Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
JACS Au ; 3(2): 459-467, 2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36873703

RESUMO

Catalysts can undergo structural changes during the reaction, affecting the number and/or the shape of active sites. For example, Rh can undergo interconversion between nanoparticles and single atoms when CO is present in the reaction mixture. Therefore, calculating a turnover frequency in such cases can be challenging as the number of active sites can change depending on the reaction conditions. Here, we use CO oxidation kinetics to track Rh structural changes occurring during the reaction. The apparent activation energy, considering the nanoparticles as the active sites, was constant in different temperature regimes. However, in a stoichiometric excess of O2, there were observed changes in the pre-exponential factor, which we link to changes in the number of active Rh sites. An excess of O2 enhanced CO-induced Rh nanoparticle disintegration into single atoms, affecting catalyst activity. The temperature at which these structural changes occur depend on Rh particle size, with small particle sizes disintegrating at higher temperature, relative to the temperature required to break apart bigger particles. Rh structural changes were also observed during in situ infrared spectroscopic studies. Combining CO oxidation kinetics and spectroscopic studies allowed us to calculate the turnover frequency before and after nanoparticle redispersion into single atoms.

2.
Environ Sci Technol ; 46(3): 1747-54, 2012 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-22239740

RESUMO

Application of Fe-zeolites for urea-SCR of NO(x) in diesel engine is limited by catalyst deactivation with hydrocarbons (HCs). In this work, a series of Fe-zeolite catalysts (Fe-MOR, Fe-ZSM-5, and Fe-BEA) was prepared by ion exchange method, and their catalytic activity with or without propene for selective catalytic reduction of NO(x) with ammonia (NH(3)-SCR) was investigated. Results showed that these Fe-zeolites were relatively active without propene in the test temperature range (150-550 °C); however, all of the catalytic activity was suppressed in the presence of propene. Fe-MOR kept relatively higher activity with almost 80% NO(x) conversion even after propene coking at 350 °C, and 38% for Fe-BEA and 24% for Fe-ZSM-5 at 350 °C, respectively. It was found that the pore structures of Fe-zeolite catalysts were one of the main factors for coke formation. As compared to ZSM-5 and HBEA, MOR zeolite has a one-dimensional structure for propene diffusion, relatively lower acidity, and is not susceptible to deactivation. Nitrogenated organic compounds (e.g., isocyanate) were observed on the Fe-zeolite catalyst surface. The site blockage was mainly on Fe(3+) sites, on which NO was activated and oxidized. Furthermore, a novel fully formulated Fe-BEA monolith catalyst coating modified with MOR was designed and tested, the deactivation due to propene poisoning was clearly reduced, and the NO(x) conversion reached 90% after 700 ppm C(3)H(6) exposure at 500 °C.


Assuntos
Poluição do Ar/prevenção & controle , Alcenos/química , Ferro/química , Óxidos de Nitrogênio/química , Emissões de Veículos/prevenção & controle , Zeolitas/química , Amônia/química , Catálise , Troca Iônica , Oxirredução , Temperatura , Emissões de Veículos/análise
3.
Environ Sci Technol ; 44(5): 1799-805, 2010 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-20136123

RESUMO

Application of Fe-zeolites for urea-SCR of NO(x) in diesel engine is limited by catalyst deactivation with hydrocarbons. In this work, we investigated the effect of propene on the activity of Fe-ZSM-5 for selective catalytic reduction of NO(x) with ammonia (NH(3)-SCR), and proposed a deactivation mechanism of Fe(3+) active site blockage by propene residue. The NO conversion decreased in the presence of propene at various temperatures, while the effect was not significant when NO was replaced by NO(2) in the feed, especially at low temperatures (<300 degrees C). The surface area and pore volume were decreased due to carbonaceous deposition. The site blockage was mainly on Fe(3+) sites on which NO was to be oxidized to NO(2). The activity for NO oxidation to NO(2) was significantly inhibited on a propene poisoned catalyst below 400 degrees C. The adsorption of NH(3) on the Bronsted acid sites to form NH(4)(+) was not hindered even on the propene poisoned catalyst, and the amount of absorbed NH(3) was still abundant and enough to react with NO(2) to generate N(2). The hydrocarbon oxygenates such as formate, acetate, and containing nitrogen organic compounds were observed on catalyst surface, however, no graphitic carbonaceous deposit was formed.


Assuntos
Alcenos/intoxicação , Chuva Ácida , Amônia/química , Catálise , Compostos Férricos/química , Combustíveis Fósseis/análise , Gases/análise , Óxido Nítrico , Óxidos de Nitrogênio/química , Oxirredução , Quartzo , Espectroscopia de Infravermelho com Transformada de Fourier , Termodinâmica , Emissões de Veículos , Eliminação de Resíduos Líquidos , Zeolitas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA