 retrieved reports, we extracted essential details, including bibliographic information, animal models and characteristics, sources of plant-based fermented foods, dosages, administration routes, durations, and outcome measures. Our findings indicate that plant-based fermented foods may positively impact acute and long-term cognitive function, as well as beta-amyloid-mediated neurodegeneration. This review sheds light on the potential neuroprotective benefits of plant-based fermented foods for various AD-related aspects, including oxidative stress, synaptotoxicity, neuroinflammation, tau hyperphosphorylation, dysfunctional amyloidogenic pathways, and cognitive deficits, as observed in rodent models of AD. However, the small number of studies obtained from our literature search and the finding that many of them were of moderate methodological quality suggest the need for further investigation to substantiate the beneficial potential of this class of functional food for the management of AD.
Assuntos
Doença de Alzheimer , Alimentos Fermentados , Fármacos Neuroprotetores , Doença de Alzheimer/prevenção & controle , Doença de Alzheimer/dietoterapia , Animais , Humanos , Fármacos Neuroprotetores/uso terapêutico , Modelos Animais de Doenças , Estresse Oxidativo/efeitos dos fármacos , Peptídeos beta-Amiloides/metabolismoRESUMO
BACKGROUND: Ulcerative colitis (UC) is associated with intestinal macrophage infiltration due to disruption of the mucosal barrier and bacterial invasion. Therefore, it is crucial to identify therapeutic agents capable of attenuating the macrophage-induced inflammatory response to preserve mucosal homeostasis and immune tolerance. The modified Zhenwu decoction (CDD-2103) is a novel herbal formulation developed based on the principles of Traditional Chinese medicine. To date, there are no clinically approved herbal formulations for UC with a well-known mechanism of action on macrophages. PURPOSE: The objective of this study was to systematically investigate the inhibitory effect of the active fraction of CDD-2103 in a mouse model of chronic colitis and delineate the mechanisms underlying its inhibitory action. METHODS: CDD-2103 was extracted into four fractions using organic solvents with increasing polarity. A chronic 49-day dextran sulfate sodium (DSS)-induced colitis mice model, closely resembling human clinical conditions, was used to examine the effect of CDD-2103 on chronic colitis. To confirm the effect of CDD-2103 on macrophages in this chronic colitis model, adoptive macrophage transfer and CCL2 supplementation were conducted. The mechanisms of action of CDD-2103 were further elucidated utilizing bone marrow-derived macrophages (BMDMs). Transcriptome analysis was conducted to gain insights into the underlying mechanism of action of CDD-2103 in BMDMs. RESULTS: Our in vitro and in vivo findings demonstrated that the ethanol-enriched fraction of CDD-2103 exhibited significant anti-inflammatory effects, leading to the suppression of colitis severity. This effect was associated with diminished accumulation of colonic macrophages in the lamina propria of CDD-2103-intervened colitis mice. Specifically, CDD-2103 inhibited CCR2/L2-mediated proinflammatory macrophage infiltration into the colon without affecting macrophage proliferation. Mechanistically, CDD-2103 inhibited Fyn expression-mediated p38 MAPK activation and subsequently suppressed CCR2 expression in BMDMs. CONCLUSIONS: Collectively, our study supports the potential use of CDD-2103 to limit macrophage infiltration, thereby reducing inflammation during UC treatment. CDD-2103 and the components in the ethanolic fraction are promising candidates for the development of novel drugs for UC management. Additionally, our study underscores Fyn-mediated CCR2 expression as a potential therapeutic target for the management of UC.
Assuntos
Sulfato de Dextrana , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas , Macrófagos , Camundongos Endogâmicos C57BL , Receptores CCR2 , Proteínas Quinases p38 Ativadas por Mitógeno , Animais , Masculino , Camundongos , Doença Crônica , Colite/tratamento farmacológico , Colite/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Macrófagos/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Receptores CCR2/metabolismo , Transdução de Sinais/efeitos dos fármacosRESUMO
Protein glycation in human body is closely linked to the onset/progression of diabetes associated complications. These glycated proteins are commonly known as advanced glycation end products (AGEs). Recent literature has also highlighted the involvement of AGEs in other non-communicable diseases (NCDs) such as cardiovascular, cancer, and Alzheimer's diseases and explored the impact of plant metabolites on AGEs formation. However, the significance of endophytic metabolites against AGEs has recently garnered attention but has not been thoroughly summarized thus far. Therefore, the objective of this review is to provide a comprehensive overview of the importance of endophytic metabolites in combating AGEs under NCDs conditions. Additionally, this review aims to elucidate the processes of AGEs formation, absorption, metabolism, and their harmful effects. Collectively, endophytic metabolites play a crucial role in modulating signaling pathways and enhancing the digestibility properties of gut microbiota (GM) by targeting on AGEs/RAGE (receptor for AGEs) axis. Furthermore, these metabolites exhibit anti-AGEs activities similar to those derived from host plants, but at a lower cost and higher production rate. The use of endophytes as a source of such metabolites offers a risk-free and sustainable approach that holds substantial potential for the treatment and management of NCDs.