Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Chem Soc Rev ; 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38894663

RESUMO

Global population growth and industrialization have exacerbated the nonrenewable energy crises and environmental issues, thereby stimulating an enormous demand for producing environmentally friendly materials. Typically, biomass-based aerogels (BAs), which are mainly composed of biomass materials, show great application prospects in various fields because of their exceptional properties such as biocompatibility, degradability, and renewability. To improve the performance of BAs to meet the usage requirements of different scenarios, a large number of innovative works in the past few decades have emphasized the importance of micro-structural design in regulating macroscopic functions. Inspired by the ubiquitous random or regularly arranged structures of materials in nature ranging from micro to meso and macro scales, constructing different microstructures often corresponds to completely different functions even with similar biomolecular compositions. This review focuses on the preparation process, design concepts, regulation methods, and the synergistic combination of chemical compositions and microstructures of BAs with different porous structures from the perspective of gel skeleton and pore structure. It not only comprehensively introduces the effect of various microstructures on the physical properties of BAs, but also analyzes their potential applications in the corresponding fields of thermal management, water treatment, atmospheric water harvesting, CO2 absorption, energy storage and conversion, electromagnetic interference (EMI) shielding, biological applications, etc. Finally, we provide our perspectives regarding the challenges and future opportunities of BAs. Overall, our goal is to provide researchers with a thorough understanding of the relationship between the microstructures and properties of BAs, supported by a comprehensive analysis of the available data.

2.
Small ; 20(22): e2307671, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38221752

RESUMO

The recent groundbreaking achievement in the synthesis of large-sized single crystal C60 monolayer, which is covalently bonded in a plane using C60 as building blocks. The asymmetric lattice structure endows it with anisotropic phonon modes and conductivity. If these C60 are arranged in form of 1D fiber, the improved manipulation of phonon conduction along the fiber axis could be anticipated. Here, thermal properties of C60-fiber, including thermal transfer along the C60-fiber axis and across the interlayer interface are investigated using molecular dynamic simulations. Taking advantage of the distinctively hollow spherical structure of C60 building blocks, the spherical structure deformation and encapsulation induced thermal reduction can be up to 56% and 80%, respectively. By applying external electronic fields in H2O@C60 model, its thermal conductivity decreases up to 60%, which realizes the contactless thermal regulation. ln particular, the thermal rectification phenomenon is discovered by inserting atoms/molecules in C60 with a rational designed mass-gradient, and its maximum thermal rectification factor is predicted to ≈45%. These investigations aim to achieve effective regulation of the thermal conductivity of C60-fibers. This work showcases the potential of C60-fiber in the realms of thermal management and thermal sensing, paving the way to C60-based functional materials.

3.
Angew Chem Int Ed Engl ; 63(29): e202403391, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38717757

RESUMO

Room temperature phosphorescence (RTP) materials have garnered significant attention owing to its distinctive optical characteristics and broad range of potential applications. However, the challenge remains in producing RTP materials with more simplicity, versatility, and practicality on a large scale, particularly in achieving chiral signals within a single system. Herein, we show that a straightforward and effective combination of wet spinning and twisting technique enables continuously fabricating RTP fibers with twisting-induced helical chirality. By leveraging the hydrogen bonding interactions between polyvinyl alcohol (PVA) and quinoline derivatives, along with the rigid microenvironment provided by PVA chains, typically, Q-NH2@PVA fiber demonstrates outstanding phosphorescent characteristics with RTP lifetime of 1.08 s and phosphorescence quantum yield of 24.6 %, and the improved tensile strength being 1.7 times than pure PVA fiber (172±5.82 vs 100±5.65 MPa). Impressively, the transformation from RTP to circularly polarized room temperature phosphorescence (CP-RTP) is readily achieved by imparting left- or right-hand helical structure through simply twisting, enabling large-scale production of chiral Q-NH2@PVA fiber with dissymmetry factor of 10-2. Besides, an array of displays and encryption patterns are crafted by weaving or seaming to exemplify the promising applications of these PVA-based fibers with outstanding adaptivity in cutting-edge anti-counterfeiting technology.

4.
Hum Genet ; 142(8): 1139-1148, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36576600

RESUMO

BACKGROUND: It is unclear whether gut microbiota (GM) affects the risk of optic neuritis (ON) through the "gut-brain" axis and the "gut-retina" axis. To examine the causal relationship between GM and ON, we conducted Mendelian randomization (MR) study. METHODS: Up to 18,340 samples of 24 population-based cohorts were included in genome-wide association study (GWAS) of 196 GM taxa. ON outcomes were selected from the FinnGen GWAS (951 ON cases and 307,092 controls). In addition, the GWAS based on UK Biobank (UKB) (105 ON cases and 456,243 controls) was used for further exploration. Inverse variance weighted (IVW) was carried out to estimate their effects on ON risk and the MR assumptions were evaluated in sensitivity analyses. RESULTS: Among the 196 GM taxa, the IVW results confirmed that Family -Peptococcaceae (P = 2.17 × 10-3), Genus- Hungatella (P = 4.57 × 10-3) and genus-Eubacterium_rectale_group (P = 0.02) were correlated with the risk of ON based on Finngen GWAS. Based on data from UKB, Genus- Eubacterium_hallii_group (P = 1.50 × 10-3) and Genus- Ruminococcaceae_UCG_002 (P = 0.02) were correlated with the risk of ON. At the phylum, class and order levels, no GM taxa were causally related to ON (P > 0.05). Heterogeneity (P > 0.05) and pleiotropy (P > 0.05) analysis confirmed the robustness of the MR results. CONCLUSION: Our MR findings support the causal effect of specific GM taxa on ON. GM may affect the risk of ON through the "gut-brain" axis and the "gut-retina" axis. However, further research is needed to confirm the relevant mechanism of the relationship between GM and ON.


Assuntos
Microbioma Gastrointestinal , Neurite Óptica , Humanos , Microbioma Gastrointestinal/genética , Análise da Randomização Mendeliana , Estudo de Associação Genômica Ampla , Causalidade
5.
Cell Biol Int ; 47(6): 1092-1105, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36807611

RESUMO

Diabetic retinopathy is a common microvascular complication of diabetes mellitus. The maintenance of retinal capillary endothelial cell homeostasis requires a complete and unobtrusive flow of autophagy because it may help combat the inflammatory response, apoptosis, and oxidative stress damage of cells in diabetes mellitus. The transcription factor EB is a master regulator of autophagy and lysosomal biogenesis, but its role in diabetic retinopathy remains unknown. This study aimed to confirm the involvement of transcription factor EB in diabetic retinopathy and explore the role of transcription factor EB in hyperglycemia-linked endothelial injury in vitro. First, the expression levels, including the nuclear location of transcription factor EB and autophagy, were reduced in diabetic retinal tissues and high glucose-treated human retinal capillary endothelial cells. Subsequently, autophagy was mediated by transcription factor EB in vitro. Moreover, transcription factor EB overexpression reversed high glucose-induced autophagy inhibition and lysosomal dysfunction and protected human retinal capillary endothelial cells from inflammation, apoptosis, and oxidative stress damage caused by high glucose treatment. Additionally, under high-glucose stimulation, the autophagy inhibitor chloroquine attenuated transcription factor EB overexpression-mediated protection, and the autophagy agonist Torin1 rescued transcription factor EB knockdown-induced damage effects. Taken together, these results suggest that transcription factor EB is involved in the development of diabetic retinopathy. In addition, transcription factor EB protects human retinal capillary endothelial cells from high glucose-induced endothelial damage via autophagy.


Assuntos
Retinopatia Diabética , Hiperglicemia , Humanos , Retinopatia Diabética/metabolismo , Células Endoteliais/metabolismo , Autofagia , Hiperglicemia/metabolismo , Fatores de Transcrição , Glucose/farmacologia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos
6.
Chemistry ; 28(55): e202201664, 2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-35796204

RESUMO

Mesoscopic aggregate is important to transfer or even amplify the molecular information in macroscopic materials. As an important branch of aggregate science, aggregation-induced emissive luminogens (AIEgens) often show slight or even no emission in solutions but exhibit bright emission when they aggregate, which open a new avenue for the practical applications. Due to the flexible and rotor structure of AIEgens, the aggregate structure of AIEgens is highly sensitive to the surrounding microenvironment, resulting in adjustable optical properties. Fibers integrated of a multiplicity of functional components are ideal carriers to control the aggregation processes, further assembly of fibers produces large-scale fabrics with amplified functions and practical values. In this Concept article, we focus on the latest advances on the synergy between "AIE+Fiber" for the boosted performance that beyond AIE, and their applications are presented and abstracted out to stimulate new ideas for developing "AIE+Fiber" systems.

7.
Chem Soc Rev ; 50(12): 7009-7061, 2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-33912884

RESUMO

Fibers have played a critical role in the long history of human development. They are the basic building blocks of textiles. Synthetic fibers not only make clothes stronger and more durable, but are also customizable and cheaper. The growth of miniature and wearable electronics has promoted the development of smart and multifunctional fibers. Particularly, the incorporation of functional semiconductors and electroactive materials in fibers has opened up the field of fiber electronics. The energy supply system is the key branch for fiber electronics. Herein, after a brief introduction on the history of smart and functional fibers, we review the current state of advanced functional fibers for their application in energy conversion and storage, focusing on nanogenerators, solar cells, supercapacitors and batteries. Subsequently, the importance of the integration of fiber-shaped energy conversion and storage devices via smart structure design is discussed. Finally, the challenges and future direction in this field are highlighted. Through this review, we hope to inspire scientists with different research backgrounds to enter this multi-disciplinary field to promote its prosperity and development and usher in a truly new era of smart fibers.

8.
Med Sci Monit ; 26: e920883, 2020 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-32506069

RESUMO

BACKGROUND Sirtuin (Sirt) 3 could promote autophagy by downregulating the expression of genes related to neovascularization in retinal endothelial cells. In this study, we aimed to investigate the effect of Sirt3 overexpression on retinopathy in streptozotocin (STZ)-induced diabetic rats, and to assess its mechanisms. MATERIAL AND METHODS Ntraperitoneal injection of STZ in rats was used to produce a diabetic model. The study rats were divided into 4 groups (n=6 for each group): a control group; a model group; a model+scrambled adenovirus group; and a model+Sirt3 overexpression group. Hematoxylin and eosin (H&E) staining determined the pathological changes of retina tissues. Immunohistochemistry, fluorescence quantitative polymerase chain reaction, and western blotting were used to detect the expression of Sirt3, vascular endothelial growth factor (VEGF), and microtubule-associated protein 1A/1B-light chain 3 (LC3). RESULTS In the model group, the inner limiting membrane was swollen, uneven and thickened, and the capillary endothelial cells occasionally protruded into the inner limiting membrane. These abnormalities were prevented by Sirt3 overexpression. Compared with the control group, the expression of Sirt3 at both mRNA and protein levels in the model group was significantly reduced, while the expression of VEGF was increased versus the control group (P.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Retinopatia Diabética/metabolismo , Sirtuínas/biossíntese , Animais , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patologia , Retinopatia Diabética/genética , Retinopatia Diabética/patologia , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Masculino , Ratos , Ratos Sprague-Dawley , Retina/metabolismo , Retina/patologia , Sirtuínas/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
9.
Angew Chem Int Ed Engl ; 58(14): 4536-4540, 2019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30688392

RESUMO

The development of molecular machines requires new building blocks which are easy to characterize and visualize to realize a complexity comparable to their natural counterparts such as biological enzymes. Furthermore, with the desire to build functional nanobots capable of navigating living organisms, it is necessary that the building blocks show mobility even in the solid state. Herein we report a system which is emissive in the amorphous state but is non-fluorescent in the crystalline state due to the formation of extensive π-π interactions. This dual nature could be exploited for easy visualization of its solid-state molecular rearrangement. The emission of the amorphous film was quenched as the molecules spontaneously formed π-π interactions even in the solid state. Scratching the non-emissive film destroyed the interactions and restored the emission of the film. The emission quickly disappeared with an average lifetime of 20 s as the compound reformed the π-network even at room temperature.

10.
Biochem Biophys Res Commun ; 499(4): 948-953, 2018 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-29626480

RESUMO

Activating transcription factor 6α (ATF6α) as a transducer in unfolded protein response (UPR), plays an important role in liver glucose metabolism and insulin resistance. Thus, targeting ATF6α activation has been proposed to be a potential strategy for anti-T2DM drug discovery. Here, we determined that small molecule 2-[5-[1-(4-chlorophenoxy)ethyl]-4-phenyl-4H-1,2,4-triazol-3-yl]sulfanyl-N-(1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl)acetamide (TSPA) functioned as an ATF6α translocation inducer effectively promoting ATF6α translocation into nucleus and ameliorating glucose homeostasis on db/db mice. TSPA promoted ATF6α translocation into nucleus without incresing C/EBP-homologous protein (CHOP) expression. TSPA restored the tunicamycin (TM)-stimulated insulin receptor (IR) desensitization through ATF6α activation, inhibited gluconeogenesis and efficiently improved glucose homeostasis on db/db mice. Furthermore, TSPA protected insulin pathway involving p38/X-box binding protein 1s (Xbp1s)/ER chaperones signaling pathway. Our current study has determined that ATF6α was a promising therapeutic target and also highlighted the potential of TSPA in the treatment of type 2 diabetes mellitus (T2DM).


Assuntos
Acetamidas/farmacologia , Fator 6 Ativador da Transcrição/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Glucose/metabolismo , Homeostase , Resistência à Insulina , Pirazóis/farmacologia , Triazóis/farmacologia , Animais , Linhagem Celular Tumoral , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Humanos , Masculino , Camundongos , Transporte Proteico/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator de Transcrição CHOP/metabolismo , Tunicamicina/farmacologia , Proteína 1 de Ligação a X-Box/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
11.
Angew Chem Int Ed Engl ; 57(21): 6274-6278, 2018 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-29633451

RESUMO

A facile and efficient approach is demonstrated to visualize the polymerization in situ. A group of tetraphenylethylene (TPE)-containing dithiocarbamates were synthesized and screened as agents for reversible addition fragmentation chain transfer (RAFT) polymerizations. The spatial-temporal control characteristics of photochemistry enabled the RAFT polymerizations to be ON and OFF on demand under alternating visible light irradiation. The emission of TPE is sensitive to the local viscosity change owing to its aggregation-induced emission characteristic. Quantitative information could be easily acquired by the naked eye without destroying the reaction system. Furthermore, the versatility of such a technique was well demonstrated by 12 different polymerization systems. The present approach thus demonstrated a powerful platform for understanding the controlled living radical polymerization process.

12.
Opt Express ; 25(21): 25098-25101, 2017 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-29041181

RESUMO

A recent publication by Shin et al. [Opt. Express25, A113 (2017)] contains an optical simulation model for the quantum dots (QDs) nanophosphor based on the mean free path concept. We show that their measured scattering pattern of QDs is misleading, which would result in a fatal deviation between simulated and actual values.

13.
Nanotechnology ; 28(42): 425204, 2017 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-28752826

RESUMO

Human comfort has become one of the most important criteria in modern lighting architecture. Here, we proposed a tuning strategy to enhance the non-image forming photobiological effect on the human circadian rhythm based on quantum-dots-converted white light-emitting diodes (QDs-WLEDs). We introduced the limiting variability of the circadian action factor (CAF), defined as the ratio of circadian efficiency and luminous efficiency of radiation. The CAF was deeply discussed and was found to be a function of constraining the color rendering index (CRI) and correlated color temperatures. The maximum CAF variability of QDs-WLEDs was found to be dependent on the QDs' peak wavelength and full width at half maximum. With the optimized parameters, the packaging materials were synthesized and WLEDs were packaged. Experimental results show that at CRI > 90, the maximum CAF variability can be tuned by 3.83 times (from 0.251 at 2700 K to 0.961 at 6500 K), which implies that our approach could reduce the number of tunable channels, and could achieve wider CAF variability.

14.
Phys Chem Chem Phys ; 19(10): 7352-7358, 2017 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-28240333

RESUMO

Manipulating thermal transport across hard/soft material interfaces is important for composites which are critical for a wide range of applications, including electronic packaging, thermal storage, sensors and medicine. To increase the interfacial thermal conductance (Gint), a previous strategy has focused on using a self-assembled monolayer (SAM) to bridge the phonon spectra mismatch between the materials constituting the interface. Here, we introduce a general strategy aiming for interfaces which are incompatible with the previous strategy. Copper (Cu) and epoxy resin are chosen as representative materials constituting the interface. The proposed strategy relies on using a strongly bonding SAM to covalently connect Cu and epoxy. The thermal measurements show that Gint can be enhanced by as much as 11 fold. An interesting result is found that the Cu/epoxy interface, modified with the SAM used in the previous strategy, shows approximate 2-fold lower Gint. Through a series of experiments, including tensile strength and wettability tests, the formation and characters of bonds in different interface systems are explored and understood. The correlation between bonding characters and Gint is also elucidated. We demonstrate that when the structure of the soft material is complex, interfacial thermal transport should be tuned by covalent bonds rather than by phonon spectra match. Finally, the great potential of the proposed strategy in manipulating the thermal properties of nanocomposites is illustrated here with a theoretical prediction.

15.
Korean J Parasitol ; 55(2): 167-174, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28506039

RESUMO

China still has more than 30,000 patients of advanced schistosomiasis while new cases being reported consistently. D-dimer is a fibrin degradation product. As ascites being the dominating symptom in advanced schistosomiasis, the present study aimed to explore a prediction model of ascites with D-dimer and other clinical easy-achievable indicators. A case-control study nested in a prospective cohort was conducted in schistosomiasis-endemic area of southern China. A total of 291 patients of advanced schistosomiasis were first investigated in 2013 and further followed in 2014. Information on clinical history, physical examination, and abdominal ultrasonography, including the symptom of ascites was repeatedly collected. Result showed 44 patients having ascites. Most of the patients' ascites were confined in the kidney area with median area of 20 mm2. The level of plasma D-dimer and pertinent liver function indicators were measured at the initial investigation in 2013. Compared with those without ascites, cases with ascites had significantly higher levels of D-dimer (0.71±2.44 µg/L vs 0.48±2.12 µg/L, P=0.005), as well ALB (44.5 vs 46.2, g/L) and Type IV collagen (50.04 vs 44.50 µg/L). Receiver operating characteristic curve analyses indicated a moderate predictive value of D-dimer by its own area under curve (AUC) of 0.64 (95% CI: 0.54-0.73) and the cutoff value as 0.81 µg/L. Dichotomized by the cutoff level, D-dimer along with other categorical variables generated a prediction model with AUC of 0.76 (95% CI: 0.68-0.89). Risks of patients with specific characteristics in the prediction model were summarized. Our study suggests that the plasma D-dimer level is a reliable predictor for incident ascites in advanced schistosomiasis japonica patients.


Assuntos
Ascite/diagnóstico , Ascite/etiologia , Produtos de Degradação da Fibrina e do Fibrinogênio , Esquistossomose Japônica/complicações , Idoso , Ascite/epidemiologia , Biomarcadores/sangue , Estudos de Casos e Controles , China/epidemiologia , Estudos de Coortes , Doenças Endêmicas , Feminino , Humanos , Incidência , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Estudos Prospectivos
16.
Macromol Rapid Commun ; 37(22): 1795-1801, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27739218

RESUMO

Hydrogel microfibers have been considered as a potential biomaterial to spatiotemporally biomimic 1D native tissues such as nerves and muscles which are always assembled hierarchically and have anisotropic response to external stimuli. To produce facile hydrogel microfibers in a mathematical manner, a novel dynamic-crosslinking-spinning (DCS) method is demonstrated for direct fabrication of size-controllable fibers from poly(ethylene glycol diacrylate) oligomer in large scale, without microfluidic template and in a biofriendly environment. The diameter of fibers can be precisely controlled by adjusting the spinning parameters. Anisotropic swelling property is also dependent on inhomogeneous structure generated in spinning process. Comparing with bulk hydrogels, the resulting fibers exhibit superior rapid water adsorption property, which can be attributed to the large surface area/volume ratio of fiber. This novel DCS method is one-step technology suitable for large-scale production of anisotropic hydrogel fibers which has a promising application in the area such as biomaterials.

17.
Small ; 11(26): 3135-42, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25777365

RESUMO

Nanostructured composites built from ordinary building units have attracted much attention because of their collective properties for critical applications. Herein, we have demonstrated the heteroassembly of carbon nanotubes and oxide nanocrystals using an aerosol spray method to prepare nanostructured mesoporous composites for electrochemical energy storage. The designed composite architectures show high conductivity and hierarchically structured mesopores, which achieve rapid electron and ion transport in electrodes. Therefore, as-synthesized carbon nanotube/TiO2 electrodes exhibit high rate performance through rapid Li(+) intercalation, making them suitable for ultrafast energy storage devices. Moreover, the synthesis process provides a broadly applicable method to achieve the heteroassembly of vast low-dimensional building blocks for many important applications.

19.
Macromol Rapid Commun ; 36(5): 477-82, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25611464

RESUMO

Novel thermosensitive nanocomposite (NC) hydrogels consisting of organic/inorganic networks are prepared via in situ free radical polymerization of 2-(2-methoxyethoxy) ethyl methacrylate (MEO2 MA) and oligo(ethylene glycol) methacrylate (OEGMA) in the presence of inorganic cross-linker clay in aqueous solution. The obtained clay/P(MEO2 MA-co-OEGMA) hydrogels exhibit double volume phase transition temperatures, an upper critical solution temperature (UCST), and a lower critical solution temperature (LCST), which can be controlled between 5 and 85 °C by varying the fraction of OEGMA units and the weight percentage of cross-linker clay. These new types of NC hydrogels with excellent reversible thermosensitivity are promising for temperature-sensitive applications such as smart optical switches.


Assuntos
Hidrogéis/química , Metacrilatos/química , Nanocompostos/química , Polímeros/química , Temperatura , Silicatos de Alumínio/química , Argila , Radicais Livres/química , Transição de Fase , Polimerização , Soluções/química
20.
Nanomedicine ; 11(4): 901-12, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25652899

RESUMO

Copper sulfide (CuS) has emerged as a promising photothermal agent. However, its potential toxic effects still remained poorly understood. Herein, CuS nanoplates were synthesized for toxicity assessment. The in vitro study indicated that the cell viability decreased when CuS nanoplate concentration was higher than 100 µg/mL. CuS nanoplates caused apparent toxicity to HUVEC and RAW 264.7 cells. For acute toxicity, maximum tolerated dose and lethal dose 50 were 8.66 and 54.5 mg/kg, respectively. Furthermore, the sub-chronic toxicity test results indicated that there was no obvious effect at tested doses during the test period. The biodistribution study showed that intravenously administrated CuS nanoplates were mainly present in the spleen, liver and lung. Taken together, our results shed light on the rational design of CuS nanomaterials to minimize toxicity, thus providing a useful guideline in selecting CuS as the photothermal agent for cancer therapy. FROM THE CLINICAL EDITOR: Photothermal ablation therapy is a promising new treatment modality for cancer. One of the potential photothermal agents is copper sulfide (CuS). In this article, the potential toxic effects of CuS nanoplates were studied. The authors showed that further modification on the design of CuS nanomaterials was needed to minimize toxicity.


Assuntos
Cobre , Teste de Materiais , Nanopartículas/química , Neoplasias/terapia , Fototerapia/métodos , Sulfetos , Animais , Linhagem Celular , Cobre/química , Cobre/farmacocinética , Cobre/farmacologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Camundongos , Sulfetos/química , Sulfetos/farmacocinética , Sulfetos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA