Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Chemistry ; 29(68): e202302395, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37706350

RESUMO

The inherent challenges in using metal-organic frameworks (MOFs) for photocatalytic CO2 reduction are the combination of wide-range light harvesting, efficient charge separation and transfer as well as highly exposed catalytic active sites for CO2 activation and reduction. We present here a promising solution to satisfy these requirements together by modulating the crystal facet and surface atomic structure of a porphyrin-based bismuth-MOF (Bi-PMOF). The series of structural and photo-electronic characterizations together with photocatalytic CO2 reduction experiment collectively establish that the enriched Bi active sites on the (010) surface prefer to promote efficient charge separation and transfer as well as the activation and reduction of CO2 . Specifically, the Bi-PMOFs-120-F with enriched surface Bi active sites exhibits optimal photocatalytic CO2 reduction performance to CO (28.61 µmol h-1 g-1 ) and CH4 (8.81 µmol h-1 g-1 ). This work provides new insights to synthesize highly efficient main group p-block metal Bi-MOF photocatalysts for CO2 reduction through a facet-regulation strategy and sheds light on the surface structure-activity relationships of the MOFs.

2.
ACS Nano ; 13(8): 9227-9236, 2019 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-31390521

RESUMO

Although sodium-ion batteries (SIBs) and potassium-ion batteries (PIBs) are promising prospects for next-generation energy storage devices, their low capacities and inferior kinetics hinder their further application. Among various phosphate-based polyanion materials, titanium pyrophosphate (TiP2O7) possesses outstanding ion transferability and electrochemical stability. However, it has rarely been adopted as an anode for SIBs/PIBs due to its poor electronic conductivity and nonreversible phase transitions. Herein, an ultrastable TiP2O7 with enriched oxygen vacancies is prepared as a SIB/PIB anode through P-containing polymer mediation carbonization, which avoids harsh reduction atmospheres or expensive facilities. The introduction of oxygen vacancies effectively increases the pseudocapacitance and diffusivity coefficient and lowers the Na insertion energy barrier. As a result, the TiP2O7 anode with enriched oxygen vacancies exhibits ultrastable Na/K ion storage and superior rate capability. The synthetic protocol proposed here may offer a simple pathway to explore advanced oxygen vacancy-type anode materials for SIBs/PIBs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA