Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nanotechnology ; 35(2)2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37816338

RESUMO

Phototransistor using 2D semiconductor as the channel material has shown promising potential for high sensitivity photo detection. The high photoresponsivity is often attributed to the photogating effect, where photo excited holes are trapped at the gate dielectric interface that provides additional gate electric field to enhance channel charge carrier density. Gate dielectric material and its deposition processing conditions can have great effect on the interface states. Here, we use HfO2gate dielectric with proper thermal annealing to demonstrate a high photoresponsivity MoS2phototransistor. When HfO2is annealed in H2atmosphere, the photoresponsivity is enhanced by an order of magnitude as compared with that of a phototransistor using HfO2without annealing or annealed in Ar atmosphere. The enhancement is attributed to the hole trapping states introduced at HfO2interface through H2annealing process, which greatly enhances photogating effect. The phototransistor exhibits a very large photoresponsivity of 1.1 × 107A W-1and photogain of 3.3 × 107under low light illumination intensity. This study provides a processing technique to fabricate highly sensitive phototransistor for low optical power detection.

2.
Int J Mol Sci ; 21(15)2020 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-32752112

RESUMO

The expansion of adipose tissue mass is the primary characteristic of the process of becoming obesity, which causes chronic adipose inflammation and is closely associated with type 2 diabetes mellitus (T2DM). Adipocyte hypertrophy restricts oxygen availability, leading to microenvironmental hypoxia and adipose dysfunction. This study aimed at investigating the effects of oxygenated water (OW) on adipocyte differentiation (adipogenesis) and the metabolic function of mature adipocytes. The effects of OW on adipogenesis and the metabolic function of mature adipocytes were examined. Meanwhile, the in vivo metabolic effects of long-term OW consumption on diet-induced obesity (DIO) mice were investigated. OW inhibited adipogenesis and lipid accumulation through down-regulating critical adipogenic transcription factors and lipogenic enzymes. While body weight, blood and adipose parameters were not significantly improved by long-term OW consumption, transient circulatory triglyceride-lowering and glucose tolerance-improving effects were identified. Notably, hepatic lipid contents were significantly reduced, indicating that the DIO-induced hepatic steatosis was attenuated, despite no improvements in fibrosis and lipid contents in adipose tissue being observed in the OW-drinking DIO mice. The study provides evidence regarding OW's effects on adipogenesis and mature adipocytes, and the corresponding molecular mechanisms. OW exhibits transient triglyceride-lowering and glucose tolerance-improving activity as well as hepatic steatosis-attenuating functions.


Assuntos
Adipogenia/efeitos dos fármacos , Fígado Gorduroso/tratamento farmacológico , Lipogênese/efeitos dos fármacos , Água/metabolismo , Células 3T3-L1 , Adipócitos/efeitos dos fármacos , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Animais , Diferenciação Celular/efeitos dos fármacos , Dieta Hiperlipídica/efeitos adversos , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Humanos , Camundongos , Camundongos Obesos/genética , Camundongos Obesos/metabolismo , Obesidade/genética , Obesidade/metabolismo , Obesidade/patologia , Obesidade/prevenção & controle , Oxigênio/metabolismo , Água/farmacologia
3.
Appl Opt ; 55(26): 7387-91, 2016 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-27661378

RESUMO

The influence of the microstructure geometry of patterned sapphire substrates (PSS) on the light extraction efficiency (LEE) of GaN light-emitting diodes (LEDs) is numerically analyzed. Cone structures of various dimensions are studied, along with dome and mixed microstructures. LEE is found to mainly depend on the microstructure surface slope. LEE rises quickly with slope and flattens out when the slope exceeds 0.6. Scaling down the microstructure has little effect on LEE. Light rays are found to travel longer distances in PSS LEDs, as compared with LEDs grown on a flat substrate. Keeping GaN absorption loss low is important for LEE optimization.

4.
Opt Express ; 23(24): 31150-62, 2015 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-26698744

RESUMO

The combination of ZnO, InN, and GaN epitaxial layers is explored to provide long wavelength photodetection capability in the GaN based materials. Growth temperature optimization was performed to obtain the best quality of InN epitaxial layer in the MOCVD system. The temperature dependent photoluminescence (PL) can provide the information about thermal quenching in the InN PL transitions and at least two non-radiative processes can be observed. X-ray diffraction and energy dispersive spectroscopy are applied to confirm the inclusion of indium and the formation of InN layer. The band alignment of such system shows a typical double heterojunction, which is preferred in optoelectronic device operation. The photodetector manufactured by this ZnO/GaN/InN layer can exhibit extended long-wavelength quantum efficiency, as high as 3.55%, and very strong photocurrent response under solar simulator illumination.

5.
Opt Express ; 22(2): 2007-12, 2014 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-24515210

RESUMO

This work investigates the resonant modes of a 12-fold symmetric defect free photonic quasicrystal (PQC) nanorod array using finite difference time domain (FDTD) simulation. Localized modes can exist in PQC without introducing defects due to the lack of translational symmetry. The resonant modes of the unit cell PQC and the one time expanded PQC from unit cell are systematically examined. The resonant spectrum is that of a single rod modified by the interaction among PQC nanorods. The mode confinement is contributed by guided resonance and destructive interference scattering. The self-scaling similarity of resonant spectrum and mode profile are also investigated.

6.
Opt Express ; 21(20): 23030-5, 2013 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-24104218

RESUMO

We report the fabrication and studies of electrically driven green, olivine, and amber color nanopyramid GaN light emitting diodes (LEDs). InGaN/GaN multiple quantum wells (MQWs) were grown on the nanopyramid semipolar facets. Compared with the commonly used (0001) c-plane MQWs, the semipolar facet has lower piezoelectric field, resulting in much faster radiative recombination efficiency. This is important for high In content MQWs. The measured internal quantum efficiencies for green, olivine, and amber color LED are 30%, 25%, and 21%, respectively. The radiative and non-radiative lifetime of the semipolar MQWs are also investigated.

7.
ChemSusChem ; 16(17): e202300820, 2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37421638

RESUMO

High activity catalysts for hydrogen evolution reaction (HER) play a key role in converting renewable electricity to storable hydrogen fuel. Great effort has been devoted to the search for noble metal free catalysts to make electrolysis viable for practical applications. Here, a non-precious metal oxide/metal catalyst with high intrinsic activity comparable to Pt/C was reported. The electrocatalyst consisting of NiO, Ni(OH)2 , Cr2 O3 , and Ni metal exhibits a low overpotential of 27, 103, and 153 mV at current densities of 10, 100, and 200 mA cm-2 , respectively, in a 1.0 m NaOH electrolyte. The activity is much higher than that of NiOx /Ni or Cr2 O3 alone, showing the synergistic effect of NiOx /Ni and Cr2 O3 on catalyzing HER. Density functional theory calculations shows that NiO and Cr2 O3 on Ni surface lower the disassociation energy barrier for breaking H-OH bond, while Ni(OH)2 and Cr2 O3 create preferred sites on Ni surface with near-zero H* adsorption free energy to promote H* to gaseous H2 evolution. These synergistic effects of multiple-oxides/metal composition enhance the disassociation of H-OH and the evolution of H* to gaseous H2 , thus achieving high activity and demonstrating a promising composition design for noble metal free catalyst.

8.
Opt Express ; 20(11): 12457-62, 2012 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-22714233

RESUMO

We report the observation of lasing action from an optically pumped gallium nitride quasicrystal nanorod arrays. The nanorods were fabricated from a GaN substrate by patterned etching, followed by epitaxial regrowth. The nanorods were arranged in a 12-fold symmetric quasicrystal pattern. The regrowth grew hexagonal crystalline facets and core-shell multiple quantum wells (MQWs) on nanorods. Under optical pumping, multiple lasing peaks resembling random lasing were observed. The lasing was identified to be from the emission of MQWs on the nanorod sidewalls. The resonant spectrum and mode field of the 12-fold symmetric photonic quasicrystal nanorod arrays is discussed.


Assuntos
Gálio/química , Lasers , Nanopartículas/química , Nanopartículas/ultraestrutura , Nanotecnologia/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento
9.
Opt Express ; 19(19): 17960-5, 2011 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-21935160

RESUMO

We report the observation of room temperature lasing action in optically pumped GaN nanopillars. The nanopillars were fabricated by patterned etching and crystalline regrowth from a GaN substrate. When nanopillars were optically excited, a narrow emission peak emerged from the broad spontaneous emission background. The increasing rate is nine times faster than that of the spontaneous emission background, showing the onset of lasing action. The lasing occurs right at the center of spontaneous emission rather than the often reported redshifted wavelength. A spectroscopic ellipsometry analysis indicates that the gain of lasing action is provided by exciton transition.

10.
Opt Express ; 19 Suppl 4: A930-6, 2011 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-21747563

RESUMO

High efficiency white light-emitting diodes with superior color-mixing have been investigated. It is suggested that the patterned remote phosphor structure could improve the uniformity of angular-dependent correlated color temperature (CCT) and achieve high chromatic stability in wider operating current range, as compared to the conventional remote phosphor coating structure. In this experiment, we employed a pulse spray coating method to place the patterned phosphor on the package and to leave a window region. The window area, a clear space without coating of the phosphor not only increases the extraction efficiency of blue rays at large angle, but also improves the stability of angular-dependent CCT. Moreover, the CCT deviation could be reduced from 1320 K to 266 K by this patterned remote phosphor method, and the stray blue/yellow light within the package can be effectively reduced and controlled. The design was verified both experimentally and theoretically.

11.
Micromachines (Basel) ; 12(10)2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-34683210

RESUMO

GaN HEMT has attracted a lot of attention in recent years owing to its wide applications from the high-frequency power amplifier to the high voltage devices used in power electronic systems. Development of GaN HEMT on Si-based substrate is currently the main focus of the industry to reduce the cost as well as to integrate GaN with Si-based components. However, the direct growth of GaN on Si has the challenge of high defect density that compromises the performance, reliability, and yield. Defects are typically nucleated at the GaN/Si heterointerface due to both lattice and thermal mismatches between GaN and Si. In this article, we will review the current status of GaN on Si in terms of epitaxy and device performances in high frequency and high-power applications. Recently, different substrate structures including silicon-on-insulator (SOI) and engineered poly-AlN (QST®) are introduced to enhance the epitaxy quality by reducing the mismatches. We will discuss the development and potential benefit of these novel substrates. Moreover, SOI may provide a path to enable the integration of GaN with Si CMOS. Finally, the recent development of 3D hetero-integration technology to combine GaN technology and CMOS is also illustrated.

12.
Nanomaterials (Basel) ; 10(9)2020 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-32937762

RESUMO

Non-radiative energy transfer (NRET) from quantum dots (QDs) to monolayer MoS2 has been shown to greatly enhance the photoresponsivity of the MoS2 photodetector, lifting the limitations imposed by monolayer absorption thickness. Studies were often performed on a photodetector with a channel length of only a few µm and an active area of a few µm2. Here, we demonstrate a QD sensitized monolayer MoS2 photodetector with a large channel length of 40 µm and an active area of 0.13 mm2. The QD sensitizing coating greatly enhances photoresponsivity by 14-fold at 1.3 µW illumination power, as compared with a plain monolayer MoS2 photodetector without QD coating. The photoresponsivity enhancement increases as QD coating density increases. However, QD coating also causes dark current to increase due to charge doping from QD on MoS2. At low QD density, the increase of photocurrent is much larger than the increase of dark current, resulting in a significant enhancement of the signal on/off ratio. As QD density increases, the increase of photocurrent becomes slower than the increase of dark current. As a result, photoresponsivity increases, but the on/off ratio decreases. This inverse dependence on QD density is an important factor to consider in the QD sensitized photodetector design.

13.
Adv Mater ; 30(21): e1706918, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29633385

RESUMO

Given the high demand for miniaturized optoelectronic circuits, plasmonic devices with the capability of generating coherent radiation at deep subwavelength scales have attracted great interest for diverse applications such as nanoantennas, single photon sources, and nanosensors. However, the design of such lasing devices remains a challenging issue because of the long structure requirements for producing strong radiation feedback. Here, a plasmonic laser made by using a nanoscale hyperbolic metamaterial cube, called hyperbolic metacavity, on a multiple quantum-well (MQW), deep-ultraviolet emitter is presented. The specifically designed metacavity merges plasmon resonant modes within the cube and provides a unique resonant radiation feedback to the MQW. This unique plasmon field allows the dipoles of the MQW with various orientations into radiative emission, achieving enhancement of spontaneous emission rate by a factor of 33 and of quantum efficiency by a factor of 2.5, which is beneficial for coherent laser action. The hyperbolic metacavity laser shows a clear clamping of spontaneous emission above the threshold, which demonstrates a near complete radiation coupling of the MQW with the metacavity. This approach shown here can greatly simplify the requirements of plasmonic nanolaser with a long plasmonic structure, and the metacavity effect can be extended to many other material systems.

14.
Adv Mater ; 25(25): 3456-61, 2013 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-23703933

RESUMO

A phototransistor based on a chemical vapor deposited (CVD) MoS2 monolayer exhibits a high photoresponsivity (2200 A W(-1) ) and an excellent photogain (5000). The presence of shallow traps contributes to the persistent photoconductivity. Ambient adsorbates act as p-dopants to MoS2 , decreasing the carrier mobility, photoresponsivity, and photogain.


Assuntos
Dissulfetos/química , Luz , Molibdênio/química , Transistores Eletrônicos , Condutividade Elétrica , Silício/química , Dióxido de Silício/química , Volatilização
15.
Phys Rev Lett ; 97(9): 093601, 2006 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-17026361

RESUMO

The spontaneous emission of an excited atom in a lossy cavity with nonorthogonal eigenmodes is analyzed. The quantum Langevin formalism is used to describe the dynamics of the spontaneous decay. The analysis shows that the spontaneous decay is modified by the Q value and the effective mode volume factor of each cavity eigenmode. The effective mode volume is generalized for cavities with nonorthogonal modes, which can be a very significant modification in the microcavity regime. It is shown that the spontaneous decay is not enhanced by the excess noise factor as claimed by other analyses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA